non$proteolytic-ubiquitylation regulates-the-apc/c

79
Nonproteolytic ubiquitylation regulates the APC/Cinhibitory function of XErp1 Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Eva Beate Hörmanseder an der MathematischNaturwissenschaftliche Sektion Fachbereich Biologie Tag der mündlichen Prüfung: 16. Dezember 2011 1. Referent: Prof. Dr. Thomas U. Mayer 2. Referent: Prof. Dr. Martin Scheffner 3. Referent: Prof. Dr. Olaf Stemmann

Upload: others

Post on 28-Mar-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Non-proteolytic ubiquitylation regulates the APC/C-inhibitory function of XErp1function  of  XErp1
Doktors  der  Naturwissenschaften  (Dr.  rer.  nat.)  
vorgelegt  von  
2.  Referent:  Prof.  Dr.  Martin  Scheffner  
3.  Referent:  Prof.  Dr.  Olaf  Stemmann  
1.2.   The  APC/C  counteracts  the  activity  of  Cdk1   7  
1.3.   The  “wait  anaphase  signal”:  The  SAC  inhibits  the  APC/C  in  mitosis   9  
1.4.   Regulation  of  APC/CCdc20  activity  in  meiosis   11  
1.5.   The  postulation  of  MPF  and  CSF   12  
1.6.   The  discovery  of  Mos  as  a  CSF  component   13  
1.7.   Identification  of  the  CSF  component  XErp1   14  
1.8.   XErp1  inactivation  upon  CSF  release   15  
1.9.   The  molecular  mechanism  of  XErp1  mediated  APC/C  inhibition   16  
1.10.   Feedback  loops  controlling  XErp1  activity  during  CSF  arrest   18  
1.11.   Aim  of  this  project   20  
2.   RESULTS   21  
2.1.   UbcX  can  suppress  SAC  activity  in  Xenopus  egg  extract   21  
2.2.   UbcX  can  suppress  CSF  activity  in  Xenopus  egg  extract   22  
2.3.   Elevated  UbcX  activity  prevents  meiosis  I  -­  meiosis  II  transition  in  
Xenopus  oocytes   24  
activity   25  
2.5.   Does  USP44  counteract  UbcX  to  maintain  CSF  arrest?   26  
2.6.   An  eight-­fold  increase  in  UbcX  activity  is  required  for  CSF  release.   27  
2.7.   UbcX  levels  increase  during  oocyte  maturation  and  remain  constant  
during  CSF  release  and  embryonic  cell  cycles   28  
2.8.   UbcX  dependent  CSF  release  can  be  suppressed  by  XErp1   29  
2.9.   UbcX  mediated  ubiquitylation  disrupts  the  APC/C  -­  XErp1  complex  30  
  2
2.10.   XErp1  is  the  main  target  of  UbcX  mediated  ubiquitylation  in  CSF  
extract   32  
2.11.   Ubiquitylation  of  XErp1  is  dependent  on  the  APC/C  and  independent  
of  SCFβ TRCP   33  
2.12.   Dissociation  of  XErp1  upon  Cdk1  phosphorylation  does  not  require  
ubiquitylation   35  
2.13.   Cdc20  degradation  is  not  required  for  CSF  arrest  maintenance   36  
3.   DISCUSSION   38  
3.1.   Regulation  of  spindle  checkpoint  signaling  by  UbcH10/UbcX   39  
3.1.1.   The  spindle  assembly  checkpoint  can  be  inactivated  by  UbcX  in  
Xenopus  egg  extract   39  
3.1.2.   Is  an  APC/C  inhibitor  targeted  for  ubiquitylation  during  SAC    
  signaling?   41  
3.2.   UbcX  mediated  ubiquitylation  of  XErp1  regulates  its  APC/C  inhibitory  
activity   43  
3.2.1.   Cdc20  is  not  destabilized  in  CSF  arrested  egg  extract   43  
3.2.2.   UbcX  mediated  ubiquitylation  of  XErp1  regulates  its  APC/C  inhibitory  
activity   44  
3.2.3.   Are  ubiquitin  hydrolases  counteracting  the  activity  of  UbcX  during  CSF  
arrest?   46  
3.3.   Is  the  regulation  of  UbcX  activity  important  during  the  meiotic  cell  
cycle?   48  
3.3.2.   Could  UbcX  participate  in  the  inactivation  of  XErp1  upon    
  fertilization?   48  
pathways  regulating  the  activity  of  XErp1   49  
3.4.   Could  ubiquitylation  of  XErp1  be  required  for  its  APC/C  inhibitory  
activity?   50  
5.2.   Plasmids   55  
5.2.3.   Cloning  and  Mutagenesis   57  
5.3.   Proteins   57  
5.3.2.   His-­tagged  protein  expression  in  SF9  cells   58  
5.3.3.   His-­tagged  protein  purification  from  bacteria  and  SF9  cells   58  
5.3.4.   Coupled  in  vitro  transcription/translation  (IVT)   59  
5.4.   Antibodies   59  
5.4.2.   Affinity  purification  of  antibodies   59  
5.5.   Gel  electrophoresis  and  immunoblot  analysis   60  
5.6.   Xenopus  egg  extracts   61  
5.6.1.   Xenopus  CSF  egg  extract  preparation   61  
5.6.2.   Extract  manipulations   62  
5.7.   Xenopus  oocyte  injections   64  
6.   LITERATURE   65  
7.   APPENDIX   75  
7.1.   Summary   75  
7.2.   Zusammenfassung   75  
7.3.   Acknowledgements   76  
 
1. INTRODUCTION  
Most   eukaryotes   reproduce   sexually,   where   cells   from   two   parents   fuse   to  
generate  a  single  cell,  the  zygote,  which  develops  into  a  new  organism  (Figure  
1.1.).  Since  the  combination  of  two  diploid  cells  would  lead  to  the  duplication  
of  the  chromosomal  content  at  every  generation,  sexual  reproduction  depends  
on  a  process  called  meiosis.  
 
Figure   1.1.   The   life   cycle   of   vertebrates.   Cells   in   vertebrates   proliferate   mitotically   in   the   diploid   phase   to   form   a   multicellular   organism.   Sexual   reproduction   begins   with   meiosis   to   generate  haploid  cells,  which  fuse  upon  fertilization  to  form  a  new  organism.  
1.1. Meiosis  and  meiotic  maturation  
Meiosis  is  a  specialized  form  of  nuclear  division  that  leads  to  the  generation  of  
cells   containing   half   the   normal   complement   of   chromosomes   from   diploid  
oocytes  (Figure  1.2.  a,  Alberts  et  al.,  2002).  (Alberts  et  al.,  2002).    
Before  entering  the  meiotic  program,  oocytes  are  diploid  like  somatic  cells  and  
contain   two   copies   of   each   chromosome,   one   of   them   inherited   from   each  
parent.   Meiosis   begins   with   an   S-­phase   (Petronczki   et   al.,   2003)   in   which  
  5
chromosomes  are  replicated  to  produce  sister  chromatid  pairs  tightly  linked  by  
cohesion   (Klein   et   al.,   1999).   Next,   the   duplicated   homologues   pair   to   form  
tetrads   and   undergo   homologues   recombination,   a   process   important   for  
generating   genetic   variation   and   to   guarantee   accurate   segregation   of   the  
homologues   at   the   following   nuclear   division.   Homologous   recombination  
starts   with   the   introduction   of   DNA   double-­strand   breaks   (DSB)   at   almost  
variable   positions   along   the   chromosome   (Sun   et   al.,   1989).   In   most   of   the  
cases,   DSBs   are   repaired   without   rendering   the   DNA   sequence   of   the   two  
homologs.   Sometimes   however,   the   repair   leads   to   the   formation   of   a  
continuous  DNA  strand  between  two  homologous  chromatids,  which  can  lead  
to   a   reciprocal   DNA   exchange   or   crossover   (Allers   and   Lichten,   2001).   The  
result  is  a  strong  physical  linkage  between  the  two  homologous  chromosomes  
as  long  as  the  sister  chromatid  arms  are  held  together  by  cohesion.  As  a  result,  
the  homologous  chromosomes  become  bioriented  on  the  first  meiotic  spindle  
and  after  cohesin  cleavage  at  the  chromosome  arms  at  anaphase  I,  exactly  one  
of   the   two   homologous   chromosomes   is   segregated   into   each   daughter   cell  
(Buonomo  et  al.,  2000).  After   the  completion  of  meiosis   I,  cells  enter  directly  
the   next   division   cycle   without   replicating   the   chromosomes.   In   meiosis   II,  
similar  to  mitosis,  sister  chromatids  are  divided  into  the  two  daughter  cells  by  
the   cleavage   of   centromeric   cohesion   upon   anaphase   II   onset.   Together,  
meiotic   divisions   result   in   the   production   of   four   haploid   cells,  which   can   be  
differentiated  into  special  reproductive  cells,  i.e.  the  egg  and  the  sperm.    
In  animals,  oocytes  arrest  before   the   first  meiotic  division  at  prophase   I,   and  
these  immature  oocytes  or  stage  VI  oocytes  can  stop  at  this  point  for  decades  
(Hunt,   1989).   The   production   of   a   fertilizable   egg   from   such   an   immature  
oocyte   involves   a   process   called   oocyte   maturation   (Figure   1.2.   b).   Upon  
hormonal  induction,  immature  oocytes  resume  meiosis  I  and  undergo  germinal  
vesicle  breakdown  (GVBD)  which  is  visible  on  the  surface  of  the  oocytes  by  the  
appearance   of   a  white   dot.  Meiosis   I   is   completed  with   the   extrusion   of   the  
first   polar   body   after   which   the   oocytes   proceed   directly   through  meiosis   II  
  6
where  the  second  polar  body   is  extruded  and  haploid  gametes  are  produced.  
In  vertebrates   like  Xenopus   laevis,  oocytes  complete  meiotic  maturation  with  
an  arrest  at  metaphase  of  meiosis  II,  in  which  they  await  fertilization.  From  the  
viewpoint   of   cell-­cycle   control,   the   major   questions   are   concerning   the  
mechanisms  underlying  the   induction  and  regulation  of  oocyte  maturation  as  
well  as  the  arrest  of  mature  oocytes  at  metaphase  of  meiosis  II  and  its  release  
upon  fertilization  (Tunquist  and  Maller,  2003).  
 
Figure  1.2.  The  meiotic  program.  (a)  In  meiosis,  after  DNA  replication,  two  divisions  generate   haploid   gametes.   For   clarity,   only  one   chromosome   is  depicted.   (b)  Meiosis   in   vertebrates   is   arrested  at  two  stages.  After  DNA  synthesis,  the  oocytes  grow  to  their  final  size  and  arrest  at   meiotic   prophase   I.   Progesterone   induces  meiotic  maturation   and   the   production   of   an   egg   arrested   at   meiotic   metaphase   II.   Fertilization   triggers   the   completion   of   Meiosis   II   and   a   diploid  zygote  is  formed  (Adapted  from  Morgan,  2007).(Morgan,  2007)  
1.1. Cdk1/cyclin  B  drives  the  meiotic  cell  cycle  
The  ordered  progression  of  the  meiotic  cell  cycle,  like  the  mitotic  cell  cycle,  is  
mediated   mainly   by   the   activity   of   cyclin   dependent   kinases   (Cdks)   and  
ubiquitin   ligases   (Murray,   2004).   Cdks   are   serine-­threonine   kinases   that   are  
activated   by   their   regulatory   subunit,   the   cyclins.   In   mitotic   G1,   low   Cdk1  
activity   is   important   for  the  resetting  of  the  origins  of  DNA  replication.  Rising  
Cdk   activity   triggers   the   firing   of   DNA   replication   origins   and   as   S-­phase  
progresses   and   DNA   replication   continues,   the   activity   of   Cdk1/CylinB1  
promotes   entry   into   mitosis,   which   is   characterized   by   nuclear   envelope  
  7
condensation.  After  the  successful  division  of  the  replicated  chromosomes  into  
two  daughter  cells,  the  cell  needs  again  low  Cdk1  activity  to  exit  mitosis  and  to  
enter   G1.   Therefore,   low   Cdk   activity   followed   by   high   activity   links   DNA  
replication   to   progression   through  mitosis   (Porter,   2008)   –   the   basis   for   the  
mitotic  cell  cycle.  
In  Xenopus  meiosis,  the  hormone  progesterone  induces  entry  into  metaphase  I  
by   the   activation   and   amplification   of   Cdk1/cyclin   B   by   inducing   both   the  
dephosphorylation   of   inhibitory   residues   on   Cdk1   and   the   accumulation   of  
cyclin   B   (Tunquist   and   Maller,   2003).   Progression   from   metaphase   I   to  
anaphase   I   is   accompanied   by   a   drop   in   cyclin   B   levels   and   decreasing   Cdk1  
activity.   But  unlike   in  mitotic   cells,   cyclin  B   is   not   completely  degraded  upon  
anaphase   onset   but   appears   to   be   reduced   to   half   (Furuno   et   al.,   1994;  
Iwabuchi   et   al.,   2000).   While   it   remains   controversial   whether   this   drop   in  
cyclin  B   levels   is  required  for  meiotic  progression  (Peter  et  al.,  2001;  Taieb  et  
al.,  2001),   the   inhibition  of   complete  cyclin  B  degradation   is  essential   for   the  
persistence  of  M-­phase  and  the  inhibition  of  DNA  replication  (Ohe  et  al.,  2007).  
Thus,  the  oocytes  directly  enter  a  second  M-­phase,  where  the  stabilization  of  
cyclin   B   levels   is   important   for   establishing   the   second  meiotic   arrest.   Upon  
fertilization,   cyclin   B   is   degraded,   Cdk1   is   inactivated   and   the   zygotes   enter  
mitotic  cell  cycles.  
1.2. The  APC/C  counteracts  the  activity  of  Cdk1  
Anaphase   onset   requires   the   inactivation   of   both   Cdk1   kinase   and   the  
inactivation   of   the   anaphase   inhibitory   protein   securin.   Securin   prevents  
cohesin  cleavage  and  thus  the  irreversible  step  of  sister  chromatid  separation  
by   keeping   the   cohesin   directed   protease   separase   inactive   (Uhlmann   et   al.,  
1999;   Uhlmann   et   al.,   2000).   Both,   Cdk1/cyclin   B   and   securin   activity   is  
regulated  by   the  E3  ubiquitin   ligase  anaphase  promoting   complex/cyclosome  
(APC/C).  It  mediates  the  specific  ubiquitylation  of  cyclin  B  and  securin  (Sudakin  
  8
et  al.,  1995;  Zou  et  al.,  1999)  thereby  targeting  them  for  destruction  by  the  26  
S  proteasome  at  anaphase  onset.    
The  APC/C   is   an  unusual   large   E3  ubiquitin   ligase   that   consists   of   at   least   13  
subunits  including  proteins  with  cullin  and  RING-­finger  domains  (Zachariae  and  
Nasmyth,   1999).   In   addition,   the   APC/C   associates   with   coactivator   proteins  
called  Cdc20  and  Cdh1  (Pesin  and  Orr-­Weaver,  2008),  which  bind  transiently  to  
the   APC/C   core   complex   and   are   thought   to   regulate   both   the   activity   and  
substrate   specificity   of   the   APC/C.   While   in   somatic   mitotic   cell   cycles,   the  
coactivator   of   the   APC/C   alternates   between   Cdc20   and   Cdh1,   the   main  
coactivator   required   for   meiosis   and   early   embryonic   cell   cycles   has   been  
reported   to   be   Cdc20   (Lorca   et   al.,   1998).   The   APC/C   together   with   its  
coactivator  is  responsible  for  substrate  recognition  and  thus  confers  specificity  
to  the  ubiquitylation  reaction   (Peters,  2006).   It   functions  at   the   last  step  of  a  
cascade   of   enzymes   that   sequentially   act   to   transfer   ubiquitin   to   the   target  
protein   (Hershko   and   Ciechanover,   1998).   Free   ubiquitin   is   first   covalently  
attached  to  an  ubiquitin-­activating  enzyme  E1  via  a   thioester  bond.   It   is   then  
transferred  to  an  ubiquitin-­conjugating  enzyme  E2  where   it   forms  a  thioester  
bond  with   the   active   site   cystein.   The  main   E2   enzyme   cooperating  with   the  
APC/C  has  been  identified  in  clam  as  E2-­C  (Hershko  et  al.,  1994)  and  orthologs  
were   found   in  Xenopus  named  UbcX   (Yu  et  al.,  1996),  and   in  humans  named  
UbcH10   (Townsley   et   al.,   1997).   In   Xenopus,   UbcX   is   essential   for   APC/C  
activity,  since  a  dominant  negative  mutation  in  the  active  site  cystein  (C114S)  
inhibits  APC/C  dependent  substrate  ubiquitylation  (Townsley  et  al.,  1997),  and  
the  depletion  of  UbcX  inhibits  APC/C  substrate  degradation  (data  not  shown).  
In  the  final  step  of  APC/C  dependent  ubiquitylation,  the  E2-­bound  ubiquitin  is  
covalently  attached   to  a   lysine   residue   in   the   target  protein.   In   this   reaction,  
the  APC/C  is  thought  to  approximate  the  substrate  and  the  E2-­ubiquitin  and  to  
position   them   for   efficient   ubiquitin   transfer   (Peters,   2006).   Recently,   it   has  
been   shown   that   in   human   cells,   UbcH10   forms   an   E2-­enzyme  module   with  
Ube2S,   and  both  enzymes  were   shown   to  be   important   for   the   formation  of  
  9
ubiquitin   chains   on   APC/C   substrates,   where   UbcH10   conjugates   the   first  
ubiquitin  to  the  lysine  residue  of  the  substrate  and  Ube2S  then  elongates  the  
ubiquitin  chain  (Garnett  et  al.,  2009;  Williamson  et  al.,  2009;  Wu  et  al.,  2010).  
As  a  consequence,  ubiquitylation  can  target  proteins  to  the  26  S  proteasome,  a  
high   molecular   weight   protease   complex   that   hydrolyses   its   substrates   into  
short   peptides   and   thus   inactivates   them   irreversibly.   Alternatively,  
ubiquitylation   can   act   as   a   reversible   posttranslational   modification   of   a  
protein  to  regulate  its  activity  (Hershko  and  Ciechanover,  1998).  
1.3. The  “wait  anaphase  signal”:  The  SAC  inhibits  the  APC/C  in  mitosis  
Mitotically   and   meiotically   dividing   cells   depend   on   ubiquitin-­mediated  
proteolysis   of   key   cell-­cycle   regulators   at   the   correct   time   (Pesin   and   Orr-­
Weaver,  2008).  In  mitosis,  a  conserved  mechanism  called  the  spindle  assembly  
checkpoint  (SAC)  guarantees  an  equal  segregation  of  the  chromosomes  to  the  
two  nascent  daughter  cells  (Musacchio  and  Salmon,  2007).  The  SAC  is  activated  
by  missattached  or  unattached  kinetochores  (Nicklas  et  al.,  1995;  Rieder  et  al.,  
1995;  Rieder  et  al.,  1994)  and  prevents  the  APC/C  from  ubiquitylating  cyclin  B  
and   securin.   Although   it   is   not   yet   completely   understood   how   the   SAC  
inactivates  the  APC/C,  it  is  well  accepted  that  the  primary  target  of  the  SAC  is  
the  APC/C   coactivator   Cdc20   (Hwang   et   al.,   1998;   Kim   et   al.,   1998)   and   that  
SAC  activity  is  propagated  by  a  number  of  conserved  proteins  including  Mad1,  
Mad2   and   Bub3/BubR1   (Hoyt   et   al.,   1991;   Li   and   Murray,   1991).   Current  
models  of  SAC  mediated  APC/C  inactivation  suggest  that  Mad2  binds  to  Cdc20  
in  conjunction  with  BubR1  and  Bub3  to  form  the  “Mitotic  Checkpoint  Complex”  
(MCC),  which  binds  to  the  APC/C  and  renders  it  inactive  (Sudakin  et  al.,  2001).  
Once   all   kinetochores   are   properly   attached,   it   has   been   suggested   that   the  
inhibitory  MCC  complexes  have  to  be  actively  dissociated  by  APC/C  dependent,  
non-­proteolytic  ubiquitylation  of  Cdc20  to  turn  off  the  SAC.  Specifically,   it  has  
been  shown  that  addition  of   the  E2  ubiquitin  conjugating  enzyme  UbcH10  to  
SAC-­arrested  cell  extract  triggers  the  APC/C-­dependent  multi-­ubiquitylation  of  
  10
Cdc20,   and   possibly   other   components   of   the   APC/C–Cdc20-­MCC   complex,  
resulting  in  the  release  of  Mad2  and  BubR1  from  Cdc20  (Reddy  et  al.,  2007).  In  
checkpoint  arrest  conditions,  this  ubiquitylation  reaction  is  antagonized  by  the  
activity  of  the  ubiquitin  hydrolase  USP44  (Figure  1.3.),  which  removes  ubiquitin  
from   Cdc20   (Stegmeier   et   al.,   2007).   As   soon   as   the   last   kinetochore   is  
attached,   ubiquitylation   of   Cdc20   is   thought   to   exceed   its   deubiquitylation,  
Cdc20   is   freed   from   the   MCC   and   the   APC/C   can   be   rapidly   activated   in   a  
switch-­like  manner.  
 
Figure  1.3.  Dynamic  ubiquitylation  and  deubiquitylation  regulate  SAC  activity.  During  mitotic   checkpoint   arrest,   ubiquitylation   of   Cdc20   by   UbcX,   which   leads   to   the   dissociation   of   the   APC/C   inhibitors   Mad2   and   BubR1,   needs   to   be   counteracted   by   USP44   dependent   deubiquitylation  of  Cdc20  to  maintain  SAC  mediated  APC/C  inhibition.  
A  different  model  contradicts  this  view  of  SAC  arrest  and  instead  suggests  that  
in   cells   with   an   active   SAC,   Cdc20   in   complex   with   the   MCC   proteins   is  
ubiquitylated  and   targeted   for  destruction,  and   this  degradation   is   important  
for  inactivating  the  APC/C  (Ge  et  al.,  2009;  Nilsson  et  al.,  2008).  Supporting  this  
model,  experiments  in  budding  yeast  and  human  cells  have  shown  that  Cdc20  
is  ubiquitylated  and  degraded  during  SAC  arrest  and  overexpression  of  Cdc20  
could  overcome   the  SAC  mediated   inhibition  of   the  APC/C   (King  et   al.,   2007;  
Pan  and  Chen,  2004).  Importantly,  a  non-­ubiquitylatable  form  of  Cdc20  where  
every   lysine   was   mutated   to   an   arginine   was   insensitive   to   the   checkpoint  
arrest  and  activated  the  APC/C  (Nilsson  et  al.,  2008).  These  results  contradict  a  
model  where  Cdc20  ubiquitylation  causes  its  activation  and  rather  support  the  
latter  model  where  ubiquitylation  inactivates  Cdc20.    
  11
The   regulation   of   APC/C   activity   is   especially   important   during   oocyte  
maturation  in  vertebrates  where  meiosis  is  arrested  twice  to  coordinate  oocyte  
development  with  the  events  of  meiosis  (Figure  1.4.).    
In  prophase  I,  the  APC/C  has  to  be  inactive  to  maintain  chromosome  cohesion  
(Pesin   and   Orr-­Weaver,   2008).   When   oocytes   mature,   the   APC/C   needs   to  
become   active   at   the   metaphase   I   -­   anaphase   I   transition   to   allow   the  
degradation   of   securin   and   the   separation   of   the   homologous   chromosomes  
(Buonomo  et  al.,  2000;  Siomos  et  al.,  2001).  In  contrast  to  all  organisms  tested,  
the   requirement   of   the   APC/C   for   meiosis   I   -­   meiosis   II   transition   is  
controversial   in   Xenopus.   Although   microinjections   of   Xenopus   oocytes   with  
inhibitory  antibodies  or  antisense  oligonucleotides  directed  against  the  APC/C  
coactivator  Cdc20  did  not  disrupt  progression   through  meiosis   I   (Peter  et  al.,  
2001;  Taieb  et  al.,  2001),  it  is  possible  that  these  approaches  did  not  eliminate  
APC/C  activity  completely.  Nevertheless,  the  complete  degradation  of  cyclin  B  
must  be  prevented  also  in  Xenopus  to  maintain  M-­phase  and  to  inhibit  S-­phase  
(Ohe   et   al.,   2007),   suggesting   that   the   APC/C   needs   to   be   regulated   to  
contribute  to  this  modulation  of  cyclin  B  levels.    
 
Figure  1.4.  Oocyte  maturation  on  a  molecular  level:  Cdk1  and  APC/C.  The  cell  cycle  in  meiosis   is   driven   by   the   activity   of   Cdk1/cyclin   B   which   is   counteracted   by   the   APC/C,   the   relative   activities   of   which   through   the   maturation   process   are   illustrated   (adapted   from   Wu   and   Kornbluth,  2008).  
At  the  second  meiotic  arrest  at  metaphase  II,  the  APC/C  needs  to  be  inhibited  
to   stabilize   cyclin   B   and   securin   to   prevent   premature   anaphase   onset   and  
  12
parthenogenetic   activation   of   the   egg.  Upon   fertilization,   APC/C   activation   is  
required   to   induce   the   exit   from   the  metaphase   II   arrest   (Lorca   et   al.,   1998;  
Peter  et  al.,  2001)  and  thereby  allowing  entry  into  early  embryonic  cell  cycles.    
While  the  spindle  checkpoint  is  important  for  the  metaphase  arrest  and  APC/C  
inhibition   in   mitotic   cells   in   the   presence   of   unattached   kinetochores,   it   is  
unlikely   that   the   SAC   mediates   the   metaphase   arrest   observed   in   mature  
vertebrate  eggs.  Evidence  against  such  a  hypothesis  includes  the  fact  that  CSF  
arrest  is  terminated  by  fertilization  and  the  following  elevation  in  cytoplasmic  
calcium  levels,  but  calcium  addition  does  not  overcome  SAC  arrest  (Minshull  et  
al.,   1994).   Additionally,   the   SAC   requires   kinetochores   and   microtubule  
depolymerization,  whereas  neither  is  required  for  meiotic  metaphase  II  arrest  
(Tunquist  and  Maller,  2003).  What  inhibits  oocytes  at  metaphase  of  Meiosis  II?  
1.5. The  postulation  of  MPF  and  CSF  
In  1971,  Yoshio  Masui  and  Clement  L.  Markert  performed  experiments  in  Rana  
pipiens  oocytes  and  embryos  that  became  fundamental  for  the  identification  of  
the  mechanisms  mediating   the  metaphase   II  arrest   in  mature  oocytes   (Masui  
and  Markert,  1971).    
Specifically,  they  observed  that  injection  of  immature  oocytes  with  endoplasm  
of  mature  oocytes  induced  meiotic  maturation.  Therefore  they  postulated  that  
maturation   is   induced   by   a   maturation   promoting   factor   (MPF)   which   is  
released  by  hormonal   induction  and  remains  active  in  the  mature  egg  (Figure  
1.5.).   To   analyze  whether   the   same   activity   could   accelerate   cell   divisions   in  
embryonic  cells,  they  injected  endoplasm  of  the  mature  egg  into  one  cell  of  a  
two-­cell   stage   embryo.   Surprisingly,   they   found   that   the   injected   blastomere  
arrested   at   the   next  mitosis,   prompting   them   to   propose   the   existence   of   a  
cytostatic   factor   (CSF)   present   in   the   mature   egg   that   is   responsible   for  
inducing   the   metaphase   II   arrest   (Figure   1.5.).   Additionally,   this   activity   is  
  13
inactivated  upon  fertilization,  since  injection  of  blastomeres  with  endoplasm  of  
fertilized  embryos  did  not  cause  cell-­cycle  arrest.  
 
 
Figure  1.5.  The  discovery  of  MPF  and  CSF.  Illustration  of  the  oocyte-­  and  blastomere-­injection   assays  originally  performed  by  Masui  and  Markert  in  1971  that  led  to  the  identification  of  the   maturation  promoting  factor  MPF  and  the  cytostatic  factor  CSF.  
While  MPF  was   soon   identified   to   be   the   activity   of   cyclin   dependent   kinase  
Cdk1  together  with  its  regulatory  subunit  cyclin  B  (Gautier  et  al.,  1990;  Gautier  
et   al.,   1988;   Lohka   et   al.,   1988;   Murray   et   al.,   1989),   the   discovery   of   the  
molecular  identity  of  the  CSF  took  more  than  three  decades.  
1.6. The  discovery  of  Mos  as  a  CSF  component  
To  identify  the  CSF  activity  that  mediates  the  metaphase  II  arrest,  three  criteria  
were  proposed  for  a  protein  or  an  activity  to  be  a  CSF:  (1)  The  activity  emerges  
during   oocyte   maturation   and   peaks   in   the   metaphase   II   arrested   egg.   (2)  
Injection   of   blastomeres   with   the   activity   induces   mitotic   arrest   and   (3)  
fertilization  triggers  the  inactivation  of  the  factor  (Masui  and  Markert,  1971).  
The  first  protein   identified  meeting  these  criteria  was  the  kinase  Mos.  Mos   is  
expressed  during  oocyte  maturation  (Sagata  et  al.,  1988);  Figure  1.6.),  it  could  
induce   mitotic   arrest   when   injected   into   blastomeres   of   a   dividing   embryo  
  14
(Sagata  et  al.,  1989)  and  it  was  degraded  upon  fertilization  (Lorca  et  al.,  1991).  
To   understand   the   detailed   molecular   mechanism   linking   Mos   to   the  
metaphase   II   arrest,   the   signaling   pathway   of   the   kinase   was   investigated.  
Biochemical   analysis   revealed   that   Mos   can   activate   the   mitogen   activated  
protein  kinase  (MAPK)  pathway  (Posada  et  al.,  1993)  resulting  in  the  activation  
of  the  ribosomal  S6  kinase  (Rsk),  and  functional  analysis  of  the  members  of  this  
pathway   showed   that   they   are   required   for   CSF   arrest   (Abrieu   et   al.,   1996;  
Bhatt   and   Ferrell,   1999;   Cross   and   Smythe,   1998;   Gotoh   and   Nishida,   1995;  
Gross  et  al.,  1999;  Haccard  et  al.,  1993;  Kosako  et  al.,  1994a,  b). Therefore,  the  
Mos  activated  MAPK-­pathway was  proposed  to  be  a  molecular  component  of  
the   CSF.   Since   both,   the  Mos-­MAP   kinase   pathway   and   APC/C   inhibition   are  
responsible   for   CSF   arrest,   it   seemed   possible   that   these   two   pathways   are  
interconnected.  However,  it  remained  unclear  how  Rsk  as  the  terminal  kinase  
in   this  cascade  was  communicating  with   the  cell-­cycle  machinery   to  establish  
the  CSF  arrest.    
1.7. Identification  of  the  CSF  component  XErp1  
Reportedly,   polo-­like   kinase   Plx1   is   required   CSF   inactivation   and   APC/C  
activation   (Descombes   and   Nigg,   1998).   Specifically,   it   has   been   shown   that  
Xenopus   egg   extracts   depleted   of   Plx1   fail   to   release   the   CSF   arrest   upon  
increasing   cytoplasmic   calcium   levels.   Therefore,   a   yeast   two-­hybrid   screen  
was   performed   to   identify   proteins   that   interacted  with   Plx1   (Schmidt   et   al.,  
2005),   and   this   approach   led   finally   to   the   identification   of   the   sought   after  
component   of   CSF,   the   XErp1   protein.   XErp1   nicely   satisfied   the   Masui   and  
Markert   criteria  proposed   for  CSF.   First,  XErp1   is   synthesized  during  Xenopus  
oocyte  maturation;   it   starts   to   be   detectable   at   the  MI-­MII   transition   and   it  
accumulates   as   oocytes   proceed   through  meiosis   II  where   it   reaches   highest  
levels  at  metaphase   II   (Figure  1.6.);   second,  exogenous   introduction  of  XErp1  
into  one  blastomere  of   a   two-­cell   stage  embryo  promoted  a   cell-­cycle   arrest  
and  third,  XErp1  was  degraded  after  fertilization  in  a  Plx1  dependent  manner.  
  15
Importantly,  XErp1  is  essential  for  CSF  arrest  as  Xenopus  egg  extracts  arrested  
at   metaphase   II   depleted   of   XErp1   were   unable   to   maintain   CSF   arrest   and  
entered  interphase.    
Further  characterization  XErp1  revealed  the  C-­terminus  of  the  protein,  which  is  
sufficient  for  CSF  arrest  maintenance,  shares  high  sequence  similarity  with  the  
mitotic   APC/C   inhibitor   Emi1   and   like   Emi1,   XErp1  was   shown   to   inhibit   the  
APC/C  directly  (Schmidt  et  al.,  2005).  Therefore,  XErp1  is  a  CSF  specific  APC/C  
inhibitor.  
 
Figure  1.6.  Oocyte  maturation  and  CSF  on  a  molecular   level.  Oocyte  maturation  is  driven  by   the   activities   of   Cdk1/cyclin   B,   the   APC/C   and   CSF   factors   Mos   and   XErp1,   ad   the   relative   activities  during  oocyte  maturation  are  depicted  on  the  left  (adapted  from  Kornbluth,  2008).    
Since  XErp1  was  shown  to  be  a  substrate  of  Rsk,  the  Mos-­MAPK  pathway  could  
finally   be   linked   to   the   regulation   of   the   APC/C.   Rsk   phosphorylation   was  
shown  to   increase  the  inhibitory  activity  of  XErp1  in  CSF  arrested  eggs,  which  
will  be  described  later.  
1.8. XErp1  inactivation  upon  CSF  release    
As  proposed  by  Masui  and  Markert,  fertilization  causes  the  inactivation  of  CSF.  
The   first   response   of   an   egg   to   fertilization   is   an   elevation   in   cytoplasmic  
calcium  levels,  which  results  in  the  activation  of  calcium/calmodulin  dependent  
kinase   II   (CaMKII;(Lorca  et   al.,   1993).   The   identification  of   XErp1  as   a  CaMKII  
  16
substrate   provided   insights   into   how   fertilization   is   connected   with   CSF  
inactivation  (Figure  1.7.;(Hansen  et  al.,  2006;  Liu  and  Maller,  2005;  Rauh  et  al.,  
2005).  
 
Figure  1.7.   Fertilization  mediated  CSF   inactivation.  Fertilization   (1)   triggers   the  activation  of   CaMKII   (2)   which   phosphorylates   XErp1   (3)   creating   a   docking   site   for   Plx1   (4).   Plx1   in   turn   phosphorylates   XErp1   creating   a   phosphodegron   (5),   which   is   recognized   by   the   ubiquitin   ligase  SCFβ
TRCP.  XErp1  ubiquitylation  targets  it  for  degradation  (6)  and  thus  CSF  inactivation,  the   APC/C  becomes  active  (7)  and  cells  complete  meiosis  II  (adapted  from  Rauh  et  al.,  2005).  
CaMKII  mediated  phosphorylation  of  XErp1  provides  a  docking  site  for  Plx1  on  
XErp1.   Through  Plx1  mediated  phosphorylation  of   XErp1   a   phosphodegron   is  
created  and  XErp1  is  recognized  by  the  SCFβ TRCP  complex,  an  ubiquitin  E3  ligase  
that   ubiquitylates   and   targets   XErp1   for   degradation.   Consequently,   calcium  
triggers  CSF  inactivation  resulting  in  APC/C  activation  and  the  fertilized  egg  can  
proceed  with  embryonic  cell  divisions.  
1.9. The  molecular  mechanism  of  XErp1  mediated  APC/C  inhibition  
In   CSF   arrested   eggs,   XErp1   maintains   the   metaphase   II   arrest   by   directly  
inhibiting   the   APC/C.   The   binding   of   XErp1   to   the   APC/C   is   essential   for   its  
inhibitory   activity   as   mutants   defective   in   APC/C   binding   are   inefficient   in  
  17
inhibiting  the  APC/C  (Wu  et  al.,  2007b).  The  well-­conserved  C-­terminal  peptide  
sequence   of   XErp1,   termed   the   RL   tail,   was   reported   to   mediate   the  
recruitment   of   XErp1   by   serving   as   a   docking   site   to   the   APC/C   (Ohe   et   al.,  
2010).  Binding  to  the  APC/C  allows  and  enhances  the  inhibitory  interactions  of  
two  other  sequence  elements  of  XErp1,  the  D-­box  and  the  ZBR-­domain.  While  
it   is  well   established   that   all   three   elements   are   critical   for  APC/C   inhibition,  
the  specific  contribution  of  the  D-­box  and  the  ZBR  domain  to  the  inhibition  of  
the  APC/C  by  XErp1   remain  elusive   (Nishiyama  et  al.,  2007;  Ohe  et  al.,  2010;  
Tang  et  al.,  2010).    
Notably,  all  three  elements  are  conserved  between  XErp1  and  Emi1,  a  somatic  
paralog  of  XErp1,  whose  APC/C   inhibitory  activity   is   required   to  prevent  DNA  
re-­replication  (Di  Fiore  and  Pines,  2007;  Machida  and  Dutta,  2007)  suggesting  
that   XErp1   and   Emi1   share   the   same  mode   of   APC/C   inhibition.   Emi1,  when  
bound   to   the   APC/C   together   with   the   E2   enzyme   UbcH10,   was   shown   to  
inhibit  the  correct  engagement  of  the  substrate  to  the  APC/C  thereby  reducing  
substrate   ubiquitylation   (Summers   et   al.,   2008).   Further   studies   on   Emi1  
suggested   that   it   acts   as   an  APC/C   pseudosubstrate   and   the  D-­box  mediates  
APC/C   binding,   while   its   ZBR  mediates   APC/C   inhibition   (Miller   et   al.,   2006).  
Consistently,   it  has  been  shown  that  Emi1  mutated  in  its  ZBR  does  not  inhibit  
the  APC/C  but   rather   is  quickly   targeted   for  destruction  by   the  APC/C.  Given  
that  XErp1  –  like  Emi1  –  contains  a  D-­box  and  ZBR,  it  is  tempting  to  speculate  
that   XErp1   acts   as   well   as   a   pseudosubstrate.   However,   previous   studies  
suggest   that   XErp1   does   not   compete  with   substrates   for   APC/C   binding   but  
rather  interferes  with  the  transfer  of  ubiquitin  to  substrate  proteins  bound  to  
the   APC/C   (Tang   et   al.,   2010).   Furthermore,   our   preliminary   experiments  
revealed   that   in   contrast   to   Emi1,   mutation   of   the   ZBR   of   XErp1   does   not  
convert   it   into  an  APC/C   substrate   corroborating   the   idea   that  XErp1   inhibits  
the  APC/C  by  a  mechanism  distinct  to  the  one  of  Emi1.  
  18
Together,   although   it   is   established   that   XErp1   needs   to   be   recruited   to   the  
APC/C  to  exert  its  inhibitory  function,  the  exact  molecular  mechanism  of  XErp1  
mediated  APC/C  inhibition  remains  elusive.  
1.10. Feedback  loops  controlling  XErp1  activity  during  CSF  arrest    
During   metaphase   II   arrest,   the   Mos-­MAPK   pathway   was   shown   to   activate  
XErp1   by   upregulating   both   the   stability   and   activity   of   XErp1   (Isoda   et   al.,  
2011;  Wu  et  al.,  2007a;  Wu  et  al.,  2007b).  The  Mos-­MAPK  pathway  activates  
the   kinase   Rsk   (Bhatt   and   Ferrell,   1999;   Gross   et   al.,   1999),   which  
phosphorylates   XErp1   at   residues   in   the   central   region   (Inoue   et   al.,   2007;  
Nishiyama  et  al.,  2007)  leading  to  the  recruitment  of  the  protein  phosphatase  
PP2A   containing   the   regulatory   subunit   B56β   or   B56ε   to   XErp1   (Wu   et   al.,  
2007a).     PP2A-­   B56β,ε   antagonizes   N-­terminal   and   C-­terminal   inhibitory  
phosphorylations  of  XErp1  by  Cdk1  (Isoda  et  al.,  2011).  Cdk1  phosphorylations  
destabilize  XErp1  and  decrease  its  affinity  for  the  APC/C  (Wu  et  al.,  2007a;  Wu  
et  al.,  2007b).    
 
Figure  1.8.  Oocyte  maturation  and  CSF  on  a  molecular   level.  Oocyte  maturation  is  driven  by   the   activities   of   Cdk1/cyclin   B,   the   APC/C   and   CSF   factors   Mos   and   XErp1,   ad   the   relative   activities  during  oocyte  maturation  are  depicted  on   the   left   (adapted   from  Kornbluth,  2008).   On   the   right,   a   simplified   signaling   network   controlling   the   activity   of   XErp1   is   illustrated   (adapted  from  Isoda  et  al.,  2011).    
  19
Specifically,  it  has  been  shown  that  multiple  N-­terminal  Cdk1  phosphorylation  
motifs  bind  cyclin  B1-­Cdk1   itself   as  well   as  Plk1  and  CK1 δ/ε   to   inhibit  XErp1  
(Isoda   et   al.,   2011).   While   Plk1   phosphorylation   was   shown   to   partially  
destabilize   XErp1,   Cdk1   and   CK1δ/ε   phosphorylations   are   thought   to  
cooperatively  inhibit  XErp1  binding  to  the  APC/C  (Figure  1.8.).  Since  Cdk1  levels  
are   high   during   the  Metaphase   II   arrest,   constant   phosphorylation   of   XErp1  
would  lead  to  gradual  XErp1  inactivation  and  CSF  release.  By  recruiting  PP2A-­
B56β,ε  to  counteract  the  inhibitory  phosphorylations,  the  Mos  MAPK-­  pathway  
keeps   XErp1   active   and   therefore   maintains   CSF   arrest   (Figure   1.8.).   At   the  
same  time,  this  mechanism  allows  to  maintain  Cdk1  activity  at  the  correct  level  
during   CSF   arrest   (Figure   1.9.(Wu   and   Kornbluth,   2008;   Wu   et   al.,   2007b).  
Continuous  cyclin  B  synthesis  during  CSF  arrest  leads  to  a  temporal  increase  in  
Cdk1/cyclin  B  activity,  which  in  turn  leads  to  an  increase  in  the  phosphorylation  
of   XErp1,   since   the   activity   of   PP2A   on   XErp1   remain   equal.   XErp1  
phosphorylated   by   Cdk1   dissociates   from   the   APC/C   leading   to   a   transient  
APC/C  activation  and  slow  degradation  of  cyclin  B.    
 
Figure   1.9.   Cdk1/cyclin   B2   and   PP2A   regulate   XErp1’s   association   with   the   APC/C.   Phosphorylation  of  XErp1  by  Cdk1/cyclin  B2  leads  to  the  dissociation  of  XErp1  from  the  APC/C,   which   is   counteracted   by   PP2A,   which   dephosphorylates   XErp1   and   promotes   XErp1   association  with  the  APC/C.    
Therefore,  the  continuous  synthesis  of  cyclin  B   induces  a  slow  degradation  of  
cyclin   B   during   CSF   arrest.   Otherwise,   continuous   synthesis   would   create   an  
amount  of  cyclin  B  that  cannot  be  degraded  by  the  APC/C  anymore  in  a  short  
time.  This  would  result  in  a  slow  and  gradual  rather  than  a  switch-­like  exit  from  
CSF  arrest  as  observed  upon  fertilization.  
  20
1.11. Aim  of  this  project  
XErp1   is   an  APC/C   inhibitor   operating   in   CSF   arrested   oocytes.  However,   the  
exact  molecular  mechanism  of  APC/C  inhibition  and  its  regulation  is  unknown.  
The  D-­box  and  the  RL-­tail  of  XErp1  mediate  the  binding  of  XErp1  to  the  APC/C,  
most   likely   to   position   the   ZBR   of   XErp1   correctly   to   inactivate   the   APC/C.  
However,   the   interaction  with   the  APC/C  needs   to  be  dynamic   to  allow   slow  
cyclin  B  degradation  during  CSF  arrest.  Phosphorylation  and  dephosphorylation  
of   XErp1   can   regulate   its   association   with   the   APC/C,   and   the   Mos-­MAPK  
pathway  was  shown  to  promote  XErp1  association.  Intrigued  by  the  findings  on  
APC/C  regulation  by  the  spindle  checkpoint,  we  would   like  to  understand   if  a  
dynamic   balance   of   ubiquitylation/deubiquitylation   of   Cdc20,   XErp1   and/or  
other  components  of  the  APC/C  is  also  required  for  CSF  arrest.  In  addition,  we  
would   like   to   test   whether   Cdc20   turnover   is   required   for   CSF   arrest   and   if  
XErp1   regulates   this   potential   turnover.   Thus,   these   studies   will   provide   a  
deeper  understanding  of  how  the  XErp1-­APC/CCdc20  interaction  is  regulated  and  
   
 
2. RESULTS  
In  this  study,  we  show  that  non-­proteolytic  ubiquitylation  of  XErp1  regulates  its  
APC/C   inhibitory   function   during   CSF   arrest   in   Xenopus   egg   extracts.   This  
section   describes   the   experiments   demonstrating   that   ectopic   UbcX,   the   E2  
enzyme  of   the  APC/C,   induces   release   from  SAC-­  and  CSF  arrest.   The   release  
from  CSF  arrest  is  APC/CCdc20  dependent  and  in  the  presence  of  elevated  UbcX  
activity,  XErp1   is  ubiquitylated  resulting   in   the  dissociation  of  XErp1   from  the  
APC/C.   Hence,   the   APC/C   inhibitory   activity   of   XErp1   in   CSF   arrest   can   be  
modulated  in  an  UbcX-­dependent  manner.  Furthermore,  evidence  is  provided  
that   in   contrast   to   SAC   arrested   somatic   cells,   Cdc20   is   not   degraded   during  
meiotic   CSF   arrest   suggesting   that   CSF   arrest   is   not   mediated   by   the  
destabilization  of  Cdc20.    
2.1. UbcX  can  suppress  SAC  activity  in  Xenopus  egg  extract  
The   finding   that   in   human   somatic   cells,   the   APC/C   can   liberate   itself   from  
inhibition  by   the  SAC   (Reddy  et  al.,  2007)  prompted  us   to  analyze  whether  a  
similar  mechanism  operates  in  Xenopus  eggs  or  egg  extracts  to  regulate  APC/C  
activity   during   SAC   and   -­   more   interestingly   -­   during   CSF   arrest.   In   Xenopus  
eggs,  SAC  activity  was  reported  to  be  absent  but  can  be  induced  by  increasing  
the  ration  of  nucleus  to  cytoplasm  in  the  presence  of  spindle  poisons  (Minshull  
et  al.,  1994).  To  analyze  the  effect  of  UbcX  on  SAC  arrest  in  Xenopus  eggs,  we  
prepared  CSF  arrested  egg  extract  and  triggered  SAC  arrest  by  the  microtubule  
poison   nocodazole   in   the   presence   of   high   concentrations   of   sperm   nuclei  
(Figure  2.1.  a).  Under  these  conditions,  calcium  addition  did  not  result  in  APC/C  
activation   as   in   vitro   translated   35S-­securin   remained   stable   (Figure   2.1.   b,  
panel   1).   Westernblot   (WB)   analysis   revealed   that   XErp1   was   efficiently  
   
 
22
inhibition  was  due  to  SAC-­  but  not  CSF-­activity.  Addition  of  recombinant  wild  
type  UbcX  (UbcXwt)  to  SAC  arrested  extracts  caused  APC/C  activation  and  35S-­
securin  degradation  (Figure  2.1.  b,  panel  2).  This  effect  was  dependent  on  the  
catalytic  activity  of  UbcX,  as   the  addition  of  a  catalytic   inactive   form  of  UbcX  
(UbcXci)  had  no  effect  on  35S-­securin  stability  (Figure  2.1.  b,  panel  3).  Therefore,  
the   mechanism   of   UbcX   mediated   SAC   inactivation   is   conserved   between  
humans  and  Xenopus.    
 
Figure   2.1.   Ectopic   UbcXwt   overrides   SAC-­arrest   in   Xenopus   egg   extract.   (a)   CSF-­extracts   containing  35S-­securin  was  supplemented  with  nocodazole  and  high  concentrations  of  sperm  to   activate  the  SAC.  CSF  arrest  was  released  by  calcium  addition.  (b)  At  the  indicated  time  points   after  the  addition  of  the  specified  reagents  samples  were  taken  and  35S-­securin  was  detected   by   autoradiography   and   XErp1   and   α-­tubulin   by   WB.   CSF,   cytostatic   factor;   SAC,   spindle   assembly   checkpoint;   35S-­securin,   in   vitro   translated,   35S-­labeled   securin;   wt,   wild   type;   ci,   catalytical  inactive.  
2.2. UbcX  can  suppress  CSF  activity  in  Xenopus  egg  extract  
To   analyze   if   an   increase   in   the   activity   of   UbcX   similarly   influences   CSF  
mediated   APC/C   inhibition,   ectopic   UbcXwt   was   added   to   CSF   arrested   egg  
extract  supplemented  with  a  low  concentration  of  sperm  nuclei  and  35S-­securin  
(Figure  2.2.  a).  Interestingly,  also  in  these  extracts  ectopic  UbcX  caused  APC/C  
activation  and  CSF  release  in  the  absence  of  the  calcium  signal,  as  indicated  by  
   
 
23
panel  2).  However   -­  unlike   in  extracts   treated  with  calcium  -­  XErp1  remained  
stable   and   showed   an   increase   in   its   electrophoretic   mobility   following   exit  
from  meiosis  (Figure  2.2.  c,  panel  1  and  2),  suggesting  that  UbcXwt  causes  CSF  
inactivation  by  different  means  than  XErp1  degradation.  The  addition  of  UbcXci  
or  dialysis  buffer  had  no  effect  on  CSF  arrest  (Figure  2.2.  b,  c,  panel  3  and  4),  
suggesting  that  the  observed  CSF  override  is  dependent  on  an  increase  in  the  
catalytic  activity  of  UbcX.    
Additionally,   the   human   homologue   of  UbcX  was   equivalent   in   the   ability   to  
overcome  CSF  arrest  in  Xenopus  egg  extract,  as  the  addition  of  catalytic  active  
UbcH10   triggered   premature   CSF   release   (Figure   2.2.   d,   panel   3),  
demonstrating   that   both   UbcX   and   UbcH10   are   interchangeable   in   inducing  
CSF  release.  
 
   
 
24
2.3. Elevated   UbcX   activity   prevents   meiosis   I   -­   meiosis   II   transition   in  
Xenopus  oocytes  
To   collect   evidence   for   UbcX   mediated   regulation   of   CSF   arrest   in   vivo,   we  
injected  recombinant  UbcX  into  Xenopus  stage  VI  oocytes  arrested  at  prophase  
of  meiosis   I.  We   induced  oocyte  maturation  by   the  addition  of  progesterone  
and   followed   the   resumption   of