noise modeling at quantum level for multi-stack gate dielectric mosfets

42
UTA Noise and Reliability Laboratory 1 Noise Modeling at Quantum Level for Multi-Stack Gate Dielectric MOSFETs. Zeynep Çelik-Butler Industrial Liaisons: Ajit Shanware, Luigi Colombo, Keith Green, TI; Hsing-Huang Tseng, SEMATECH, Ania Zlotnicka, Freescale Students: Bigang Min, Siva Prasad Devireddy, Tanvir Morshed, Shahriar Rahman University of Texas at Arlington P. O. BOX 19072 Arlington, TX 76019

Upload: rhian

Post on 05-Feb-2016

57 views

Category:

Documents


0 download

DESCRIPTION

Noise Modeling at Quantum Level for Multi-Stack Gate Dielectric MOSFETs. Zeynep Çelik-Butler Industrial Liaisons: Ajit Shanware, Luigi Colombo, Keith Green, TI; Hsing-Huang Tseng, SEMATECH, Ania Zlotnicka, Freescale Students: Bigang Min, Siva Prasad Devireddy, Tanvir Morshed, Shahriar Rahman - PowerPoint PPT Presentation

TRANSCRIPT

UTA Noise and Reliability Laboratory 1

Noise Modeling at Quantum Level for Multi-Stack Gate Dielectric MOSFETs.

Zeynep Çelik-Butler

Industrial Liaisons: Ajit Shanware, Luigi Colombo, Keith Green, TI; Hsing-Huang Tseng, SEMATECH,

Ania Zlotnicka, Freescale

Students:Bigang Min, Siva Prasad Devireddy, Tanvir

Morshed, Shahriar RahmanUniversity of Texas at Arlington

P. O. BOX 19072Arlington, TX 76019

UTA Noise and Reliability Laboratory 2

Outline

Noise Modeling Unified Flicker Noise Model Multi-Stack Unified Noise Model (MSUN)

Experimental Verification Metal-Gated HfO2/SiO2 NMOSFETs – different interfacial layer processing Poly-Gated HfSiON/SiON NMOSFETs – variable interfacial layer thickness

Conclusions and Future Work

UTA Noise and Reliability Laboratory 3

Unified Flicker Noise Model*

Based on correlated number and mobility fluctuations theory.

Equi-energy tunneling process. Traps in the gate dielectric trap/de-trap channel carriers Trapping/de-trapping phenomenon causes fluctuations in

the carrier number. Fluctuations in carrier mobility due to remote Coulomb

scattering from trapped charge. Uniform distribution of traps in the gate dielectric with

respect to distance and energy level.

*K. K. Hung, P. K. Ko, C. Hu, Y. C. Cheng, “A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors,” IEEE Trans. Electron Devices, vol. 37, pp.654-665, 1990.

UTA Noise and Reliability Laboratory 4

Physical Mechanism for Noise

Channel carriers tunnel back and forth from the traps in the gate oxide causing fluctuations in the number of carriers. By virtue of Coulomb scattering from oxide trapped charges there are fluctuations in carrier mobility that cause additional noise in correlation with the carrier number fluctuations.

Lz

x

yW SiO2 Tox

Source Drain

Substrate

Traps

Carriers

K. K. Hung, P. K. Ko, C. Hu, Y. C. Cheng, “A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors,” IEEE Trans. Electron Devices, vol. 37, pp.654-665, 1990.

UTA Noise and Reliability Laboratory 5

Unified Flicker Noise Model Expressions

mh

24

K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng IEEE Trans. Electron Devices, vol. 37, pp.654-665,1990 teffsc

dI

NNfWL

kTIS

d

22

)1

(

)exp(0 z

2*

2

2

2

22

00*

*0

2

2

..

2log

NN

NNOICNNOIBNOIA

LWf

LkTI

NNNOIC

NNNOIBNN

NNNOIA

LfC

IkTqS

L

LL

effEF

clmd

LLL

effEF

ox

effd

Id

BSIM Low Frequency Noise Model

UTA Noise and Reliability Laboratory 6

High-k Gate Stack Scenario

Lz

x

yW High-k

THK

TIL

Source Drain

Substrate Interfacial layer

Traps x

Carriers

y z

Channel carriers tunnel into the traps in high-k and interfacial layer causing fluctuations in carrier number and mobility in a correlated way.

The different trap profiles and various physical properties of high-k/interfacial layer materials like physical thicknesses, barrier heights etc. affect the 1/f noise.

The uniform dielectric trap density assumption does not hold.

UTA Noise and Reliability Laboratory 7

Multi-Stack Unified Noise Model (MSUN)

Based on correlated number and mobility fluctuations theory Equi-energy tunneling process Traps in the gate dielectric layers trap/de-trap channel carriers Trapping/de-trapping phenomenon causes fluctuations in the

carrier number Fluctuations in carrier mobility due to remote Coulomb

scattering from trapped charge Scalable with regards to the high-k/interfacial layer physical

thicknesses Takes different dielectric material properties into account Considers non-uniform distribution of traps in the

high-k/interfacial layer with respect to distance and energy level

UTA Noise and Reliability Laboratory 8

Typical Band Diagram for High-k Stack

Carrier tunneling probability into the gate dielectric is an exponentially decaying function with attenuation rates corresponding to the dielectric material.

NtIL0 – IL/Si interface trap density at intrinsic Fermi level

NtHK0 – HK/IL interface trap density at intrinsic Fermi level

THK

Ev

Efn

TIL

Ec

Ei

NtIL0

NtHK0

exp[-γHK(zTIL)]

exp(-γILz)

)exp()exp(0

zTTHKILHKILIL

)exp(0

zIL

UTA Noise and Reliability Laboratory 9

Trap Density Profile in SiO2

0 1.2Ei

Nt0

Nt0 exp(ξ(Efn-Ei))

0 z

Nt(Efn)

Nt(Efn) exp(ηz)

Z. Çelik-Butler, and T. Y. Hsiang, “Spectral dependence of 1/fγ noise on gate bias in n-MOSFETs,” Solid State Electron., vol. 30, pp. 419–423, 1987.

Nt0 is the trap density at the Si/SiO2 interface and intrinsic Fermi level. Trap density increases exponentially towards the band edges at a rate defined by parameter ξ.

Nt(Efn) is the trap density at the Si/SiO2

interface and quasi-Fermi level. Trap density increases exponentially into the gate dielectric.

Nt0 exp(ξ(Efn-Ei))=Nt(Efn)

])()(exp[),(0

zzTVqEENzENILILgILILifnILtILfntIL

])()(exp[),(0

zzTVqEENzENHKHKgHKHKifnHKtHKfntHK

UTA Noise and Reliability Laboratory 10

Modified Trap Profile by Energy Band Bending

The energy bands bend in both high-k and interfacial layers due to the applied gate voltage. Higher trap density towards the band edges means that the trap profile encountered by channel carriers at a particular location in the dielectric is altered due to band bending. This effect is reflected by the parameters λIL and λHK.

High-K

Ev

Ei

Interfacial Layer

Ec

Ef

NtIL0

NtHK0

])()(exp[),(0

zzTVqEENzENILILgILILifnILtILfntIL

])()(exp[),(0

zzTVqEENzENHKHKgHKHKifnHKtHKfntHK

Z. Çelik-Butler, and T. Y. Hsiang, “Spectral dependence of 1/fγ noise on gate bias in n-MOSFETs,” Solid State Electron., vol. 30, pp. 419–423, 1987.

UTA Noise and Reliability Laboratory 11

Trap Density in High-k Stack

])()(exp[),(0

zzTVqEENzENILILgILILifnILtILfntIL

])()(exp[),(0

zzTVqEENzENHKHKgHKHKifnHKtHKfntHK

Trap density for (0<z<TIL)

Trap density for (TIL<z<THK+TIL)

)exp(0

zIL

)exp()exp(0

zTTHKILHKILIL

UTA Noise and Reliability Laboratory 12

Total Noise

dEdydzzyxE

zyxEfxfzyxEN

dEdydzzyxE

zyxEfxfzyxENfxS

t

E

E

W TT

TtHKt

t

E

E

W T

ttILN

c

v

ILHK

IL

c

v

IL

t

),,,(1

),,,()1(),,,(4

),,,(1

),,,()1(),,,(4),(

220

220 0

Power spectral density of the mean square fluctuations in the number of occupied traps for high-k/interfacial layer stack

B. Min, S. P. Devireddy, Z. Çelik-Butler, A. Shanware, L. Colombo, K. Green, J. J. Chambers, M. R. Visokay, and A. L. P. Rotondaro, “Impact of interfacial layer on low-frequency noise of HfSiON dielectric MOSFETs,” IEEE Trans. Electron Devices, vol. 53, pp. 1459–1466, 2006.

Z. Çelik-Butler, “Different noise mechanisms in high-k dielectric gate stacks,” in Proc. SPIE—Noise and Fluctuations, pp. 177–184, 2005.

UTA Noise and Reliability Laboratory 13

MSUN Noise Model Simplification

ft(1-ft) ensures that only traps within few kT of Efn contribute to fluctuations.

Integral along the channel (x) approximated. The shape of the spectral density is modified from pure 1/f

through functional form of Nt. Contribution to fluctuations from the high-k dielectric layer is

much higher than that from the interfacial layer.

UTA Noise and Reliability Laboratory 14

MSUN Noise Model Expressions

xkTWX

duu

u

T

EEN

duu

uEEN

fxSILILHKHK

ILIL

HKHK

HKHK

ILIL ILIL

ILIL

t TT

TILHKILHK

ifnHKtHK

T

IL

ifnILtIL

N

4

1})exp{(

)](exp[

1

)](exp[

),()exp(

)exp(2

)(

)(

0

0

)exp(

2

)(

)(

0

0

0

0

0

0

After appropriate substitution of various parameters, the power spectral density of the mean square fluctuations can be written as

])([ILILgILILIL

TVq

])[(HKHKgHKHKHK

TVq HKHKHK

mh

24

ILILILm

h 2

4

Conduction Band Offset with Si

Tunneling Coefficients

UTA Noise and Reliability Laboratory 15

MSUN Model Expressions (con.)

xdxfxSL

fSL

II dd

02

),(1

)(

),())(

1(),(

2

fxSxNxW

IfxS

td Neffscd

I

Total noise power spectral density

Power spectral density for local current fluctuations

UTA Noise and Reliability Laboratory 16

Outline

Noise Modeling Unified Flicker Noise Model Multi-Stack Unified Noise Model (MSUN)

Experimental Verification Metal-Gated HfO2/SiO2 NMOSFETs – different interfacial layer processing Poly-Gated HfSiON/SiON NMOSFETs – variable interfacial layer thickness

Conclusions and Future Work

UTA Noise and Reliability Laboratory 17

Experimental Verification Split C-V and DC Measurements

• 10µm 10µm devices • 78K & 100K – 350K in steps of 25K (metal gate)• 172K – 300K (poly gate)

Noise and DC Measurements• Metal gate

• 0.165µm 10µm devices• 78K & 100K – 350K in steps of 25K

• Poly gate• (0.20-0.25)µm 10µm devices• 172K – 300K

Noise Modeling and Analysis• Unified Flicker Noise Model• Multi-Stack Unified Model

UTA Noise and Reliability Laboratory 18

Metal Gated HfO2/SiO2 MOSFETs

Gate Electrode

High-k IL Type IL Thickness

TaSiN27Å HfO2

(ALD)SRPO SiO2 10Å

TaSiN 27Å HfO2

(ALD)RCA SiO2 10Å

UTA Noise and Reliability Laboratory 19

Normalized Noise vs. Temperature

Normalized noise for the two process splits shows no clear dependence on temperature at all bias points.

Generally, the magnitude of 10Å SRPO device is lower.

Metal-Gated HfO2/SiO2

Temperature (K)

(SId

/ Id

2).

L.C

CE

T

2 (

F2 /

Hz

cm3) (V

g-V

t) = 0.3V

Vd = 50mV

10-26

10-25

50 100 150 200 250 300 350 400

10Å SRPO SiO2

10Å RCA SiO2

UTA Noise and Reliability Laboratory 20

Parameter Extraction

0.2

0.4

0.6

0.8

1

1.2

0.2 0.4 0.6 0.8 1 1.2 1.4

0.4

0.6

0.8

1

1.2

1.4

Fre

qu

en

cy

E

xp

on

en

t

Vg (V)

10Å SRPO SiO2

10Å RCA SiO2

W/L = 10m/0.165mV

d = 50mV

W/L = 10m/0.165mV

d = 50mV

The frequency exponent for the 1-100Hz region is plotted against the applied gate bias. A straight line fit is made to the data from which ηHK ,λHK are extracted

])[(HKHKgHKHKHK

TVq

The dependence of noise powerspectral density on frequency mainly comes from the term,

)1( HKHK where,

Metal-Gated HfO2/SiO2

UTA Noise and Reliability Laboratory 21

Energy Dependence of Trap Density

2 1018

3 1018

0 0.2 0.4 0.6 0.8 1 1.2En

erg

y D

epen

den

ce o

f T

rap

Den

sity

Band Gap Energy (E)

NtHK0

exp(HK

(Efn

-Ei))

HK

= 0.1eV-1

NtHK0

=2x1018 cm-3eV-1

0.05eV

The trap density variation with respect to energy is represented as an exponentially varying function.

The energy interval swept by the quasi Fermi level for the temperature and the bias range considered in this work is 0.05eV.

Metal-Gated HfO2/SiO2

UTA Noise and Reliability Laboratory 22

MSUN Model

10-17

10-16

10-15

1 10

RCA SiO2 (1nm)

(Vg -V

t) = 0.7V

T = 275K

10-16

10-15

SRPO SiO2 (1nm)

(Vg-V

t) = 0.7V

T = 275K

SId

(A

2/H

z)

= -1.27x107 cm-1

= 4.68 eV-1

= 0.1 eV-1

= -0.85x107 cm-1

= 0.045 eV-1

= 0.1 eV-1

f (Hz)

10-17

10-16

10-15

10 100

RCA SiO2 (1nm)

(Vg -V

t) = 0.3V

T = 78K

10-16

10-15

SRPO SiO2 (1nm)

(Vg -V

t) = 0.3V

T = 78K

SId (A

2/Hz)

= -1.27x107 cm-1

= 4.68 eV-1

= 0.1 eV-1

= -0.85x107 cm-1

= 0.045 eV-1

= 0.1 eV-1

Nt

= 2.0x1018 cm3eV-1

c0 = 9.0x109 cm/Vs

Nt

= 4.0x1018 cm3eV-1

c0 = 9.0x109 cm/Vs

Nt

= 2.0x1018 cm3eV-1

c0 = 4.5x108 cm/Vs

Nt

= 2.0x1018 cm3eV-1

c0 = 6x108 cm/Vs

Metal-Gated HfO2/SiO2

UTA Noise and Reliability Laboratory 23

MSUN Model

10-16

10-15

0 0.2 0.4 0.6 0.8

T = 275KRCA SiO

2 (1nm)

10-16

10-15

T = 78KSRPO SiO

2 (1nm)

10-16

10-15

T = 275KSRPO SiO

2 (1nm)

SId

(A2/H

z)

(Vg-V

t) (V)

= -1.27x107 cm-1

= 4.68 eV-1

= 0.1 eV-1

= -0.85x107 cm-1

= 0.045 eV-1

= 0.1 eV-1

SId (A

2/Hz)

Nt

= 2.0x1018 cm3eV-1

c0 = 9.0x109 cm/Vs

Nt

= 2.0x1018 cm3eV-1

c0 = 4.5x108 cm/Vs

Nt

= 4.0x1018 cm3eV-1

c0 = 9.0x109 cm/Vs

Nt

= 2.0x1018 cm3eV-1

c0 = 6x108 cm/Vs

= -1.27x107 cm-1

= 4.68 eV-1

= 0.1 eV-1

10-16

10-15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T = 78KRCA SiO

2 (1nm)

= -0.85x107 cm-1

= 0.045 eV-1

= 0.1 eV-1

Metal-Gated HfO2/SiO2

UTA Noise and Reliability Laboratory 24

Effective Oxide Trap Density vs. Temperature

NtH

K0 (

cm

-3e

V-1)

c0 (c

mV

-1S-1)

1018

1019

109

1010

SRPO SiO2 (1nm)

1018

4 1018

2 108

4 108

6 108

50 100 150 200 250 300 350 400Temperature (K)

RCA SiO2 (1nm)

Nt0HK is constant for all temperatures and the non-uniformity in trap density is modeled by ηHK ,λHK

Metal-Gated HfO2/SiO2

MSUN Model

UTA Noise and Reliability Laboratory 25

Effective Oxide Trap Density vs. Temperature

The overall effective trap density (Nt) is extracted using the Unified Flicker Noise Model.

In general, the values tend to increase with a decrease in temperature.

This is not consistent with the

uniform trap density assumption

at the core of the model.

Temperature (K)

Nt (

cm

-3eV

-1)

1016

1017

1018

1019

50 100 150 200 250 300 350 400

10Å SRPO SiO2

10Å RCA SiO2

Metal-Gated HfO2/SiO2

Original Unified Noise Model

UTA Noise and Reliability Laboratory 26

Outline

Noise Modeling Unified Flicker Noise Model Multi-Stack Unified Noise Model (MSUN)

Experimental Verification Metal-Gated HfO2/SiO2 NMOSFETs – different interfacial layer processing Poly-Gated HfSiON/SiON NMOSFETs – variable interfacial layer thickness

Conclusions and Future Work

UTA Noise and Reliability Laboratory 27

Poly Gated HfSiON/SiON MOSFETs NMOS HfSiON with same high-k thickness (3.0 nm) and

different interfacial layers (IL)

Dielectrics

EOT (nm)

IL (nm)Length (μm)

Width (μm)

Variable temperature 1/f noise measurementhas been done.

HfSiON 1.24 0.8 0.20 10

HfSiON1.33 1.0 0.20,0.25 10

HfSiON1.46 1.5 0.20,0.25 10

HfSiON1.66 1.8

0.14 ~ 0.25

10

UTA Noise and Reliability Laboratory 28

Temperature Dependence of Low Frequency Noise Spectral Density

•Normalized current noise spectral density did not show any noticeable dependence on temperature.

•The observed noise behavior is not affected by any temperature sensitive process.

•Remote optical phonon scattering may not have a significant impact on low frequency noise characteristics although it has a profound effect on mobility behavior (presented last year).

CE

OT

2(S

Id/I

d

2)

(F

2/H

z-cm

4)

EOT=1.24nm

EOT=1.46nm

10-21

10-20

10-19

10-18

10-21

10-20

10-19

160 180 200 220 240 260 280 300 320

Vg-V

t=0.2V

Vg-V

t=0.3V

Vg-V

t=0.4V

Vg-V

t=0.5V

Vg-V

t=0.6V

Vg-V

t=0.7V

Temperature (K)

Poly-Gated HfSiON / SiON

UTA Noise and Reliability Laboratory 29

Low Frequency Noise Mechanism

2

2 2

h eff dId

d d

q VS

I fL I

2 22

(1 / ) ( )Id meff ox d m Vfb

d d

S gC I g S

I I

Correlated Number and Mobility Fluctuation Model1:

Hooge’s Bulk Mobility Fluctuation Model9:

Correlated number and surface mobility fluctuation mechanism was observed to dominate for devices with different interfacial layer thicknesses in the experimental temperature range

9 F.N. Hooge. IEEE Trans. Electron Devices 41. 1926 (1994).

10-10

10-9

10-8

100

101

102

10-5 10-4 10-3

EOT=1.66 nm L=0.25m T=270K

(gm

/Id ) 2 (V-2)

Id(A)

SId

/Id

2 (H

z-1) 10-9

10-8

10-7

100

101

102

EOT=1.24 nm L=0.20m T=172K

Poly-Gated HfSiON / SiON

UTA Noise and Reliability Laboratory 30

The MSUN Model

),()1(),(2

fxSNN

IfxS

td Nd

I

According to original Unified Model, current noise spectral density can be shown as

Considering tunneling through a double step barrier, we can show

The final expression of Sid(A2/Hz) using the new model for high-k gate devices becomes

dzzzT

VqEENxkTW

dzzzT

VqEENxkTWS

HK

HKHK

TT

THK

HKHKifnHKtHK

IL

ILIL

T

IL

ILILifnILtILN

HKIL

IL

IL

t

220

220 0

1])(exp[4

1])(exp[4

(1)

(2)

(3)

dx

duu

u

f

EEN

duu

u

f

EEN

xNWL

kTIfS

HKHKHK

HK

HKHKHKHKHK

HKHKHKHKHKHKHKHKHKHK

ILILIL

IL

ILILILILIL

ILILILILILILILILILIL

dTf

f HK

HK

TVqHK

TVqTVqHKHK

ifnHKtHK

Tf

f IL

IL

TVqIL

TVqTVqILIL

ifnILtIL

L

effd

I

)exp(2

2 2

/)/(

/)/(1/)/(0

0

)exp(2

2 2

/)/(

/)/(1/)/(0

0

0

2

2

2

0

0

0

0

1)2(

)](exp[

1)2(

)](exp[

)(

14)(

UTA Noise and Reliability Laboratory 31

MSUN Model Parameter List

High-k dielectric layer parameters Interfacial layer parameters

NtHK0 Mid-gap trap density at the IL/high-k interface

NtIL0 Mid-gap trap density at the substrate/IL interface

μc0 Mobility fluctuation coefficient μc0 Mobility fluctuation coefficient

λHK Band bending parameter corresponding to the high-k layer

λIL Band bending parameter corresponding to the IL

ηHK Spatial trap distribution parameter for the high-k layer

ηIL Spatial trap distribution parameter for the interfacial layer

ξHK Parameter for the energy distribution of traps in the high-k dielectric layer

ξIL Parameter for the energy distribution of traps in the interfacial layer

• If the published trap density values are chosen for NtIL0 and NtHK0 the noise contribution of the interfacial layer is insignificant when compared to the total device noise. The interfacial layer parameters do not play any effective role in the data fitting• For the high-k layer, as discussed earlier, λHK= ξHK, so the number of effective fitting parameters reduce to 4.

UTA Noise and Reliability Laboratory 32

Extracted ξ, λ, η

From Eq (3) we can show

α=

From a linear fit of α as a function of Vg for individual devices at all temperatures, the energy dependence parameters ξ, λ and the spatial distribution parameter η were extracted. The extracted values are shown on the plots.

Poly-Gated HfSiON / SiON

HKHKHKHKHK TVq /)/(1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

EOT=1.24nm

HK

=HK

=1.53 eV -1

HK

=-7.99x10 6 cm -1

EOT=1.33nm

HK

=HK

=-0.4056 eV -1

HK

=-5.38x10 6 cm -1

0

0.2

0.4

0.6

0.8

1

1.2

0.4 0.6 0.8 1 1.2

EOT=1.46nm

HK

=HK

=-0.455 eV -1

HK

=-4.67x10 6 cm-1

0.4 0.6 0.8 1 1.2 1.4

HK

=HK

=-0.947 eV -1

HK

=-3.53x10 6 cm -1

EOT=1.66nm

Vg (V)

Fre

qu

en

cy

ex

po

nen

t (

)

UTA Noise and Reliability Laboratory 33

Data Vs MSUN Model Predictions for LF Noise Spectra

The calculated current noise spectral density SId is compared to the data for devices withfour different IL thicknesses and in the experimental temperature range of 172K-300K.

10 -17

10 -16

10 -15

1 10 10 0

Fr eq ue nc y (H z)

Nt0

=1.7x1019

cm-3

eV-1

c0

=5x1010

cm/Vs10-18

10-17

10-16

Nt0

=1.3x1019

cm-3

eV-1

c0

=5x1010

cm/Vs

Frequency (Hz)

SId (A

2/Hz)

SId (

A2 /H

z)

HK

=HK

=1.53 eV -1

HK

=-7.99x106 cm-1

T=172K EOT=1.24nm Vg=0.96V

T=172K EOT=1.33nm Vg=0.94V

T=300K EOT=1.24nm Vg=0.58V

T=300K EOT=1.33nm Vg=0.67V

Nt0HK

=3.0x1019

cm-3

eV-1

c0

=5x1010

cm/Vs

NtHK0

=1.3x1019

cm-3

eV-1

c0

=5x1010

cm/Vs

Nt0HK

=1.7x1019

cm-3

eV-1

c0

=5x1010

cm/Vs

10 -17

10 -16

10 -15

1 10 100

Nt0HK

=6.4x1019

cm-3

eV-1

c0

=1.1x1010

cm/Vs

10-17

10-16

10-15

10 100

HK

=-5.38x106 cm-1

HK

=HK

=-0.4056 eV -1

NtHK0

NtHK0

NtHK0

Poly-Gated HfSiON / SiON

UTA Noise and Reliability Laboratory 34

Data Vs MSUN Model Predictions for LF Noise Spectra

Excellent agreement between data and model predictions was observed irrespective of IL thickness at all temperatures.

Poly-Gated HfSiON / SiON

10 -17

10 -16

10 -15

1 10 100

Nt0

=2.6x1019

cm-3

eV-1

c0

=5x10 10 cm/Vs 10 -18

10 -17

10 -16

10 100

Nt0

=6.0x1018

cm-3

eV-1

c0

=1.75x1010

cm/Vs

Frequency (Hz)

SId (A

2/Hz)S

Id (

A2 /H

z)

HK

=HK

=-0.947 eV -1

HK

=-3.53x106 cm-1

T=300K EOT=1.66nm Vg=1.13V

T=172K EOT=1.46nm Vg=0.74V

T=172K EOT=1.66nm Vg=1.01V

T=300K EOT=1.46nm Vg=0.76V

Nt0HK

=6.0x1018

cm-3

eV-1

c0

=1.75x1010

cm/Vs

Nt0HK

=2.6x1019

cm-3

eV-1

c0

=5x1010

cm/Vs

10 -17

10 -16

Nt0HK

=3.8x10 19 cm -3 eV -1

c0

=5x1010

cm/Vs

10 -17

10 -16

Nt0HK

=1.6x1019

cm-3

eV-1

c0

=2.5x1010

cm/Vs

HK

=HK

=-0.455 eV -1

HK

=-4.67x106 cm-1

NtHK0

NtHK0

NtHK0

NtHK0

UTA Noise and Reliability Laboratory 35

Data Vs MSUN Model Predictions for LF Noise Spectra

10-21

10-20

10-19

10-18

10-17

10-16

10-15

1 10 100 1000

SId Total

SId high-

SId ILS

Id(A

2 /Hz)

Frequency (Hz)

EOT=1.66nm

A special phenomena was observed for the devices with the thickest gate oxide.

The higher frequency components in the device noise are contributed by traps closer to the interface, where as the traps further away contribute to the lower frequency components.

For the devices with TIL=1.8nm, the characteristic corner frequency was calculated to be fc2~ 33Hz. Below 33 Hz the noise was contributed by the high-k layer. Above this limit noise contribution was primarily from the IL layer.

Frequency (Hz)

SId (A2/Hz)

)2(1 02 HKcf

))exp(2(1 01 HKHKHKc Tf

fα=0

α~1

α~2

UTA Noise and Reliability Laboratory 36

Data Vs MSUN Model Predictions for Bias Dependence

• The fit was good in the bias range of moderate inversion to strong inversion, for devices with all different IL thick-nesses in the experimental temperature range.

Poly-Gated HfSiON / SiON(V

g-V

t ) (V)

SId (

A2 /H

z)

10 -16

10 -15

==1.53 eV-1

=-7.99x106 cm-1

Nt0

=1.9x1019

cm-3

eV-1

c0

=2.75x1010 cm/Vs

EOT=1.28nm T=230K

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

==-0.947 eV-1

=-3.53x106 cm-1

Nt0

=2.3x1019 cm-3 eV -1

c0

=5.0x1010 cm/Vs

EOT =1.66nm T =188K

10-14

Nt0HK

=1.9x1019

cm-3 eV

-1

c0

=2.75x1010

cm/Vs

EOT=1.24nm T=230K

HK

=HK

=1.53 eV -1

HK

=-7.99x106 cm-1

HK

=HK

=-0.947 eV -1

HK

=-3.53x106 cm-1

Nt0HK

=2.3x1019

cm-3 eV

-1

c0

=5.0x1010

cm/Vs

EOT=1.66nm T=188K10 -16

10 -15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

HK

=HK

=-0.455 eV-1

HK

=-4.67x106 cm-1

Nt0HK

=1.9x1019 cm-3 eV-1

c0

=5.0x1010 cm/Vs

EOT=1.46nm T=261K

Nt0HK

=6.4x1019

cm-3

eV-1

c0

=1.1x1010 cm/Vs

EOT=1.33nm T=172K

HK

=HK

=-0.4056 eV-1

HK

=-5.38x106 cm

-1

NtHK0

NtHK0 N

tHK0

NtHK0

UTA Noise and Reliability Laboratory 37

Extracted MSUN Model Parameters

EOT=1.28nm, λHK=ξHK =1.538eV-1, ηHK =-7.99x10 6 cm-1 EOT=1.33nm, λHK=ξHK =-0.4056eV-1, ηHK=-5.38x10 6 cm-1

T(K) NtHK0(cm-3 eV-1) μc0(cm/Vs) T(K) NtHK0(cm-3 eV-1) μc0(cm/Vs)

172 1.7x1019 5.0x1010 172 6.4x1019 1.1x1010

188 1.8x1019 5.0x1010 188 6.1x1019 3.0x1010

207 1.7x1019 3.0x1010 207 5.6x1019 4.5x1010

230 1.9x1019 2.75x1010 230 5.9x1019 3.5x1010

261 1.4x1019 5.0x1010 261 3.6x1019 1.7x1010

300 1.3x1019 5.0x1010 300 3.0x1019 5.0x1010

EOT=1.46nm, λHK=ξ HK = -0.455eV-1, η HK=-4.67x10 6 cm-1 EOT=1.66nm, λHK=ξ HK = -0.947eV-1, η HK=-3.53x10 6 cm-1

T(K) NtHK0(cm-3 eV-1) μc0(cm/Vs) T(K) NtHK0(cm-3 eV-1) μc0(cm/Vs)

172 3.8x1019 5.0x1010 172 2.6x1019 5.0x1010

188 3.1x1019 5.0x1010 188 2.3x1019 5.0x1010

207 2.4x1019 5.0x1010 207 1.4x1019 7.5x1010

230 1.5x1019 2.25x1010 230 1.6x1019 5.0x1010

261 1.9x1019 5.0x1010 250 1.6x1019 5.0x1010

300 1.6x1019 2.5x1010 270 9.0x1018 3.0x1010

300 6.0x1018 1.75x1010Poly-Gated HfSiON / SiON

UTA Noise and Reliability Laboratory 38

Extracted NtHK0

•NtHK0 values extracted using the MSUN Model

•Shows consistency over the whole experimental temperature range•Shows consistency with devices having different IL thickness

Poly-Gated HfSiON / SiON1017

1018

1019

1020

1021

1022

160 180 200 220 240 260 280 300 320

EOT=1.66nmEOT=1.46nmEOT=1.33nmEOT=1.28nm

Temperature (K)

NtH

K0 (

cm

-3 e

V-1

)

UTA Noise and Reliability Laboratory 39

Dependence of NtHK on Energy

The active trap densities asprobed by the quasi-Fermienergy and it’s excursion is shown for devices with different IL thicknesses.

As the excursion range is comparatively small, the calculated trap density out-side the highlighted regionmay not correctly representactual device characteristics.

At 300K, the active trap density was observed to beIL dependent. The thinnestgate oxide devices showedhighest active trap density.

Poly-Gated HfSiON / SiON

EOT=1.46nm

EOT=1.24nm

EOT=1.33nm

Eg(eV)

EOT=1.66nmNtH

K=

NtH

K0e

xp(

|E-E

i|) (

cm

-3 e

V-1

)

1019

1020

Nt0

=1.3x1019

cm-3

eV-1

c0

=5x1010

cm/Vs

==1.53 eV-1

=-7.99x106 cm-1

Fermi energy sweep range

(3.0x1019 ~ 3.4x1019)cm-3eV-1

EV

EC

1019

1020

Fermi energy sweep range

(2.33x1019

~ 2.39x1019

)cm-3

eV-1

Nt0

=3.0x1019 cm-3 eV-1

c0

=5x1010 cm/Vs

==-0.4056 eV-1

=-5.38x106 cm-1

EV E

C

2 1018

1019

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

EV

EC

==-0.947 eV-1

=-3.53x106 cm-1

Nt0

=6.0x1018 cm-3 eV-1

c0

=1.75x1010 cm/Vs

Fermi energy sweep range

(3.37x10 18 ~ 3.54x10 18)cm -3eV -1

2 1019 2 1019

Nt0HK

=1.3x1019 cm -3 eV -1

c0

=5x1010 cm/Vs

HK

=HK

=1.53 eV -1

HK

=-7.99x106 cm-1

Nt0HK

=3.0x1019

cm-3

eV-1

c0

=5x1010

cm/Vs

HK=

HK=-0.4056 eV-1

HK

=-5.38x106 cm -1

HK

=HK

=-0.947 eV-1

HK

=-3.53x106 cm -1

Nt0HK

=6.0x1018 cm -3 eV -1

c0

=1.75x1010 cm/Vs

5 1018

4 1019

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

EV

EC

HK

=HK

=-0.455 eV-1

HK

=-4.67x10 6 cm-1

Nt0 HK

=1.60x1019

cm-3

eV-1

c0

=2.5x1010

cm/Vs

Fermi energy sweep range

(1.31x1019

~ 1.34x1019

)cm-3

eV-1

NtHK0

NtHK0

NtHK0

NtHK0

UTA Noise and Reliability Laboratory 40

Results I

The temperature dependence of extracted trap density is inconsistent with the core model assumption.

Multi-Stack Unified Noise (MSUN) model is proposed to predict noise in high-k/interfacial layer MOSFETs.

It is scalable with respect to HK/IL thicknesses, temperature and applied bias.

It accounts for the material properties of constituent dielectric materials and the non-uniform dielectric trap density profile with respect to energy and location in dielectric.

Four model parameters Mid-gap trap density at the IL/high-k interface Parameter for the energy distribution of traps in the high-k dielectric layer Spatial trap distribution parameter for the high-k layer Mobility fluctuation coefficient

UTA Noise and Reliability Laboratory 41

Results II

• The model is in excellent agreement with the experimental data down to cryogenic temperatures. Metal-Gated HfO2/SiO2 NMOSFETs – different interfacial layer

processing Poly-Gated HfSiON/SiON NMOSFETs – variable interfacial layer

thickness• Metal-Gated HfSiON/SiON MOSFETs – different nitridation techniques

UTA Noise and Reliability Laboratory 42

Acknowledgements

Thanks to

Luigi Colombo, Texas InstrumentsKeith Green, Texas InstrumentsAjit Shanware, Texas InstrumentsHsing-Huang Tseng, FreescaleAnia Zlotnicka, Freescale Manuel Quevedo-Lopez, Texas Instruments / SEMATECH