novae and accreting wds as sn ia progenitors · 2010-07-22 · of sn ia progenitor optically thick...

42
Novae and Accreting WDs as SN Ia Progenitors Mariko Kato (Keio Univ.) U Sco

Upload: others

Post on 02-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Novae and Accreting WDs as SN Ia Progenitors

    Mariko Kato (Keio Univ.)

    U Sco

  • 2

    outline

    candidates of SN Ia progenitoroptically thick wind theory of nova outbursthow to find massive WDsVery massive WDs ; U Sco, RS Oph, V445 Pupposition in binary evolution scenarios (SD)RX J0523-69 : accretion wind evolution

    comments on binary evolution scenarios to type Ia SN

  • 3

    nova evolution

    All novae undergosupersoft

    X-ray stage

    Wind mass losscontinuously occurs

    supersoftX-ray

    UV

    Optical

  • 4

    Optically thick wind theory

    The unique method to calculate nova light-curvequasi-evolution: sequence of steady-state solutionsSolve equations of motion, continuity, diffusion, energy conservation

    obtain accurate mass-loss rate, Tph, Lphlight curve :optical & IR: free-free emission

    UV 1455A & X-ray: blackbody emission

    Kato & Hachisu (1994), Hachisu & Kato (2006)

    mass loss: continuum radiation-driven windFriedjung (1966)

  • 5

    The envelope structure

    wind is driven by radiation-pressuregradient

    not line-driven

    photosphere

  • OPAL opacity Iglesias & Rogers (1991)

    .

    Caution:DD papers use old opacityIben, Tutukov, Yungelson

    Accelerate strong windsChange in structure and mass-loss rate

    Kato & Hachisu (1994)

  • 7

    Nova in HR diagram

    optically thick wind

    Supersoft X-ray wind

  • 8

    Theoretical Light Curve of Nova

    Dependence of WD mass

    optical

    0.6 Mo1.2 M

    o

  • 9

    V1974 Cyg: light curve fittingdetermine WD mass

    Hachisu

    & Kato(2005,2006)

    X-ray: ROSAT : Orio

    et al. (2001), Shanley

    et al (1995)

    UV IUE 1455 Å continuum:

    Cassatella, Altamore, Gonzalez-Riestra

    (2002)

    1.0 ±0.05

    Mo

  • 10

    WD Mass determined by light curve fittingclassical nova

    V1500 Cyg (1.15 Mo), V1668 Cyg (0.95 Mo), OS And (1.0 Mo)V1974 Cyg (1.0 Mo), V838 Her (1.35 Mo), V351 Pup (1.05 Mo)GK Per (1.15 Mo), V2491 Cyg (1.3 Mo), V693 CrA ( 1.3 Mo)V1493 Aql (1.15 Mo), V2362 Cyg (0.7 Mo) , PU Vul (0.6 Mo)V2361 Cyg (1.05 Mo), V382 Nor (1.15 Mo), V5115 Sgr (1.2Mo) V378 Ser (0.7 Mo), V5116 Sgr (0.9 Mo), V1188 Sco(1.25 Mo)V1047 Cen (0.7 Mo), V476 Sct (0.95 Mo), V663 Aql (0.95 Mo)V477 Sct (1.3 Mo), V598 Pup (1.28Mo), V382 Vel (1.2Mo)V4743 Sgr (1.15Mo), V1281Sco (1.1 Mo), V597 Pup (1.1Mo)V2467 Cyg (1.0 Mo), V5116 Sgr (1.07Mo), V574 Pup (1.05Mo)V458 Vul (0.93Mo)

  • 11

    Recurrent nova

    U Sco (1.37 Mo ) Hachisu et al (2000) ApJLV394 CrA (1.37 Mo ) HK (2000, 2001) ApJLMC1990#2 (1.37Mo)T CrB (1.37 Mo) HK(2001) ApJ,558,323RS Oph (1.35 Mo) Hachisu et al. (2006, 2007)V745 Sco (1.35 Mo) HK (2001)V3890 Sgr (1.35 Mo) HK(2001)CI Aql (> 1.2 Mo) T Pyx (> 1.2 Mo)

    Type Ia supernova candidates

    RS Oph

    T CrB

    V394 CrA

    U Sco

  • 12

    U Sco : Recurrent nova

    Model: WD envelope+ irradiated Disk

    + irradiated companion(Hachisu et al. 2000)

    Porb =1.23 d

    1863,1906,1936,1979,1987,1999, 2010(43) (30) (43) (8) (12) (11)

    Hachisu et al. (2000)

  • 13

    MWD ~1.37 MoPorb =1.23 d, i =80 degMcomp ~1.5 Moaccreted matter= 3x10-6 Mo (12 yr)mean accretion rate =3x10-7 Mo/yrejected matter = 1.8x10-6 Monet growth rate =1.0x10-7 Mo/yr (40 %)Candidate of Type Ia SN

    U Sco : Recurrent nova

  • 14

    V838 Her (1991)

    Kato, Hachisu & Cassatella (2009) 704,1676

    1.35 Mo

    for X=0.55, O=0.03, Ne=0.07, Z=0.02

    WD mass: 1.33 Mo1.35 Mo1.37 Mo

  • 15

    U Sco vs. V838 HerU Scorecurrent nova~1.38 MoMWD

    V838 HerClassical nova~1.35 MoMWD

    Very similar light curves

    UV 1455A

    optical

    RN

    CN

  • 16

    RN CNCO/ONeMg-richEjecta :

    Recurrent nova and classical nova

    WD

    Solar abundance

    MWD MWD

    WDHe

  • SN Ia : initial and final state of binary

    V838 Her

    symbiotic channel

    sss channel

    Hachisu & Kato, Nomoto(2008) ApJL

  • Outburst: 1898,1933, 1958, 1967, 1985, 2006 Porb : 457 days (Fekel et al. 2000) i : ~30-40 °

    RG : M0 (Anupama & Mikolajewska 1999) MIII (Evans et al. 1988)

    well observed : radio ~ X-ray

    RS Oph (Recurrent Nova)

  • RS Oph: 2006 outburst

    optical: Hachisu et al. 2006 ApJLX-ray :Hachisu et al. 2007 ApJL

    supersoftX-rays

    y-mag

    WD

    hot He layer(heat reservoir)

    H

  • 20

    Light curve model

    Hachisu et al (2006,2007)

    model: WD + disk + companionWD: free-free emissiondisk : irradiated (local TBB)companion : irradiated

  • 21

    RS Oph : summary

    WD mass : 1.35 ± 0.01 Mocomposition: X=0.2-0.4distance : 1.3 – 1.7 kpcaccreted mass: 4.x10-6 Mo (in 21 yrs)ejected mass: (2-2.8) x10-6 Mo (50-70%)remaining mass: (1.2-2) x10-6 Mo (30-50%)mean accretion rate: 2. x10-7 Mo/yr

    WD mass: net growth rate (0.6-1) x10-7 Mo/yr

    candidate of type Ia SN progenitor

  • 22

    RS Oph

    MWD ~ 1.35 MoNo metal rich

    Hachisu et al. (2006, 2007)

    V2491 Cyg

    MWD ~ 1.3 Mometal rich

    Hachisu & Kato (2009)

    RS Oph vs. V2491 CygSimilar in optical, but very different in X-rays

    RN

    CN

  • SN Ia : initial and final state of binary

    V838 HerV2491 Cyg GK Per RS Oph

    sss channel

    symbiotic channel

  • V445 Pup (2000) a He nova

    • no H lines• strong emission lines C, Na, Fe,Ti, Cr, Si, Mg, etc.• P Cyg profile•resemble to slow classical novae => nova

    Iijima & Nakanishi (2008) A&ApHe nova: He burnig

  • 25

    V445 Pup : summary

    WD mass : 1.35 – 1.38 MoDistance : 4-8 kpcWD mass : growth rate : ~ 50 % Candidate of type Ia SN progenitor

    Kato et al (2008) ApJ, 684,1366

  • 26

    RX J0513-69 (LMC SSS)optical high & low statesupersoft X-ray; only in optical low state

    supersoft X-ray

    Cowley et al. (2002) AJ 124, 2233

    Schaeidt et al (1993)Reinsch et al (1996)Southwell et al (1996)McGowan et al. (2005)Burwitz et al. (2008)

  • 27

    Model

    .

    winds

    wind stops

    mass accretionmakes a spray

    disk and companionare spattered

    by the wind

    mass transferstops

    companionsurface is stripped

    Macc > Mcr ~0.75x10-6(MWD/Mo -0.4) Mo/yr → Winds・ ・

    optical: brightno X-ray

    optical: darkX-ray

    Accretion wind

  • 28

    limit cycle of the light curve

    .

    wind phase

    envelope expands &large disk

    no mass accretiononto WD

    mass accretionstarts

    windstops

    mass transferfrom companion

    disk flare up

    supported by XMM observationMcGowan et al.(2005)

    Hachisu & Kato, 2003, ApJ,590,445

  • 29RX J0513 is a SN Ia progenitor

    (time averaged)

    RX J0513-69

    MWD =1.2-1.3 Mo

    Hachisu & Kato (2003) ApJ,590,445

    Net growth rate

  • 30

    Net growth rate

    V Sge (galactic SSS)

    V Sge is a SN Ia progenitor

    (time averaged)

    Hachisu & Kato (2003) ApJ, 598,527

    MWD = 1.2-1.3 Mo

  • SN Ia : initial and final state of binary

    V838 HerV2491 Cyg GK Per RS Oph

    RX J0523

    V Sge

  • 32

    Symbiotic channel in SD scenario

    Hachisu et al 1999, ApJ

    zero age

    super-windfrom AGB star

    commonenvelope-like

    evolution

    AGB

    M1=4-9 MoM2=0.9-3 Moa=1500-30000 Ro

    M1=0.9-1.2 MoM2=0.9-3 Moa=40-400 RoP=300-800 day

    CO WD + MS

    strong wind andmass stripping

    from RG

    SN Ia explosion

    Recurrent novaRS Oph, T CrB

    Recurrent novaRS Oph, T CrB

    Accretionwind evolution

    (original DD scenario)common envelope evolution

    WD + WD

  • 33Hachisu & Kato 2003

    zero age

    unstable mass

    transfer

    common envelope

    He masstransfer

    He rich envelope

    of secondary

    mass transfer

    Accretion Wind

    evolution

    wind stops

    SN Ia

    SSX sourceRX J0513,V SgeSSX sourceRX J0513,V Sge

    Recurrent novaU Sco, V394 CrA

    Recurrent novaU Sco, V394 CrA

    SSS channel in SD scenario

    (original DD scenario)common envelope evolution

    merging

  • Response of Accreting WDs

    Hachisu & Kato (2001)ApJ 558,323

    Nova

    MWD (Mo )

    mas

    s ac

    cret

    ion

    rate

    in DD scenariocommon envelope evolution

    double WDs/ merging

    SSS source

    Nova

    Accretion wind evolutionWD becomes massive

    AccretionWind

  • 35

    Nova & SN people need more communication

    Physics of accreting WDs, widely accepted in nova, is not known in SN community

    nova supernova

  • Starrfield et al. (2004) ApJ, 612,L53 “surface H burning”

    Wrong resultstoo small mesh pointtoo large time-step

    Nomoto, Saio, Kato,& Hachisu (2007) ApJ, 663,1269

    =10-9 - 8x10-7 Mo /yr

    He “found ”No novae occur

    SN IaNova

    MWD (Mo )

    H-burningis stable !

  • 37

    King et al. (2003) MNRAS, 341, L35 A new evolutionary channel for type Ia SN “Dwarf nova causes steady H-burning”

    WD grows SNMWD (Mo )

    Dwarf nova outburst

    temporal increase

    H steadily burns (no loss)

    Macc. (disk instability)

  • However, H does not ignite during dwarf nova outburst

    Shell flash occurs ifMenv > Mig(Pc > Pcr )

    much larger than Mdisk

    see also Hachisu et al (2010) ApJL

    Necessary condition of shell flashis not for the mass-accretion rate

    but for the envelope mass

    H burning is unstable Nova MWD decreases

  • 39

    papers adopted King et al.’ ideapopulation synthesisduring dwarf nova outburst: 100 xXu & Li (2009) AAp, 495,243Wang & Han (2010) RAA, 10, 235Wang, Li & Han (2010) MNRAS, 401, 2729

    always 100xMeng & Yang (2010) ApJ, 710,1310

    These results have no astrophysical meaning

    Macc.

    Macc.

  • WDs evolve along with “steady burning zone” ?

    many papers overestimate SSS phase,e.g.Di Stefano (except recent)YungelsonGilfanov & Bogdan (2010) Nature,463,924MWD (Mo )

    ignore binary evolution

    papers

    decreasesHachisu et al. (1999)

    ApJ, 519, 314ApJ, 522, 487

    Macc.

    to estimate number of SSS

  • 41

    Yungelson (2005) AIPC, 797,1 Tutukov & Fedorova (2007) AR,51,291Podsiadlowski (2010) AN 331,218

    DD-merger is a bright supersoft X-ray sourceL ~1038 erg/s, t ~ 105 yrT ~ (0.5-1)x 106K

    DD scenarios predict SSS

    DD scenario contains no supersoft X-ray source ?

    overproduction problem of SSS

  • 42

    RS Oph:1.35 Mo

    T CrB 1.37 Mo

    V394 CrA:

    1.37 MoU Sco:

    1.37 Mo

    Thank youThank you

    Novae and Accreting WDs �as SN Ia Progenitorsoutlinenova evolutionOptically thick wind theory The envelope structure OPAL opacity Iglesias & Rogers (1991)Nova in HR diagramTheoretical Light Curve of NovaV1974 Cyg: light curve fittingWD Mass determined by light curve fittingRecurrent novaU Sco : Recurrent novaU Sco : Recurrent novaV838 Her (1991)U Sco vs. V838 HerEjecta : �    SN Ia : initial and final state of binaryOutburst: 1898,1933, 1958, 1967, 1985, 2006�Porb : 457 days (Fekel et al. 2000) � i : ~30-40 °�RG : M0 (Anupama & Mikolajewska 1999) � MIII (Evans et al. 1988) �well observed : radio ~ X-rayRS Oph: 2006 outburstLight curve model RS Oph : summaryRS Oph vs. V2491 CygSN Ia : initial and final state of binaryV445 Pup (2000) �a He novaV445 Pup :� summary RX J0513-69 (LMC SSS)Modellimit cycle of the light curveRX J0513-69 � V Sge (galactic SSS)SN Ia : initial and final state of binarySymbiotic channel in SD scenarioSSS channel in SD scenarioResponse of Accreting WDsNova & SN people need �more communication Starrfield et al. (2004) ApJ, 612,L53� “surface H burning” King et al. (2003) MNRAS, 341, L35�A new evolutionary channel for type Ia SN “Dwarf nova causes steady H-burning”However, H does not ignite during dwarf nova outburst papers adopted King et al.’ ideaWDs evolve along with “steady burning zone” ?overproduction problem of SSSThank you