nova first results

41
NOvA First Results Jeff Hartnell University of Sussex Rencontres de Moriond EW 14 th March 2016

Upload: others

Post on 16-Mar-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

NOvA First Results

JeffHartnellUniversityofSussex

Rencontres de Moriond EW 14thMarch2016

Introduc?on•  Long-baselineappearancemeasurement

•  NuMIbeam•  NOvAdetectors

•  Muonneutrinodisappearance

•  Electronneutrinoappearance

JeffHartnell,MoriondEW2016 2

JeffHartnell,MoriondEW2016 3

Long-baseline 𝜈𝜇→𝜈e For fixed L/E = 0.4 km/MeV A more quantitative sketch…

At right: P(𝜈⎺𝜇→ 𝜈⎺e) vs. P(𝜈𝜇→𝜈e) plotted for a single neutrino energy and baseline

Ryan Patterson, Caltech Fermilab JETP, August 6, 2015 4

JeffHartnell,MoriondEW2016 4

Long-baseline 𝜈𝜇→𝜈e For fixed L/E = 0.4 km/MeV A more quantitative sketch…

At right: P(𝜈⎺𝜇→ 𝜈⎺e) vs. P(𝜈𝜇→𝜈e) plotted for a single neutrino energy and baseline Measure these probabilities (an example measurement of each shown) Also: Both probabilities ∝ sin2𝜃23

Ryan Patterson, Caltech Fermilab JETP, August 6, 2015 5

JeffHartnell,MoriondEW2016 5

NOvAOverview•  “Conven?onal”beam•  Two-detectorexperiment:

•  Neardetector–  measurebeamcomposi?on

–  energyspectrum

•  Fardetector–  measureoscilla?onsandsearchfornewphysics

Ash River

Ash River

810 km

KeyFeaturesof2ndGenera?onExpt•  Narrowband(off-axis)beam

•  Detectorsop?misedfor– νeflavouriden?fica?on– νeappearancemaximum(L/E)

•  Higherpowerbeam

•  NOvAhasabouttriplethema\ereffectofT2Kandhigherrela?vean?neutrinoxsec

JeffHartnell,MoriondEW2016 6

JeffHartnell,MoriondEW2016 7

Off-axis

On-axis

NuMI Beam

NOvADetectors

JeffHartnell,MoriondEW2016 8

JeffHartnell,MoriondEW2016 9

To APD

4 cm ⨯ 6 cm

1560 cm

A NO𝜈A cell NO𝜈A detectors

Fiber pairs from 32 cells

32-pixel APD

Far detector: 14-kton, fine-grained, low-Z, highly-active tracking calorimeter → 344,000 channels

Near detector: 0.3-kton version of the same → 20,000 channels

Extruded PVC cells filled with 11M liters of scintillator

instrumented with 𝜆-shifting fiber and APDs

Ryan Patterson, Caltech Fermilab JETP, August 6, 2015 10

JeffHartnell,MoriondEW2016 10Ryan Patterson, Caltech Fermilab JETP, August 6, 2015 11

JeffHartnell,MoriondEW2016 11

𝜈𝜇 disappearance

(simulated 𝜈𝜇 CC event)

• Identify contained 𝜈𝜇 CC events in each detector • Measure their energies • Extract oscillation information from differences between

the Far and Near energy spectra

JeffHartnell,MoriondEW2016 12

Ryan Patterson, Caltech Fermilab JETP, August 6, 2015 31

JeffHartnell,MoriondEW2016 13

Ryan Patterson, Caltech Fermilab JETP, August 6, 2015 32

JeffHartnell,MoriondEW2016 14

Ryan Patterson, Caltech Fermilab JETP, August 6, 2015 33

NearDetectorNuMuCCSpectrum

JeffHartnell,MoriondEW2016 15

5

Length of Primary Muon Track (m)0 5 10 15

)3Ev

ents

(x10

0

5

10

15

20

25

30

Simulated Selected EventsSimulated BackgroundData

POT20 10×ND, 1.66

)ZθPrimary Muon Track cos(0 0.2 0.4 0.6 0.8 1

Even

ts

1

10

210

310

410

510

610

Simulated Selected EventsSimulated BackgroundData

POT20 10×ND, 1.66

FIG. 2. Reconstructed track length (left) and track angle ✓Z relative to the detector longitudinal axis, along the beam direction(right) for the primary muons in selected ⌫µ CC interactions in the ND. The simulated distributions follow the conventions ofFig. 1.

Hadronic Energy (GeV)0 0.5 1 1.5 2 2.5 3

)3Ev

ents

(x10

0

20

40

60

80

100DataData (w/o 14% offset)Simulated Selected EventsSimulated Background

POT20 10×ND, 1.66

FIG. 3. Reconstructed hadronic energy Ehad for selected⌫µ CC interactions in the ND, both with (black circles) andwithout (gray squares) the 14% o↵set described in the text.The simulated distributions follow the conventions of Fig. 1.

Figure 2 shows the reconstructed muon track param-eters for ⌫µ CC events in the ND. Figure 3 shows theEhad distribution both with and without the 14% dif-ference in Ehad calibration scale between data and sim-ulation. A corresponding ±14% uncertainty is assessedon the hadronic energy scale, and is included in all ofthe uncertainty bands shown. Figure 4 shows the finalE⌫ distribution. The energy resolution for reconstructed⌫µ CC events is estimated from simulation to be 7%.

The prediction for the FD neutrino energy spectrumis based on the observed ND neutrino energy spectrum,with corrections for acceptance and flux di↵erences de-rived from simulation. First, the small NC background,estimated from simulation, is subtracted from the NDdata spectrum. The resulting background-subtractedspectrum is then converted into a true neutrino energy

Reconstructed Neutrino Energy (GeV)0 1 2 3 4 5

)3Ev

ents

(x10

0

20

40

60

80

100

Simulated Selected EventsSimulated BackgroundData

POT20 10×ND, 1.66

FIG. 4. Reconstructed neutrino energy E⌫ for selected ⌫µ CCinteractions in the ND. The simulated distributions follow theconventions of Fig. 1.

spectrum via a mapping derived from simulation. Thistrue neutrino energy spectrum is then used to constructa spectrum in the FD by multiplying it by the energy-dependent ratio of FD-to-ND selected events from sim-ulation. Oscillation probabilities for a given set of os-cillation parameters are then applied, by energy bin, tothe predicted true FD energy spectrum, which is thenmapped to a reconstructed neutrino energy spectrum us-ing FD simulation. The extrapolated ⌫µ CC energy spec-trum is then combined with beam-induced backgrounds(NC, ⌫e CC, and ⌫⌧ CC) predicted from simulation, andthe background spectrum measured using events selectedfrom outside of the beam spill window.

Systematic uncertainties in the calibration, flux esti-mate, cross sections, hadronization modeling, particle-transport modeling and exposure di↵erences between thetwo detectors are assessed by varying these aspects of the

MC scaled up by 7.2% Shape only systematics

JeffHartnell,MoriondEW2016 16Evan Niner I Results from NOvA 02/11/16

νμ Spectrum

• 211.8 ± 12.5 (syst.) events predicted in the absence of oscillations.

• 33 candidate events between 0 and 5 GeV observed.

12

Reconstructed Neutrino Energy (GeV)0 1 2 3 4 5

Even

ts /

0.25

GeV

0

10

20

30

40

50 DataUnoscillated predictionBest fit prediction (no systs)

syst. rangeσExpected 1-Best fit prediction (systs)Backgrounds

Normal Hierarchy POT-equiv.2010×2.74

=19.0/16dof/N2χBest fit

FarDetector

νμDisappearanceResults

JeffHartnell,MoriondEW2016 17Evan Niner I Results from NOvA 02/11/16

Best Fit Oscillation Parameters

13

23θ2sin0.3 0.4 0.5 0.6 0.7

)2 e

V-3

(10

322m

2.0

2.5

3.0

3.5 Normal Hierarchy, 90% CLAνNO

T2K 2014MINOS 2014

arXiv:1601.05037

�m232 =

�2.52+0.20

�0.18

�⇥ 10�3eV2 �m2

32 = (�2.52± 0.19)⇥ 10�3eV2

sin2 (✓23) = [0.38, 0.65] sin2 (✓23) = [0.37, 0.64]

Normal Hierarchy Inverted Hierarchy

(68% CL) (68% CL)Degenerate best fit points at 0.43 and 0.60 Degenerate best fit points at 0.44 and 0.59Evan Niner I Results from NOvA 02/11/16

Best Fit Oscillation Parameters

13

23θ2sin0.3 0.4 0.5 0.6 0.7

)2 e

V-3

(10

322m

2.0

2.5

3.0

3.5 Normal Hierarchy, 90% CLAνNO

T2K 2014MINOS 2014

arXiv:1601.05037

�m232 =

�2.52+0.20

�0.18

�⇥ 10�3eV2 �m2

32 = (�2.52± 0.19)⇥ 10�3eV2

sin2 (✓23) = [0.38, 0.65] sin2 (✓23) = [0.37, 0.64]

Normal Hierarchy Inverted Hierarchy

(68% CL) (68% CL)Degenerate best fit points at 0.43 and 0.60 Degenerate best fit points at 0.44 and 0.59

JeffHartnell,MoriondEW2016 18

𝜈e appearance

(simulated 𝜈e CC event)

• Identify contained 𝜈e CC candidates in each detector • Use Near Det. candidates to predict beam backgrounds

in the Far Detector • Interpret any Far Det. excess over predicted backgrounds

as 𝜈e appearance

νeSelec?on

JeffHartnell,MoriondEW2016 19Evan Niner I Results from NOvA 02/11/16

νe Identification• Likelihood Identifier (LID)

- Compare longitudinal and transverse dE/dx in leading shower to template histograms for e/p/n/μ/π±/π0/γ.

- Build neural net from these inputs and reconstructed quantities.

• Library Event Matching (LEM)- Compares input event to simulated

event library.- Properties from most similar events

fed into decision tree.

• 62% event overlap between selectors. • LID chosen before unblinding as

primary selector.

15

JeffHartnell,MoriondEW2016 20

Ryan Patterson, Caltech Fermilab JETP, August 6, 2015 52

JeffHartnell,MoriondEW2016 21

Ryan Patterson, Caltech Fermilab JETP, August 6, 2015 53

JeffHartnell,MoriondEW2016 22

Ryan Patterson, Caltech Fermilab JETP, August 6, 2015 54

νeAppearance

JeffHartnell,MoriondEW2016 23Evan Niner I Results from NOvA 02/11/16

νe Appearance Analysis Results• LID observed 6 events on

a background prediction of 0.99±0.11(syst), 3.3σ excess.

• LEM observed 11 events on a background of 1.07±0.14(syst), 5.3σ excess.

• All LID events in LEM set.

• 7.8% probability of this overlap configuration or one less likely.

17

JeffHartnell,MoriondEW2016 24

Evan Niner I Results from NOvA 02/11/16

νe Appearance Analysis Results

19

0 0.1 0.2 0.3 0.4 0.5

CPδCPδ

13θ22sin

0

π

2π3

π2

π

2π3

π2 POT equiv.2010× 2.74LID = 0.5023θ2sin

A Preliminary

νNO

Best fit68% C.L.90% C.L.Reactor 68% C.L.

Normal hierarchy

Inverted hierarchy

Normal

2mΔ

221mΔ

Inverted

eν µν τν

Global bestfit from reactor experiments

LIDSelector

JeffHartnell,MoriondEW2016 25Evan Niner I Results from NOvA 02/11/16

νe Appearance Analysis Results

20

0 0.1 0.2 0.3 0.4 0.5

CPδCPδ

13θ22sin

0

π

2π3

π2

π

2π3

π2 POT equiv.2010× 2.74LID = 0.5023θ2sin

A Preliminary

νNO

Best fit68% C.L.90% C.L.Reactor 68% C.L.

Normal hierarchy

Inverted hierarchy

Normal

2mΔ

221mΔ

Inverted

eν µν τν

Global bestfit from reactor experiments

0 0.1 0.2 0.3 0.4 0.5

CPδCPδ

13θ22sin

0

π

2π3

π2

π

2π3

π2 POT equiv.2010× 2.74LEM = 0.5023θ2sin

A Preliminary

νNONormal hierarchy

Inverted hierarchy

LEMSelector

ResultswithReactorConstraint

JeffHartnell,MoriondEW2016 26

Evan Niner I Results from NOvA 02/11/16

Significance with Reactor Constraint

• Apply global reactor constraint- sin2θ13=0.086±0.05

• Marginalize over θ23.• Both selectors weakly

prefer normal mass hierarchy and π<δcp<2π.

• This preference is consistent with T2K (arXiv:1502.01550)

21

CPδ

Sign

ifican

ce

0 /2π π /2π3 π20

σ1

σ2

σ3

σ4

σ5

90%

POT equiv.2010×2.74

NH LID NH LEMIH LID IH LEM

arXiv:1601.05022

Evan Niner I Results from NOvA 02/11/16

Significance with Reactor Constraint

• Apply global reactor constraint- sin2θ13=0.086±0.05

• Marginalize over θ23.• Both selectors weakly

prefer normal mass hierarchy and π<δcp<2π.

• This preference is consistent with T2K (arXiv:1502.01550)

21

CPδ

Sign

ifican

ce

0 /2π π /2π3 π20

σ1

σ2

σ3

σ4

σ5

90%

POT equiv.2010×2.74

NH LID NH LEMIH LID IH LEM

arXiv:1601.05022

Conclusions•  FirstNOvAoscilla?onresultswith7.6%ofplannedexposure

•  νμdisappearanceconsistentw/MINOS&T2K•  νeappearanceresulthintsatnormalhierarchyandπ<δCP<2π,consistentwithT2K

•  Cross-sec?onstudiesinprogress,νeCCandcoherentπ0resultsshownatNuINT

•  Planning2ndresultwithdoublethesta?s?csforthesummer

•  Staytuned!JeffHartnell,MoriondEW2016 27

Backupslides

JeffHartnell,MoriondEW2016 28

JeffHartnell,MoriondEW2016 29Evan Niner I Results from NOvA 02/11/16

Relation of Oscillation Parameters in NOvA

25

inverted%hierarchy

normal%hierarchy

Θ23%<%45 o

Θ23%>%45 o

%

Normal Inverted

eν µν τν

2mΔ

221mΔ

JeffHartnell,MoriondEW2016 30Evan Niner I Results from NOvA 02/11/16

νe Appearance Analysis Strategy

• FD background prediction extrapolated from ND - ND selects ~7% more background

in data relative to simulation. • Combination of containment,

topology and event classifier achieve cosmic rejection factor >108. Effective FD fidicual volume of 10 kT.

• “Cut and count” analysis between 1.5 and 2.7 GeV in FD for the primary selector.

16

Calorimetric Energy (GeV)0 1 2 3 4 5

PO

T20

10

×Ev

ents

/ 1.

66

0

100

200

300

400

500A PreliminaryνNOLID

ND Data

(Flux + stat. uncert.)Total MC

eνMC Beam

MC NC

CCµνMC

LID0.0 0.5 1.0 1.5

PO

T20

10

×Ev

ents

/ 1.

66

1−10

1

10

210

310

410

510

610

A PreliminaryνNOND Data eνMC Beam

(Flux + stat. uncert.)Total MC MC NC

CCµνMC

ND energy spectrum with LID>0.95

JeffHartnell,MoriondEW2016 31Evan Niner I Results from NOvA 02/11/1626

(1) Estimate the underlying true energy distribution of selected ND events(2) Multiply by expected Far/Near event ratio and !"→!" oscillation probability

as a function of true energy(3) Convert FD true energy distribution into predicted FD reco energy distributionSystematic uncertainties assessed by varying all MC-based steps

JeffHartnell,MoriondEW2016 32

Evan Niner I Results from NOvA 02/11/1627

Hadronic Energy (GeV)0 0.5 1 1.5 2 2.5 3

)3Ev

ents

(x10

0

20

40

60

80

100DataData (w/o 14% offset)Simulated Selected EventsSimulated Background

POT20 10×ND, 1.66

Length of Primary Muon Track (m)0 5 10 15

)3Ev

ents

(x10

0

5

10

15

20

25

30

Simulated Selected EventsSimulated BackgroundData

POT20 10×ND, 1.66

E⌫ = Eµ + Ehadrons

• Muon variables in agreement• Best fit to hadronic energy prefers 14% increase in data

JeffHartnell,MoriondEW2016 33Evan Niner I Results from NOvA 02/11/1629

• Correct%for%attenuation%in%each%cell%using%throughGgoing%cosmic%muons%(right)%

• Set%absolute%energy%scale%using%stopping%muons%in%data%and%tuned%Monte%Carlo%(below)

calib

ratio

n w

indo

w

Far Detector Data

calib

ratio

n w

indo

w

JeffHartnell,MoriondEW2016 34[G. Feldman]

NOvAFarDetector

Total mass of 14 ktons

An admirer

TASD: Totally Active Scintillator Design Longitudinal sampling is ~0.15 X0, which gives: -- excellent µ-e separation -- π0 rejection capability

Full-size Modules

JeffHartnell,MoriondEW2016 35[L. Corwin]

JeffHartnell,MoriondEW2016 36[L. Corwin]

JeffHartnell,MoriondEW2016 37[L. Corwin]

JeffHartnell,MoriondEW2016 38

JeffHartnell,MoriondEW2016 39[L. Corwin]

JeffHartnell,MoriondEW2016 40[L. Corwin]

JeffHartnell,MoriondEW2016 41

Very cool time lapse video: http://www.youtube.com/watch?v=gFpK00WJl90&sns=tw