nonlinear eigenvalue problems: theory and applicationsbindel/present/2017-01-berkeley.pdftheory and...

47
Nonlinear Eigenvalue Problems: Theory and Applications David Bindel 1 Department of Computer Science Cornell University 12 January 2017 1 Joint work with Amanda Hood Berkeley 1 / 37

Upload: others

Post on 26-Sep-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Nonlinear Eigenvalue Problems:Theory and Applications

David Bindel1

Department of Computer ScienceCornell University

12 January 2017

1Joint work with Amanda HoodBerkeley 1 / 37

Page 2: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

The Computational Science & Engineering Picture

Application

ComputationAnalysis

MEMS

Smart grids

Networks

Systems

Linear algebra

Approximation theory

Symmetry + structure

Optimization

HPC / cloud

Simulators

Solvers

Frameworks

Berkeley 2 / 37

Page 3: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Why eigenvalues?

The polynomial connection

The optimization connection

The approximation connection

The Fourier/quadrature/special function connection

The dynamics connection

Berkeley 3 / 37

Page 4: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Why nonlinear eigenvalues?

y ′ − Ay = 0y=eλtv−−−−−−−−→ (λI − A)v = 0

y ′′ + By ′ + Ky = 0y=eλtv−−−−−−−−→ (λ2I + λB + K )v = 0

y ′ − Ay − By(t − 1) = 0y=eλtv−−−−−−−−→ (λI − A− Be−λ)v = 0

T (d/dt)y = 0y=eλtv−−−−−−−−→ T (λ)v = 0

Higher-order ODEs

Dynamic element formulations

Delay differential equations

Boundary integral equation eigenproblems

Radiation boundary conditions

Berkeley 4 / 37

Page 5: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Big and little

y ′′ + By ′ + Ky = 0v=y ′

−−−−−→[vy

]′+

[B K−I 0

] [vy

]= 0

(λ2I + λB + K )u = 0v=λu−−−−−→

(λI +

[B K−I 0

])[vu

]= 0

Tradeoff: more variables = more linear.

Berkeley 5 / 37

Page 6: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

The big picture

T (λ)v = 0, v 6= 0.

where

T : Ω→ Cn×n analytic, Ω ⊂ C simply connected

Regularity: det(T ) 6≡ 0

Nonlinear spectrum: Λ(T ) = z ∈ Ω : T (z) singular.

What do we want?

Qualitative information (e.g. no eigenvalues in right half plane)

Error bounds on computed/estimated eigenvalues

Assurances that we know all the eigenvalues in some region

Berkeley 6 / 37

Page 7: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Standard solver strategies

T (λ)v = 0, v 6= 0.

A common approach:

1 Approximate T locally (linear, rational, etc)

2 Solve approximate problem.

3 Repeat as needed.

How should we choose solver parameters? What about global behavior?What can we trust? What might we miss?

Berkeley 7 / 37

Page 8: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Analyticity to the rescue

T (λ)v = 0, v 6= 0.

where

T : Ω→ Cn×n analytic, Ω ⊂ C simply connected

Regularity: det(T ) 6≡ 0

Nonlinear spectrum: Λ(T ) = z ∈ Ω : T (z) singular.

Goal: Use analyticity to compare and to count

Berkeley 8 / 37

Page 9: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Winding and Cauchy’s argument principle

Ω

Γ

WΓ(f ) =1

2πi

∫Γ

f ′(z)

f (z)dz

= # zeros−# poles

Berkeley 9 / 37

Page 10: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Winding, Rouche, and Gohberg-Sigal

ΩΓ

|f ||f + g |

Analytic f , g : Ω→ C T ,E : Ω→ Cn×n

Winding # 12πi

∫Γ

f ′(z)f (z) dz tr

(1

2πi

∫Γ T (z)−1T ′(z) dz

)Theorem Rouche (1862): Gohberg-Sigal (1971):

|g | < |f | on Γ =⇒ ‖T−1E‖ < 1 on Γ =⇒same # zeros of f , f + g same # eigs of T ,T + E

Berkeley 10 / 37

Page 11: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Comparing NEPs

Suppose

T ,E : Ω→ Cn×n analytic

Γ ⊂ Ω a simple closed contour

T (z) + sE (z) nonsingular ∀s ∈ [0, 1], z ∈ Γ

Then T and T + E have the same number of eigenvalues inside Γ.

Pf: Constant winding number around Γ.

Berkeley 11 / 37

Page 12: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Nonlinear pseudospectra

Λε(T ) ≡ z ∈ Ω : ‖T (z)−1‖ > ε−1

−20 −15 −10 −5 0 5 10 15 20−20

−15

−10

−5

0

5

10

15

20

Berkeley 12 / 37

Page 13: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Pseudospectral comparison

Ω

Ωε

E analytic, ‖E (z)‖ < ε on Ωε. Then

Λ(T + E ) ∩ Ωε ⊂ Λε(T ) ∩ Ωε

Also, if Uε a component of Λε and Uε ⊂ Ωε, then

|Λ(T + E ) ∩ Uε| = |Λ(T ) ∩ Uε|Berkeley 13 / 37

Page 14: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Pseudospectral comparison

Ω

Ωε

Most useful when T is linear

Even then, can be expensive to compute!

What about related tools?

Berkeley 14 / 37

Page 15: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

The Gershgorin picture (linear case)

A = D + F , D = diag(di ), ρi =∑j

|fij |

d1

ρ1

d2

ρ2

d3

ρ3

Berkeley 15 / 37

Page 16: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Gershgorin (+ε)

Write A = D + F , D = diag(d1, . . . , dn). Gershgorin disks are:

Gi =

z ∈ C : |z − di | ≤∑j

|fij |

.

Useful facts:

Spectrum of A lies in⋃m

i=1 Gi⋃i∈I Gi disjoint from other disks =⇒ contains |I| eigenvalues.

Pf:A− zI strictly diagonally dominant outside

⋃mi=1 Gi .

Eigenvalues of D − sF , 0 ≤ s ≤ 1, are continuous.

Berkeley 16 / 37

Page 17: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Nonlinear Gershgorin

Write T (z) = D(z) + F (z). Gershgorin regions are

Gi =

z ∈ C : |di (z)| ≤∑j

|fij(z)|

.

Useful facts:

Spectrum of T lies in⋃m

i=1 Gi

Bdd connected component of⋃m

i=1 Gi strictly in Ω=⇒ same number of eigs of D and T in component=⇒ at least one eig per component of Gi involved

Pf: Strict diag dominance test + continuity of eigs

Berkeley 17 / 37

Page 18: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Mini-example: Counting contributions

G12G1

2 G11

T (z) =

z 1 00 z2 − 1 0.50 0 1

.

Berkeley 18 / 37

Page 19: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Mini-example: Domain boundaries

G11 G1

2

T (z) =

[z − 0.2

√z + 1 −1

0.4√z 1

]Ω = C− (−∞, 0]

det(D(z)) =(√z − 0.1− i

√0.99)

(√z − 0.1 + i

√0.99)

det(T (z)) =(√z + 0.1− i

√0.99)

(√z + 0.1 + i

√0.99)

D has two eigenvalues in Ω;T hides both eigenvalues behind a branch cut.

Berkeley 19 / 37

Page 20: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Example I: Hadeler

T (z) = (ez − 1)B + z2A− αI , A,B ∈ R8×8

−20 −15 −10 −5 0 5 10 15 20−20

−15

−10

−5

0

5

10

15

20

Berkeley 20 / 37

Page 21: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Comparison to simplified problem

Bauer-Fike idea: apply a similarity!

T (z) = (ez − 1)B + z2A− αI

T (z) = UTT (z)U

= (ez − 1)DB + z2I − αE= D(z)− αE

Gi = z : |βi (ez − 1) + z2| < ρi.

Berkeley 21 / 37

Page 22: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Gershgorin regions

−20 −15 −10 −5 0 5 10 15 20−20

−15

−10

−5

0

5

10

15

20

Berkeley 22 / 37

Page 23: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

A different comparison

Approximate ez − 1 by a Chebyshev interpolant:

T (z) = (ez − 1)B + z2A− αIT (z) = q(z)B + z2A− α

T (z) = T (z) + r(z)B

Linearize T and transform both:

T (z) 7→ DC − zI

T (z) 7→ DC − zI + r(z)E

Restrict to Ωε = z : |r(z)| < ε:

Gi ⊂ Gi = z : |z − µi | < ρiε, ρi =∑j

|eij |

Berkeley 23 / 37

Page 24: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Spectrum of T

−10 −8 −6 −4 −2 0 2 4 6 8 10−10

−8

−6

−4

−2

0

2

4

6

8

10

Berkeley 24 / 37

Page 25: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Gi for ε < 10−10

−10 −8 −6 −4 −2 0 2 4 6 8 10−10

−8

−6

−4

−2

0

2

4

6

8

10

Berkeley 25 / 37

Page 26: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Gi for ε = 0.1

−10 −8 −6 −4 −2 0 2 4 6 8 10−10

−8

−6

−4

−2

0

2

4

6

8

10

Berkeley 25 / 37

Page 27: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Gi for ε = 1.6

−10 −8 −6 −4 −2 0 2 4 6 8 10−10

−8

−6

−4

−2

0

2

4

6

8

10

Berkeley 25 / 37

Page 28: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Example II: Resonance problem

V0

a b

ψ(0) = 0(− d2

dx2+ V − λ

)ψ = 0 on (0, b),

ψ′(b) = i√λψ(b),

Berkeley 26 / 37

Page 29: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Reduction via shooting

V0

a b

R0a(λ) Rab(λ)

ψ(0) = 0,

R0a(λ)

[ψ(0)ψ′(0)

]=

[ψ(a)ψ′(a)

],

Rab(λ)

[ψ(b)ψ′(b)

]=

[ψ(b)ψ′(b)

],

ψ′(b) = i√λψ(b)

Berkeley 27 / 37

Page 30: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Reduction via shooting

First-order form:

du

dx=

[0 1

V − λ 0

]u, where u(x) ≡

[ψ(x)ψ′(x)

].

On region (c , d) where V is constant:

u(d) = Rcd(λ)u(c), Rcd(λ) = exp

((d − c)

[0 1

V − λ 0

])Reduce resonance problem to 6D NEP:

T (λ)uall ≡

R0a(λ) −I 0

0 Rab(λ) −I[1 00 0

]0

[0 0

−i√λ 1

]u(0)u(a)u(b)

= 0.

Berkeley 28 / 37

Page 31: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Expansion via rational approximation

Consider the equation ([A BC D

]− λI

)[uv

]= 0

Partial Gaussian elimination gives the spectral Schur complement(A− λI − B(D − λI )−1C

)u = 0

Idea: GivenT (λ) = A− λI − F (λ),

find a rational approximation F (λ) ≈ B(D − λI )−1C .

Berkeley 29 / 37

Page 32: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Expansion via rational approximation

u(0)u(a)u(b)

...

× = 0

Berkeley 30 / 37

Page 33: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Analyzing the expanded system

T (z) is a Schur complement in K − zM

So Λ(T ) is easy to compute.

Or: think T (z) is a Schur complement in K − zM + E (z)

Compare T (z) to T (z) or compare K − zM + E (z) to K − zM

Berkeley 31 / 37

Page 34: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Analyzing the expanded system

Q: Can we find all eigs in a region not missing anything?

Concrete plan (ε = 10−8)

T = shooting system

T = rational approximation

Find region D with boundary Γ s.t.

D ⊂ Ωε (i.e. ‖T − T‖ < ε on D)Γ does not intersect Λε(T )

=⇒ Same eigenvalue counts for T , T

=⇒ Eigs of T in components of Λε(T )

Converse holds if D ⊂ Ωε/2

Can refine eigs of T in D via Newton.

Berkeley 32 / 37

Page 35: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Resonance approximation

−50 0 50 100 150 200 250 300 350 400−50

−40

−30

−20

−10

0

10

20

30

40

50

−10

−10

−10

−10

−10

−8

−8

−8

−8

−6

−6

−6

−6

−4

−4

−2

−2

0

0

0

Berkeley 33 / 37

Page 36: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Resonance approximation

−10 −8 −6 −4 −2 0 2 4 6 8 10−5

−4

−3

−2

−1

0

1

2

−10

−10

−8

−8

−6

−6

−4

−4

−2

−2

−2

0

0

0

0

Berkeley 33 / 37

Page 37: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Example III: Bounding dynamics

DDE model (of a laser with feedback)

u = Au(t) + Bu(t − 1).

Solution with u(0+) = u0 and u(t) = φ(t) on [−1, 0):

u(t) = Ψ(t)u0 +

∫ 1

0Ψ(t − s)Bφ(s − t) ds

where Ψ(t) is a fundamental matrix for “shock” solutions.

Berkeley 34 / 37

Page 38: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Representing Ψ(t)

Associated nonlinear eigenvalue problem involves

T (z) = zI − A− Be−z

Assume all eigs in left half plane; via inverse Laplace transform,

Ψ(t) =1

2πi

∫ΓT (z)−1ezt dz .

for contour Γ right of the spectrum.

Berkeley 35 / 37

Page 39: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Bounding pseudospectra =⇒ bounding dynamics

−10 −8 −6 −4 −2 0 2 4 6 8 10

−60

−40

−20

0

20

40

60

0 1 2 3 4 5 6 7 8 9 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Bound fundamental solution Ψ via

‖Ψ(t)‖ =

∥∥∥∥ 1

2πi

∫ΓT (z)−1ezt dz

∥∥∥∥ ≤ 1

∫Γ‖T (z)−1‖|ezt ||dz |.

Berkeley 36 / 37

Page 40: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

For more

Localization theorems for nonlinear eigenvalues.David Bindel and Amanda Hood, SIAM Review 57(4), Dec 2015

Pseudospectral bounds on transient growth for higher order and constantdelay differential equations.Amanda Hood and David Bindel, submitted to SIMAXarXiv:1611.05130, Nov 2016

Berkeley 37 / 37

Page 41: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Trailers!

Application

Analysis Computation

Berkeley 37 / 37

Page 42: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Spectral Topic Modeling

C ≈ B

× A × BT

Berkeley 37 / 37

Page 43: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Music of the Microspheres

Berkeley 37 / 37

Page 44: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Fast Fingerprints for Power Systems

2426

27

28

Berkeley 37 / 37

Page 45: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Response Surfaces for Global Optimization

Berkeley 37 / 37

Page 46: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Graph Densities of States

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

20

40

60

80

100

120

140

160

180

200

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

50

100

150

200

250

300

350

400

450

500

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−200

0

200

400

600

800

1000

1200

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

50

100

150

200

250

300

350

400

450

500

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

50

100

150

200

250

300

350

400

450

500

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

10

20

30

40

50

60

70

80

90

100

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

2000

4000

6000

8000

10000

12000

14000

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

500

1000

1500

2000

2500

3000

3500

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

100

200

300

400

500

600

700

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

6x 10

4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

3

3.5

4x 10

5

Berkeley 37 / 37

Page 47: Nonlinear Eigenvalue Problems: Theory and Applicationsbindel/present/2017-01-berkeley.pdfTheory and Applications David Bindel1 Department of Computer Science Cornell University

Fin

http://www.cs.cornell.edu/~bindel

Berkeley 37 / 37