notes on magnetic curves in 3d semi-riemannian manifolds

15
Notes on magnetic curves in  3D  semi-Riemannian manifolds Zehra (Bozkurt) ÖZDEM · IR 1 ; · Ismail GÖK 2 ;Yusuf YAYLI 3 and Faik Nejat EKMEKC · I 4 1 [email protected],  2 [email protected],  3 [email protected], 4 [email protected], Department of Mathematics, Faculty of Science, University of Ankara, TURKEY Abstract A magnetic …eld is de…ned by the property that its divergence is zero in three dimensional semi-Riemannian manifolds. Each magneti c …eld generates a magnetic ‡ow whose trajectories are curves    called as magnetic curv es. In this paper, we inv estig ate the e¤ect of magnet ic …elds on the moving particle trajectories by variational approach to the magnetic ‡ow associated with the Killin g magnet ic …eld on three dimensio nal semi-Rieman nian manifolds. Then, we inv estig ate the trajectories of these magnetic …elds and give some characterizations and examples of these curves. 2000 Mathematics Subject Classi…cation. 37C10, 53A04. Key words and phrases. Special curves, vector…elds, fows, ordinary di¤erential equations 1 Introduction A ch arg ed par tic le moves alo ng a reg ular cur ve in 3-d ime nsi ona l spa ce. The tange nt , normal and binormal vector s describe kinematic and geomet ric propertie s of the particle. These vec tors a¤ect trajecto ry of the charg ed particle during motion of in a magnetic …eld. Also, time dimension a¤ects its trajecto ry . There fore, motion of the charge d parti cle in a magnetic vector …eld should b e investiga ted considering time dimension. In this article, we investigate e¤ects of magnetic …elds on charged particle trajectories by variational approach to magnetic ‡ow associated with Killing magnetic …eld on a three dimensional semi-Riemannian manifold  M . A divergence free vector …eld de…nes a magnetic …eld in a three dimensional semi-Riemannian man- ifold  M . It is kn own tha t  V  2  (M n )  is Killing if and only if  L V  g  = 0  or, equivalently,  rV  (  p)  is a skew-symmetric operator in  T p(M n ), at each point  p  2 M n . It is clear that any Killing vector …eld on (M n ; g) is divergence-free. In particular, if  n  = 3, then every Killing vector …eld de…nes a magnetic …eld which will be called a Killing magnetic …eld(see for details ref.[3]). Lorentz force    associated with the magnetic …eld  V  is de…ned by ( 0 ) =  V    0 and trajectories    called magnetic curves satisfy r  0  0  =  ( 0 ) =  V    0  (1) 1

Upload: markrichardmurad

Post on 01-Jun-2018

235 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Notes on magnetic curves in 3D semi-Riemannian manifolds

8/9/2019 Notes on magnetic curves in 3D semi-Riemannian manifolds

http://slidepdf.com/reader/full/notes-on-magnetic-curves-in-3d-semi-riemannian-manifolds 1/15

Notes on magnetic curves in  3D semi-Riemannian manifolds

Zehra (Bozkurt) ÖZDEM·IR1;·Ismail GÖK2;Yusuf YAYLI3 and Faik Nejat EKMEKC·I4

[email protected],   [email protected],   [email protected],[email protected],

Department of Mathematics, Faculty of Science, University of Ankara, TURKEY

Abstract

A magnetic …eld is de…ned by the property that its divergence is zero in three dimensional

semi-Riemannian manifolds. Each magnetic …eld generates a magnetic ‡ow whose trajectories are

curves      called as magnetic curves. In this paper, we investigate the e¤ect of magnetic …elds on

the moving particle trajectories by variational approach to the magnetic ‡ow associated with the

Killing magnetic …eld on three dimensional semi-Riemannian manifolds. Then, we investigate the

trajectories of these magnetic …elds and give some characterizations and examples of these curves.

2000 Mathematics Subject Classi…cation. 37C10, 53A04.

Key words and phrases. Special curves, vector…elds, fows, ordinary di¤erential equations

1 Introduction

A charged particle moves along a regular curve in 3-dimensional space. The tangent, normal and

binormal vectors describe kinematic and geometric properties of the particle. These vectors a¤ect

trajectory of the charged particle during motion of in a magnetic …eld. Also, time dimension a¤ects its

trajectory. Therefore, motion of the charged particle in a magnetic vector …eld should be investigated

considering time dimension. In this article, we investigate e¤ects of magnetic …elds on charged particle

trajectories by variational approach to magnetic ‡ow associated with Killing magnetic …eld on a three

dimensional semi-Riemannian manifold M .

A divergence free vector …eld de…nes a magnetic …eld in a three dimensional semi-Riemannian man-

ifold   M . It is known that  V  2  (M n)   is Killing if and only if  LV  g   = 0  or, equivalently, rV  ( p)   is a

skew-symmetric operator in  T p(M n), at each point  p 2

 M n. It is clear that any Killing vector …eld on

(M n; g)  is divergence-free. In particular, if  n  = 3, then every Killing vector …eld de…nes a magnetic …eld

which will be called a Killing magnetic …eld(see for details ref.[3]).

Lorentz force    associated with the magnetic …eld  V  is de…ned by

( 0) =  V    0

and trajectories    called magnetic curves satisfy

r 0 0  =  ( 0) =  V    0   (1)

1

Page 2: Notes on magnetic curves in 3D semi-Riemannian manifolds

8/9/2019 Notes on magnetic curves in 3D semi-Riemannian manifolds

http://slidepdf.com/reader/full/notes-on-magnetic-curves-in-3d-semi-riemannian-manifolds 2/15

where r   is the Levi-Civita connection of the manifold   M  (in this article we call these curves as T-

magnetic curves to avoid confusion with other de…nitions) :  Using Eq.(1)   we can study the magnetic

…eld in a space which has non-zero sectional curvature  C . So, this gives more important and realitic

approach than the classical approach. Also, this equality and the Hall e¤ect (explains the dynamics of 

an electric current ‡ow in  R3 when exposed to a perpendicular magnetic …eld V  ) have some important

applications in analytical chemistry, biochemistry, atmospheric science, geochemistry, cyclotron, proton,

cancer therapy and velocity selector. Solutions of the Lorentz force equation are Kirchho¤ elastic rods.This provides an amazing connection between two apprently unrelated physical models and classical

elastic theory. The Lorentz force is always perpendicular to both the velocity of the particle and the

magnetic …eld created it. When a charged particle moves in a static magnetic …eld, it traces a helical

path and the axis of helix is parallel to the magnetic …eld. The speed of particle remains constant.

Since the magnetic force is always perpendicular to the motion, the magnetic …eld does no work on an

isolated charge. If the charged particle moves parallel to magnetic …eld, the Lorentzian force acting on

the particle is zero. When the two vectors (velocity and the magnetic …eld) are perpendicular to each

other, the Lorentz force is maximum (see for details ref. [2, 3, 4, 6, 7, 8, 9]).

When a charged particle moves along a curve   in the magnetic …eld velocity (tangent vector), normal

and binormal vectors be exposed to the magnetic …eld. Then forces associated with the magnetic …eld

for motion in the normal and binormal directions of the curve are given by

(N ) =  V   N   and (B) =  V   B;

and the trajectories of charged particle are changed according to this equation. For example; when a

charged particle moves in a static magnetic …eld in 3D Riemannian space the particle has a two di¤erent

paths. If one of the tangent or binormal vectors is exposed to this …eld, it traces a circular helix path.

On the other hand, if the normal vector is exposed the this …eld, it traces a slant helical path. Also,

their axes are parallel to the magnetic …eld (see ref. [5]).

2 Preliminaries

Let  (M; g) be a 3dimensional semi-Riemannian manifold with the standard ‡at metric  g  de…ned by

g(X; Y  ) = x1y1 + x2y2 x3y3   (2)

for all  X  = (x1; x2; x3); Y   = (y1; y2; y3) 2 (M ):

The Lorentz force of a magnetic …eld  F   on M  is de…ned to be a skew symetric operator given by

g((X ); Y  ) =  F (X; Y  )   (3)

for all  X; Y  2  (M ):

The T-magnetic trajectories of  F  are curves   on M  which satisfy the Lorentz equation

r 0 0 =  ( 0):   (4)

Furthermore, the cross product of two vector …elds  X; Y  2 (M ) is given by

X   Y   = (x2y3 x3y2; x3y1 x1y3; x2y1 x1y2):   (5)

2

Page 3: Notes on magnetic curves in 3D semi-Riemannian manifolds

8/9/2019 Notes on magnetic curves in 3D semi-Riemannian manifolds

http://slidepdf.com/reader/full/notes-on-magnetic-curves-in-3d-semi-riemannian-manifolds 3/15

Then, the mixed product of the vector …elds  X; Y; Z  2 (M ) is de…ned by

g(X   Y; Z ) =  dvg(X; Y; Z  )   (6)

where dvg  denotes a volume on  M :

Let  V  be a Killing vector …eld and  F V   = {V  dvg  be the corresponding Killing magnetic force on  M ,

where {  denotes the inner product. Then the Lorentz force of the  F V   given as

(X ) =  V   X:   (7)

for all  X  2  (M ):   Consequently, the T-magnetic trajectories     determined by  V   are solutions of the

Lorentz force equation written as

r 0 0 =  V    0:   (8)

A unit speed curve   is a T-magnetic trajectory of the magnetic …eld  V   if and only if  V  can be written

along    as

V  (s) =  f (s)T (s) + g(s)B(s)   (9)

where T   and B  are the tangent and binormal vectors of the curve   , respectively (see ref. [4]).

Lemma 1   Let      :   I     R !   M   be a non-null immersed curve in a   3D   semi-Riemannian manifold 

(M; g)  with sectional curvature  C  and  V  be a vector …eld along the curve   .   : ("; ") I  ! M   satisfy 

(s; 0) =   (s);   @ @s (s; t) =  V  (s):  In this setting, we have the following functions,

1. The speed function  v(s; t) =@ @s (s; t)

;

2. The curvature function  { (s; t)  of   t(s);

3. The torsion function   (s; t)  of   t(s):

The variations of these functions at   t = 0;

V  (v) =

@v

@s(s; t)

t=0

= "1g(rT V; T );   (10)

V  ({ ) =

@ { 

@s (s; t)

t=0

= 2"2g(r2T V;rT T ) + 4"1{ 

2g(rT V; T )   (11)

+ 2"2g(R(V; T )T;rT T );

V  ( ) =

@s(s; t)

t=0

= 2"2g((1={ )r3T V   ({ 0={ 2)r2

T V    (12)

+ "1("2{ + (C={ ))rT V   "1C ({ 0={ 2)V ; B);

where  "1  =  g(T; T ); "2  =  g(N; N ),  "3  =  g(B; B),  R  and  C  are curvature tensor and sectional curvature of  M;  respectively [4, 7] :

Also, if  V  (s) is the restriction to (s) of a Killing vector …eld then the vector …eld V   satisfy following

condition

V  (v) =  V  ({ ) =  V  ( ) = 0   (13)

[4].

3

Page 4: Notes on magnetic curves in 3D semi-Riemannian manifolds

8/9/2019 Notes on magnetic curves in 3D semi-Riemannian manifolds

http://slidepdf.com/reader/full/notes-on-magnetic-curves-in-3d-semi-riemannian-manifolds 4/15

Proposition 2   Let    be a unit speed spacelike or timelike space curve with   (s)2 { (s)2 6= 0:  Then   

is a slant helix (which is de…ned by the property that the normal vector makes a constant angle with a 

 …xed straight line) if and only if { 2

("3{ 2 + "1 2)

 

0

is a constant function. Where  "1  =  g(T; T ); "2  =  g(N; N )  and  "3  =  g(B; B)  (see ref. [1]).

Proposition 3   Let      be a unit speed non-null curve in semi-Riemannian manifold   (M; g)   with the Frenet apparatus  fT; N; B;  { ;  g. Then the Serret-Frenet formula is given by 

26664rT T 

rT N 

rT B

37775 =

26664

0   "2{    0

"1{    0   "3 

0   "2    0

37775

26664

B

37775 (14)

where  "1  =  g(T; T ); "2  =  g(N; N )  and  "3  =  g(B; B)   [7].

3 Magnetic curves in 3D oriented semi-Riemannian manifolds

3.1 T-magnetic curves

In this section, we give some characterizations for T-magnetic curves in semi-Riemannian manifolds.

Proposition 4   Let     be a unit speed non-null T-magnetic curve in semi-Riemannian manifold  (M; g)

with the Frenet apparatus  fT; N; B;  { ;  g. Then the Lorentz force in the Frenet frame written as 

26664

(T )

(N )

(B)

37775

=

26664

0   "2{    0

"1{    0   "3$

0   "2$   0

37775

26664

B

37775

(15)

where  $   is a certain function de…ned by  $  =  g((N ); B).

Proof.   Let    be a unit speed T-magnetic curve in semi-Riemannian manifold  (M; g)  with the Frenet

apparatus fT; N; B;  { ;  g. From the de…nition of the magnetic curve we know that

(T ) =  "2{ N:

Since  (N ) 2 span fT ; N ; Bg ; we have

(N ) =  T  +  N  +  B

Then using the following equalities

  =  "1g((N ); T ) = "1g((T ); N ) = "1{ ;

 =  "2g((N ); T ) = 0;

 =  "3g((N ); B) =  "3$;

we get

(N ) = "1{ T  +  "3$B:

4

Page 5: Notes on magnetic curves in 3D semi-Riemannian manifolds

8/9/2019 Notes on magnetic curves in 3D semi-Riemannian manifolds

http://slidepdf.com/reader/full/notes-on-magnetic-curves-in-3d-semi-riemannian-manifolds 5/15

Similarly, we can easily obtain that

(B) = "2$N:

Proposition 5   Let    be a unit speed non-null curve in semi-Riemannian manifold   (M; g). Then the 

curve    is a T-magnetic trajectory of a magnetic …eld  V  if and only if the vector …eld  V  can be written 

along the curve     as V   = "3($T  + { B):   (16)

Proof.   Let     be a unit speed T-magnetic trajectory of a magnetic …eld  V:  Using Proposition 4 and

Eq.(7), we can easily see that

V   = "3($T  + { B)

Conversely, we assume that Eq.(16) holds. Then we get  V   T  = (T ): So, the curve    is a N-magnetic

trajectory of the magnetic vector …eld  V  .

Theorem 6   Let    be a unit speed T-magnetic curve and  V  be a Killing vector …eld on a simply connected space form   (M (C ); g):   If the curve      is one of the T-magnetic trajectories of   (M (C ); g ; V   )   then its 

curvature and torsion hold the following equations 

{ 2(

$

2  +  ) + "1A   = 0   (17)

"3{ 00 "2{  ($ +  ) "3C { +

 { 3

2  B{    = 0   (18)

where  C   is curvature of the Riemannian space  M   and  A; B   are constant.

Proof.   Let   V   be a magnetic …eld in a semi-Riemannian   3D   manifold   M . Then   V   satisfy Eq.(16).

Di¤erentiating Eq.(16) with respect to  s, we have

rT V   = "3$0T   "1{ ($ +  )N  +  "3{ 0B   (19)

and di¤erentiation of Eq.(19) give us

r2T V   =  { 

2($ +  )T   ("1${ 0 + 2"1{ 

0  +  "1{  0)N  + ("3{ 00 "2{  $ "2{  2)B:   (20)

Lemma 1 implies that  V  (v) = 0: So, considering Eq.(19) we get

$ =  const:

Then, if Eq.(19) and Eq.(20) are considered with V  ({ ) = 0 in Lemma 1, we obtain

{ 2(

$

2  +  ) + "1A = 0   (21)

Similarly, Eq.(19) and Eq.(20) are considered with  V  ( ) = 0 in Lemma 1, we can easily see that,

"3{ 00 "2{  ($ +  ) "3C { +

 { 3

2  B{  = 0:   (22)

5

Page 6: Notes on magnetic curves in 3D semi-Riemannian manifolds

8/9/2019 Notes on magnetic curves in 3D semi-Riemannian manifolds

http://slidepdf.com/reader/full/notes-on-magnetic-curves-in-3d-semi-riemannian-manifolds 6/15

Corollary 7   Let     be a unit speed T-magnetic curve and  V  be a Killing vector …eld on a simply con-

nected space form   (M (C ); g):  If the function  $   is equal to zero, then the curvature and torsion of the 

curve     is given by 

"1{ 2    =   A

2"3{ 00 + { 

3 2"2{  2 2"3C {  2B{    = 0:

So, we know that these two equations are just the Euler Lagrange equations for elasticae (see for details 

ref. [7]) in  M (C ):

It is easily seen that a T-magnetic curve is a general helix in Lorentzian 3-space. Some characteri-

zations and examples about it are detailed in the articles [4, 6].

3.2 N-magnetic curves

In this section, we de…ne a new kind of magnetic curve called N-magnetic curve in  3D semi-Riemannian

Manifold  M . Moreover, we obtain some characterizations and examples of this curve. Also we draw the

image of these curves using the programme Mathematica.

De…nition 8   Let   :  I    R !M  be a non-null curve in semi-Riemannian manifold  (M; g)  and  F V   be 

a magnetic …eld on  M:  We call the curve     to be a N-magnetic curve if its normal vector …eld satisfy 

the Lorentz force equation, that is,

r0N  = (N ) =  V   N:

Proposition 9   Let    be a unit speed non-null N-magnetic curve in semi-Riemannian manifold  (M; g)

with the Frenet apparatus  fT; N; B;  { ;  g. Then the Lorentz force in the Frenet frame can be written 

as    26664

(T )

(N )

(B)

37775 =

26664

0   "2{    "3$1

"1{    0   "3 

"1$1   "2    0

37775

26664

B

37775 (23)

where  $1   is a certain function de…ned by  $1  =  g((T ); B).

Proof.   Let   be a unit speed N-magnetic curve in semi-Riemannian manifold  (M; g)  with the Frenet

apparatus fT; N; B;  { ;  g. Since (T ) 2 span fT ; N ; Bg ; we have

(T ) =  T  +  N  +  B:

Then using the following equalities

 =  "1g((T ); T ) = 0;

 =  "2g((T ); N ) = "2g((N ); T ) = "2g(rT N; T ) =  "2{ ;

  =  "3g((T ); B) =  "3$1;

we get

(T ) =  "2{ N  +  "3$1B:

6

Page 7: Notes on magnetic curves in 3D semi-Riemannian manifolds

8/9/2019 Notes on magnetic curves in 3D semi-Riemannian manifolds

http://slidepdf.com/reader/full/notes-on-magnetic-curves-in-3d-semi-riemannian-manifolds 7/15

Similarly, we can easily obtain that

(N ) = "1{ T   "3 B;

(B) = "1$1T  + "2 N:

Proposition 10   Let    be a unit speed non-null curve in semi-Riemannian manifold  (M; g). Then the 

curve     is a N-magnetic trajectory of a magnetic …eld  V  if and only if the vector …eld  V  can be written 

along the curve    as 

V   = "3 T   "3$1N  +  "3{ B:   (24)

Proof.   Let   be a unit speed N-magnetic trajectory of a magnetic …eld  V: Using the Proposition 9 and

Eq.(7), we can easily obtain Eq.24.

Conversely, we assume that Eq.(24)   holds. Then we get   V    N   =   (N ):   So, the curve     is a

N-magnetic trajectory of the magnetic vector …eld V  .

Theorem 11   (Main result)  Let    be a unit speed N-magnetic curve and  V   be a Killing vector …eld 

on a simply connected space form   (M (C ); g):   If the curve     is one of the N-magnetic trajectories of 

(M (C ); g ; V   )   then its curvature and torsion satisfy the equation 

"3{ 00 + "1

 02

{ + 2"1 (

 0

{ )0 "2C { +

 { 3 + "2{  2

2  =    (25)

where  C   is curvature of the Riemannian space  M   and     is a constant.

Proof.   Let   V   be a magnetic …eld in a semi-Riemannian   3D   manifold   M . Then   V   satisfy Eq.(24).

Di¤erentiating Eq.(24) with respect to  s, we have

rT V   = ("3 0 "2$1{ )T   "3$01N  + ("3{ 

0 +  $1)B. (26)

Eq.(14)  and di¤erentiation of Eq.(26) give us

r2T V   = "2$0

1{ T  + ("3$001  "1 { 0 + "2 2$1)N  + ("3{ 

00 +  0$1 + 2$01 )B:   (27)

Lemma 1 implies that  V  (v) = 0: So, considering Eq.(26) we get

$1  =  "1 0

{ :   (28)

Then, if Eq.(26) and Eq.(27) are considered with V  ({ ) = 0 in Lemma 1, we obtain

"3$001  "1 { 0 + "2 2$1 + "1g(R(V; T )T; N ) = 0:

In particular, since  C  is constant,  g(R(V; T )T; N ) =  Cg(V; N ) = "3C$1  we have

"3$001  "1 { 0 + "2 2$1 + "2C$1  = 0:   (29)

Similarly, Eq.(26) and Eq.(27) are considered with  V  ( ) = 0 in Lemma 1, we can easily see that,

[(1={ )("3{ 00 +  0$1 + 2$0

1 "2C { )]0 +{ 2 + "2 2

2

0= 0:   (30)

7

Page 8: Notes on magnetic curves in 3D semi-Riemannian manifolds

8/9/2019 Notes on magnetic curves in 3D semi-Riemannian manifolds

http://slidepdf.com/reader/full/notes-on-magnetic-curves-in-3d-semi-riemannian-manifolds 8/15

Finally, integration of Eq.(30) and Eq.(28) give us

"3{ 00 + "1

 02

{ + 2"1 (

 0

{ )0 "2C { +

 { 3 + "2{  2

2  = 

where    is a arbitrary constant.

Example 12   Let  M  be a three dimensional sphere and the curve     be timelike N-magnetic curve. and 

the constant function   :   If we get ,{ (s) = 1;   = 3=2   and    (s) =  y(s)   in Eq.(25) we obtain following 

second-order nonlinear di¤erential equation 

2y(s)02 + 4y(s)y00(s) y(s)2 = 0:   (31)

Using the programme Mathematica we obtain solution of Eq.(31)

y(s) =  c2e

2

p 23 log

0@e

p 6c1+e

p 32s

1As

p 6

  :

Thus, the curve having the curvature   { (s) = 1  and torsion    (s) =   c2e

2

p 23 log

0@e

p 6c1+e

p 32s

1As

p 6

  : are N-

magnetic curves in three dimensional sphere.

Corollary 13   Let   V   be a Killing vector …eld on   3D   semi-Riemannian manifold   (M; g). Then each 

trajectory of the magnetic …eld  V  makes an angle  (s)with the normal vector …eld of the magnetic curve.

For the angle  (s)  we have the following cases;

Case 1.   If  N   and  V  are spacelike vectors and these vectors span spacelike plane,

g(N; V  ) = kN k kV k cos   ref.[11].

Then using Eq. (24) and  g(N; N ) =  "2  = 1  we obtain 

cos  =   g(N;V  )kN kkV  k =   g(N;"3T "3$1N +"3{B)

kV  k   =   "3$1q j"1 2+$2

1+"3{2j .

Case 2.   If  N   and  V  are spacelike vectors and these vectors span timelike plane,

g(N; V  ) = kN k kV k cosh   ref.[11].Then using Eq. (24) and  g(N; N ) =  "2  = 1  we obtain 

cosh  =   g(N;V  )kN kkV  k =   g(N;"3T "3$1N +"3{B)

kV  k   =   "3$1q j"1 2+$2

1+"3{2j .

Case 3.   If  N   and  V  are timelike vectors in the same timecone,

g(N; V  ) = kN k kV k cosh   ref.[11].

Then using Eq. (24) and  g(N; N ) =  "2  = 1  we obtain 

cosh  =   g(N;V  )kN kkV  k =   g(N;"3T "3$1N +"3{B)

kV  k   =   "3$1q j"1 2$2

1+"3{2j .

Case 4.   If  N  spacelike (resp. timelike) and  V  timelike (resp. spacelike) vectors in the future timecone,

g(N; V  ) =

 kN 

k kV 

ksinh   ref.[11].

Then using Eq. (24) and   g(N; N ) =   "2   we obtain   sinh   =   g(N;V  )kN kkV  k   =   g(N;"3T "3$1N +"3{B)

"2kV  k   =

"3$1q j"1 2+"2$2

1+"3{2j .

Corollary 14   Let     be a unit speed non-null N-magnetic curve in Lorentzian 3-space. If the function 

$1   is non-zero constant, then the curve    is a slant helix whose axis is the vector …eld :

Proof.  We assume that    is a N-magnetic curve in Lorentzian 3-space with non-zero constant function

$1, then from Eq.(28) and Eq.(29), we get

"1 0

{ = "3

{ 0

   = $1   (32)

8

Page 9: Notes on magnetic curves in 3D semi-Riemannian manifolds

8/9/2019 Notes on magnetic curves in 3D semi-Riemannian manifolds

http://slidepdf.com/reader/full/notes-on-magnetic-curves-in-3d-semi-riemannian-manifolds 9/15

which implies that

"1{ 2 + "3 2 = const:

Also, Eq. (32) carry out the following equation with the di¤erent point of view, we get

 { 0 + {  0  = "3$1("3{ 2 + "1 2) =  const:

or

2

("3{ 2 + "1 2)3=2

 { 

0 = const:

where   $1   is a constant function. By Proposition 2 we obtain that    is a slant helix in Lorentzian

3-space.

Example 15   We consider a spacelike N-magnetic curve     with timelike normal vector in Lorentzian 

space de…ned by 

(s) =

0BBB@

p 32

2p 3(p 3+2)

 cos(p 

3 + 2)s +p 3+2

2p 3(p 32)

 cos(p 

3 2)s;p 32

2p 3(p 3+2)

 sin(p 

3 + 2)s +p 3+2

2p 3(p 32)

 sin(p 

3 2)s;

cos2s2p 3

1CCCA

The picture of the spacelike N-magnetic curve     is rendered in Figure 1. The curve    has the following 

curvature and torsion 

{ (s) = cos 2s;

 (s) = sin 2s;

[10]. By using the Corollary 14 we can easily see that  $1  = 2:  So,   is a N-magnetic curve.

Figure 1. Spacelike N-magnetic cuve with  $1  = 2:

Example 16   We consider a spacelike N-magnetic curve    with spacelike normal vector in Lorentzian 

3space de…ned by 

(s) = (4sinh3s

15  ;

  1

40 sinh 8s +

 2

5 sinh(2s);

  1

40 cosh 8s  2

5 cosh(2s))

The picture of the spacelike N-magnetic curve     is rendered in Figure 2. The curve has the following 

curvature and torsion 

{ (s) = 4cosh 3s;

 (s) = 4sinh 3s;

9

Page 10: Notes on magnetic curves in 3D semi-Riemannian manifolds

8/9/2019 Notes on magnetic curves in 3D semi-Riemannian manifolds

http://slidepdf.com/reader/full/notes-on-magnetic-curves-in-3d-semi-riemannian-manifolds 10/15

[10]. By using the Corollary 14 we can easily see that  $1  = 3:  So   is a N-magnetic curve.

Figure 2. Spacelike N-magnetic curve with  $1 = 3:

Example 17   We consider a timelike N-magnetic curve    in Lorentzian  3space de…ned by 

(s) = (

p 3

2

  cosh2s; 1

6

 cosh 3s + 3

2

 cosh(

s);

 1

6

 sinh 3s + 3

2

 sinh(

s))

The picture of the timelike N-magnetic curve     is rendered in Figure 3. The curve has the following 

curvature and torsion given by 

{ (s) =p 

3sinh2s;

 (s) =p 

3cosh2s;

[10]. By using the Corollary 14 we can easily see that  $1  = 2:  So,   is a N-magnetic curve.

Figure 3. Timelike N-magnetic curve with  $1  = 2:

Corollary 18   Let    be a non-null N-magnetic curve in Lorentzian  3space. If the function  $1   is zero

then    is a circular helix whose axis of the circular helix is the vector …eld  V :

Proof.  It is obvious from Eq. (23).

10

Page 11: Notes on magnetic curves in 3D semi-Riemannian manifolds

8/9/2019 Notes on magnetic curves in 3D semi-Riemannian manifolds

http://slidepdf.com/reader/full/notes-on-magnetic-curves-in-3d-semi-riemannian-manifolds 11/15

3.3 B-magnetic Curves

In this section, we de…ne a new kind of magnetic curve called B-magnetic curve in 3D semi-Riemannian

manifold:   We obtain some characterizations and examples of this curve. Also, we draw the image of 

these curves using the programme Mathematica.

De…nition 19   Let     :  I    R ! M   be a non-null curve in  3D  semi-Riemannian manifold   (M; g)  and 

F V  be a magnetic …eld on  M:  We call the curve    is a B-magnetic curve if the binormal vector …eld of 

the curve satisfy the Lorentz force equation, that is,

r0B =  (B) =  V   B   (33)

Proposition 20   Let      be a unit speed non-null B-magnetic curve in   3D   semi-Riemannian manifold 

(M; g)   with the Serret-Frenet apparatus  fT; N; B; { ;  g. Then the Lorentz force in the Frenet frame 

written as    2

6664(T )

(N )

(B)

3

7775 =

2

66640   "2$2   0

"1$2   0

  "3 

0   "2    0

3

7775

2

6664T 

B

3

7775 (34)

where  $2   is a certain function de…ned by  $2  =  g((T ); N ).

Proof.   Let   be a unit speed non-null B-magnetic curve in 3D semi-Riemannian space with the Frenet

apparatus fT; N; B; { ;  g. Since we have,

(T ) =  T  +  N  +  B:

Then using the following equalities

 =  "1g((T ); T ) = 0;

 =  "2g((T ); N ) =  "2$2;

 =  "3g((T ); B) = "3g((B); T ) = "3g(rT B; T ) = "3g("3 N ; T  ) = 0:

we get

(T ) =  "2$2N:

Similarly, we can easily obtain that

(T ) =

 "1$2T 

 "3 B;

(T ) =  "2 N:

Proposition 21   Let     be a unit speed non-null curve in semi-Riemannian manifold   (M; g):  Then the 

curve     is B-magnetic trajectory of a magnetic …eld  V  if and only if the magnetic vector …eld  V   can be 

written along the curve    as 

V   = "3 T  + "3$2B   (35)

11

Page 12: Notes on magnetic curves in 3D semi-Riemannian manifolds

8/9/2019 Notes on magnetic curves in 3D semi-Riemannian manifolds

http://slidepdf.com/reader/full/notes-on-magnetic-curves-in-3d-semi-riemannian-manifolds 12/15

Proof.   Let    be a unit speed B-magnetic trajectory of a magnetic …eld  V:  Using the Proposition 20

and Eq.(7), we obtain Eq.35

V   = "3 T  + "3$2B

Conversely, we assume that Eq.(35) holds. Then we get  (B) =  V  B. So, the curve   is a B-magnetic

trajectory of the magnetic …eld  V :

Theorem 22   (main result)   Let    be a unit speed B-magnetic curve and  V   be a Killing vector …eld on a simply connected space form   (M (C ); g):   If the curve      is one of the B-magnetic trajectories of 

(M (C ); g ; V   )   then its curvature and torsion satisfy the equation 

"3({ 0)2 + ("2 2 "2C 

2  ){ 2 (2a"2 2 + 3"2C ){ +

 { 4

4  =  :   (36)

where  C   is curvature of the Riemannian space  M ,  a;  and     are constants.

Proof.   Let    be a magnetic …eld in a  3D  semi-Riemannian manifold. Then  V   satisfy Eq.(35). Di¤er-

entiating Eq.(35), we have

rT V   = "3 T  +  "1 ({  $2)N  +  "3$02B   (37)

Lemma 1 implies that  V  (v) = 0: So Eq.(37) gives us

 0 = 0:   (38)

If we di¤erentiate Eq.(37) with respect to  s,

r2T V   =  {  ($2 { )T  + "1 ({ 0 2$0

2)N  + ("3$002  +  "2 2{  "2 2$2)B:   (39)

Then, if Eq.(37) and Eq.(39) are considered with  V  ({ ) = 0 in Lemma 1, we obtain,

["1 ({ 0 2$02)]0 + g(R(V; T )T; N ) = 0

In particular, since  C  is constant,  g(R(V; T )T; N ) =  Cg(V; N ) = 0 we have

 ({ 0 2$02) = 0   (40)

Similarly, if we combine Eq.(37) and Eq.(39) wih V  ( ) = 0 in Lemma 1 we get

[ 1

{ ("3$00

2  +  "2 2{  "2$2 2 "2C$2)]0 +{ 2

2

0= 0;   = const:   (41)

If we integrate the Eq. (41) we obtain,

"3$002  +  "2 2{  "2$2 2 "2C$2 +

 { 3

2  B{  = 0;   = const:   (42)

Finally, if Eq.(42) is combined with Eq.(40) and is multiplied by 2{ 0, we get

2"3{ 00{ 0 + (2"3 2 "2C   2B){{ 0 (2a"2 2 + 3"2C ){ 0 + { 

3{ 0  = 0;   = const:   (43)

whose integration given

"3({ 0)2 + ("2 2 "2C 

2  ){ 2 (2a"2 2 + 3"2C ){ +

 { 4

4  = ;   = const:   (44)

12

Page 13: Notes on magnetic curves in 3D semi-Riemannian manifolds

8/9/2019 Notes on magnetic curves in 3D semi-Riemannian manifolds

http://slidepdf.com/reader/full/notes-on-magnetic-curves-in-3d-semi-riemannian-manifolds 13/15

Example 23   Let   M   be three dimensional sphere and      be a non-null B-magnetic curve. If we get 

   =   a   = 1;   = 2   and      = 5   in Eq.(44) then we obtain following …rst-order nonlinear ordinary 

di¤erential equation 

y0(t)2 + 4y(t)2 5y(t) + y (t)4

4  5 = 0

we obtain Figure 4 and Figure 5 by using the programme Mathematica:

Figure 4. Plots of sample individual solution 

Figure 5. Sample solution family 

Corollary 24   Let   V   be a Killing vector …eld on   3D   semi-Riemannian manifold   (M; g). Then each 

trajectory of the magnetic …eld   V   makes an angle   (s)with the binormal vector …eld of the magnetic 

curve. For the angle  (s)  we have the following cases;

Case 1.   If  B  and  V  are spacelike vectors and these vectors span spacelike plane,

g(B; V  ) = kBk kV k cos   ref.[11].

Then using Eq. (35) and  g(B; B) =  "3  = 1  we obtain 

cos  =   g(B;V  )kBkkV  k =   g(B;T +$2B)

kV  k   =   $2q j"1 2+$2

2j:

Case 2.   If  B  and  V  are spacelike vectors and these vectors span timelike plane,

g(B; V  ) = kBk kV k cosh   ref.[11].

Then using Eq. (35) and  g(B; B) =  "3  = 1  we obtain 

cosh  =   g(B;V  )kBkkV  k  =   g(B;T +$2B)

kV  k   =   $2q 

j"1 2+$2

2

j

:

Case 3.   If  B  and  V  are timelike vectors in the same timecone,g(B; V  ) = kBk kV k cosh   ref.[11].

Then using Eq. (35) and  g(B; B) =  "3  = 1  we obtain 

cosh  =   g(B;V  )kBkkV  k  =   g(B;T +$2B)

kV  k   =   $2q j 2$2

2j:

Case 4.   If  N  spacelike (resp. timelike) and  V  timelike (resp. spacelike) vectors in the future timecone,

g(B; V  ) = kBk kV k sinh   ref.[11].

Then using Eq. (35) and  g(B; B) =  "3  we obtain 

sinh  =   g(B;V  )kBkkV  k  =   g(B;"3T +"3$2B)

"3kV  k   =   $2q j"1 2+"3$2

2j:

13

Page 14: Notes on magnetic curves in 3D semi-Riemannian manifolds

8/9/2019 Notes on magnetic curves in 3D semi-Riemannian manifolds

http://slidepdf.com/reader/full/notes-on-magnetic-curves-in-3d-semi-riemannian-manifolds 14/15

Corollary 25   Let    be a non-null B-magnetic curve in a Lorentzian  3space with  $2  constant, then 

  is a circular helix whose axis is the vector …eld  V:

Proof.  It is obvious from Eq. (36).

Example 26  We consider a timelike B-magnetic curve in Lorentzian  3space de…ned by 

 (s) = (cosh  sp 

2;

  sp 2

; sinh  sp 

2)

[10]. The picture of the B-magnetic curve     is rendered in Figure 6.

Figure 6. Timelike B-magnetic curve.

The curve    has the following curvature and torsion 

{ (s) =   (s) = 1

2:

Using Corollary 25 we can easily see that    is a B-magnetic curve.

Example 27  We consider a timelike B-magnetic curve in Lorentzian  3space de…ned by 

 (s) = (  1p 2 sinh s;

  sp 2 ;

  1p 2 cosh s)

[10]. The picture of B-magnetic curve     is rendered in Figure 7.

Figure 7. Spacelike B-magnetic curve.

The curve    has the following curvature and torsion 

{ (s) =   (s) =  1p 

2:

Using the Corollary 25 we can easily see that    is a B-magnetic curve.

14

Page 15: Notes on magnetic curves in 3D semi-Riemannian manifolds

8/9/2019 Notes on magnetic curves in 3D semi-Riemannian manifolds

http://slidepdf.com/reader/full/notes-on-magnetic-curves-in-3d-semi-riemannian-manifolds 15/15

References

[1] Ali AT, Lopez R. Slant helices in Minkowski space. J Korean Math S 2011; 48: 159-167.

[2] Barros M, Romero A. Magnetic vortices. EPL. 2007; 77: 1-5.

[3] Barros M, Cabrerizo JL, Fernández M, Romero A. Magnetic vortex …lament ‡ows. J Math Phys

2007; 48: 1-27.

[4] Barros M, Ferrandez A, Lucas P, Mero´nos MA. General helices in the 3dimensional Lorentzian

space forms. Rocky Mt J Math 2001; 31: 373–388.

[5] Bozkurt Z, Gök   ·I, Yayl¬ Y, Ekmekci FN. A new Approach for Magnetic Curves in Riemannian

3DManifolds. J Math Phys 2014; 55: 1-12.

[6] Drut-Romaniuc SL, Munteanu MI. Killing magnetic curves in a Minkowski 3-space, Nonlinear

Anal-Real 2013; 14: 383–396.

[7] Gürbüz N. p-Elastica in the 3-Dimensional Lorentzian Space Forms. Turk J Math 2006; 30: 33-41.

[8] Hasimoto H. A soliton on a vortex …lament. J Fluid Mech 1972; 51: 477–485.

[9] Hasimoto H. Motion of a vortex …lament and its relation to elastica. J Phys Soc Jpn 1971; 31:

293–294.

[10] Nešovic E, Petrovic-Torgašev M, Verstraelen L. Curves in Lorentzian Spaces. B Unione Mat Ital

2005; 8: 685-696.

[11] Ratcli¤e JG. Foundations of Hyperbolic Manifolds. New York, NY, USA: Springer-Verlag, 1994.