novel catalytic transformations for the chemical …

28
NOVEL CATALYTIC TRANSFORMATIONS FOR THE CHEMICAL RECYCLING OF CO 2 CNRS JULY 09 2013 CEA / DSM / IRAMIS | Thibault Cantat

Upload: others

Post on 02-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

NOVEL CATALYTIC

TRANSFORMATIONS FOR

THE CHEMICAL RECYCLING

OF CO2

CNRS

JULY 09 – 2013

CEA / DSM / IRAMIS | Thibault Cantat

INTRODUCTION

CO2 – FACTS AND FIGURES

A widespread use of fossil resources: fuels and chemistry

FROM THE CONTEXT TO THE CHALLENGES

8 0 % o f t h e w o r l d e n e r g y p o r t f o l i o

9 5 % o f o r g a n i c c h e m i c a l s d e r i v e f r o m f o s s i l f e e d s t o c k s

1 0 %

H y d r o c a r b o n s , g a s , c o a l

CHEMICAL TRANSFORMATION OF CO2

T w o e n e r g e t i c c h a l l e n g e s : t h e r m o d y n a m i c a n d k i n e t i c

DESIGN UNDER CONSTRAINT

Two strong constraints: energy and resources availability

carbon-free energy inputs

high selectivity

large kinetics

low pressure, low temperature

high selectivity

use of earth abundant materials

use of non-toxic materials

tolerant to impurities (NOx, SOx, M, etc.)

atmospheric pressure of CO2

high temperature (niche app. with

cogeneration)

DESIGN UNDER CONSTRAINT

The problem

The solution

The strategy

R e d u c e C O 2 u s i n g a c a r b o n - f r e e

e n e r g y i n p u t w h i l e c a r b o n f o s s i l

r e s o u r c e s a r e t h e c h e a p e s t a n d m o r e

a b u n d a n t e n e r g y s o u r c e

C a t a l y s i s

C O 2 t o c h e m i c a l s :

- d e v e l o p e f f i c i e n t c a t a l y s t s f o r C O 2

r e d u c t i o n

- a v o i d t h e f u e l s e c t o r

- c o n v e r t C O 2 t o h i g h v a l u e p r o d u c t s

CO2 RECYCLING AND UTILIZATION

STATE OF THE ART

INDUSTRIAL PROCESSES UTILIZING CO2

Industrial routes from CO2

Bosch-Meiser process for urea production

Inorganic carbonates

Synthesis of cyclic and polymeric carbonates

120 Mt/y

44 Mt/y

150 kt/y 65 kt/y

for CCS applications

CO2 UTILIZATION: APPLICATIONS AT THE

RESEARCH STAGE

Synthesis of organic carbonates

Alcoholysis of phosgene

Direct carboxylation of alcohols

Synthesis of polycarbonates from CO2/epoxide copolymerization

highly toxic

- Water must be eliminated (molecular

sieves, carbodiimides, etc.)

- A catalyst is required

(RSn(OR’)3, CeO2, etc.)

Darensbourg Coates

CO2 UTILIZATION: APPLICATIONS AT THE

RESEARCH STAGE

Carboxylation reactions

Targeted reaction:

direct synthesis of acrylic acid from CO2/C2H4

Acrylic acid: precursor to acrylates

1.5 Mt/y world production (+5%/y growth)

Ni complexes (Ni0L2)

Mo complexes (Mo0L6)

Nolan, 2010

Zhang, 2010

CO2 insertion into activated C-H bonds

CO2 AS AN ENERGY VECTOR

CO2 reduction: recycling to fuels

Energy storage and CO2 reduction

CO2 hydrogenation for hydrogen storage

CO2 to formic acid

CO2 to methanol

CO2 electro- and photoelectro-catalytic reduction to CO, formic acid, methanol, etc.

CO2 HYDROGENATION TO FORMIC ACID

H2 storage as formic acid

Thermodynamics of CO2 hydrogenation to formic acid

CO2 hydrogenation to formic acid

Addition of a base is needed

Nozaki, 2009 Beller, 2010

CO2 HYDROGENATION TO FORMIC ACID

H2 release from formic acid

Ruthenium catalysts

Iron catalysts

Beller, 2010

Beller, 2009

CO2 REDUCTION TO METHANOL

Hydrogenation of CO2 to methanol

Direct hydrogenation to methanol

Dehydration of methanol to DME

High energy density – diesel substitute

Formation of water is critical

A DIAGONAL APPROACH

VARIOUS APPROACHES TO CO2 RECYCLING…

Diagonal approach

C O 2 f u n c t i o n a l i z a t i o n a n d r e d u c t i o n s t e p s

c o u p l e d i n a s i n g l e p r o c e s s

THE PROOF-OF-CONCEPT

P a t e n t a p p . W O 2 0 1 2 / 1 3 7 1 5 2

U s e d a s s o l v e n t s , f o r m u l a t i o n a g e n t s ,

r e a g e n t s f o r t h e s y n t h e s i s o f d r u g s ,

a d h e s i v e s , e t c .

A n g e w . C h e m . I n t . E d . , 2 0 1 2 , 5 1 , 1 8 7

C o v e r , V e r y I m p o r t a n t P a p e r , h i g h l i g h t e d i n N a t u r e

P M H S

C o - r e c y c l i n g o f a c h e m i c a l w a s t e f r o m t h e s i l i c o n e s i n d u s t r y p r o v i d e s t h e e n e r g y

n e e d e d f o r C O 2 r e d u c t i o n ! !

A SECOND GENERATION OF CATALYSTS

J . A m . C h e m . S o c . , 2 0 1 2 , 1 3 4 , 3 9 3 4 P a t e n t W O 2 0 1 2 / 1 3 7 1 5 2

A DIAGONAL APPROACH

NEW CHALLENGES

FIRST CHALLENGE: CO2 DEOXYGENATION

CO2 as a C1 building block

A C1 building block with strong limitations

CO2 vertical reduction to methane is the only catalytic

process resulting in complete deoxygenation of CO2

A new challenge: novel catalytic reactions to cut-and-paste CO2-carbon centers into

organic molecules

C h e m C a t C h e m , 2 0 1 3 , 5 , 11 7

FIRST CHALLENGE: CO2 DEOXYGENATION

Strategy within the diagonal approach framework

Tandem reactions to explore a 3D space

C h e m C a t C h e m , 2 0 1 3 , 5 , 11 7

FIRST CHALLENGE: CO2 DEOXYGENATION

Proof of concept: synthesis of benzimidazoles

P a t e n t a p p l i c a t i o n F R 1 2 5 5 2 3 8 – 0 6 / 0 5 / 2 0 1 2 C h e m C a t C h e m , 2 0 1 3 , 5 , 11 7

A DIAGONAL APPROACH

MULTI-ELECTRON REDUCTION

COUPLED TO FUNCTIONALIZATION

SECOND CHALLENGE: METHYLATION USING CO2

CO2 as a methylating reagent

Goal: diagonal reactions with large slope (access to highly reduced compounds)

Methylamines are basic

reagents in nitrogen

chemistry

Production of MeNH2,

Me2NH and Me3N reaches

600,000 tons/year

SECOND CHALLENGE: METHYLATION USING CO2

IPrZnCl2 a new hydrosilylation catalyst

Synthesis from commercially available reagents

High catalytic activity

P a t e n t a p p l i c a t i o n F R 1 2 5 5 2 3 4

C h e m i c a l S c i e n c e , 2 0 1 3 , 4 , 2 1 2 7

SECOND CHALLENGE: METHYLATION USING CO2

Methylation of N-H bonds with CO2

P a t e n t a p p l i c a t i o n F R 1 2 5 5 2 3 4 C h e m i c a l S c i e n c e , 2 0 1 3 , 4 , 2 1 2 7

CONCLUDING REMARKS

Diagonal approach

A general approach to extend the scope of compounds

directly available from CO2

Based on the use of reductants and functionalization

agents that can be tune independantly

Insights into the design of catalysts for reduction

chemistry

Direction des Sciences de la Matière

Institut IRAMIS

UMR CEA/CNRS 3299 – SIS2M

Commissariat à l’énergie atomique et aux énergies alternatives

Centre de Saclay | 91191 Gif-sur-Yvette Cedex

T. +33 (0)1 69 08 43 38 | F. +33 (0)1 69 08 66 40

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

ACKNOWLEDGMENTS

A l i x d e L a n g l e ( u n d e r g r a d s t u d e n t )

M i c h e l e L e f o r t - F i o r a n i ( u n d e r g r a d s t u d e n t )

M a r c o M ü l l e r ( u n d e r g r a d s t u d e n t )

F l o r i a n D u l o n g ( P h D s t u d e n t )

C h r i s t o p h e G o m e s ( P h D s t u d e n t )

X a v i e r F r o g n e u x ( P h D s t u d e n t )

E l i a s F e g u a l i ( P h D s t u d e n t )

E n g u e r r a n d B l o n d i a u x ( P h D s t u d e n t )

S o l è n e S a v o u r e y ( P h D s t u d e n t )

N i k l a s v o n W o l f f ( P h D s t u d e n t )

D r . O l i v i e r J a c q u e t ( p o s t - d o c )

D r . J a c k y P o u e s s e l ( p o s t - d o c )

D r . A n i s T l i l i ( p o s t - d o c )

D r . P i e r r e T h u é r y ( X - r a y )

D r . J e a n - C l a u d e B e r t h e t

D r . C a r o l i n e G e n r e