new generation gc-hrtofms “accutof gcv 4g” gcv 4g automatic isolation valve gas clean or change...

40
New generation GC-HRTOFMS “AccuTOF GCv 4G”

Upload: duongkiet

Post on 15-Mar-2018

222 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

New generation GC-HRTOFMS

“AccuTOF GCv 4G”

Page 2: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Outline • JEOL Mass Spectrometers

• AccuTOF GCv 4G – Overview

– Ion transfer and analyzer schematic

– Standard ion source

– EI/FI/FD combination ion source

– Direct Probes

– Specifications

• Applications – GC/MS

– Direct MS

– Pyrolysis GC/MS

– Comprehensive 2DGC/MS

• Summary

JMS-T100GCV AccuTOF GCV 4G

Page 3: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

JEOL Mass spectrometers

TOFMS series GC-MS series

JMS-800D UltraFOCUS, GC-HRMS for Dioxin analysis

JMS-Q1050GC, GC-QMS

JMS-S3000 MALDI-SpiralTOF

JMS-T100LP AccuTOF-DART

JMS-T100GCV AccuTOF GCV 4G

Page 4: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

AccuTOF GCv 4G

Automatic isolation valve clean or change sources without

breaking analyzer vacuum Direct inlet flange

for both GC/MS

and Direct MS

Thermally-stabilized flight

tube for enhanced stability

All pumps contained

in chassis Turbo pump x 2

Rough pump x 2

Gas Chromatograph Agilent 7890A

High-resolution TOF,

ADC-based 4 GHz Digitizer,

4 orders dynamic range

Reservoir for a Calibrant

Page 5: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Ion Transfer and Analyzer Schematic

Rough

pump

Ion source and

ion transfer

Rough

pump

Turbo

pump

Isolation valve

Analyzer

Turbo

pump

Detector

• Low-acceleration ion transfer system removes

99% of helium carrier gas ions for longer MCP

lifetime.

• Auto tuning for all ionization modes.

• JEOL’s orthogonal acceleration-TOFMS

system provides a higher duty cycle for

continuous beam ion sources.

High sensitivity

• Special focusing by 2-stage acceleration

system.

• Energy focusing by single stage reflectron.

High mass resolution

Page 6: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Available Ionization Methods on the

AccuTOF GCv 4G • Hard Ionization:

Good for structural analysis using the

generated fragment ions.

– EI (Electron Ionization)

– DEI (Desorption EI) using DEP

• Soft Ionization: Provides molecular weight information.

– CI (Chemical Ionization)

– DCI (Desorption CI) using DEP

– FI/FD (Field Ionization/

Field Desorption)

The history of ionizations

1921 A. J. Dempster, EI (Electron Ionization)

1950 E. W. Müller, FI (Field Ionization)

1956 F. P. Lossing, PI (Photo Ionization)

1963 R. E. Honig, LD (Laser Desorption)

1966 M. S. B. Munson,

CI (Chemical Ionization)

1969 H. D. Beckey, FD (Field Desorption)

1977 D. F. Hunt,

DCI (Desorption Chemical Ionization)

1981 M. Barber,

FAB(Fast Atom Bombardment)

1984 J. B. Fenn, ESI (Electrospray Ionization)

1987 F. Hillenkamp, K. Tanaka,

MALDI (Matrix-assisted Laser Desorption

Ionization)

2005 R.B. Cody, J.A. Laramée,

DART (Direct Analysis in Real Time)

Page 7: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Standard EI ion source

EI socket chamber

CI socket chamber

• Easy to remove and clean

• Easy to replace the filament

• Quickly switch between EI and CI

Page 8: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

EI/FI/FD combination ion source

• The only EI/FI/FD combination ion source available on the market

• Three measurement modes: GC/EI, GC/FI and FD

• Quickly switch between EI, FI and FD modes without breaking vacuum

Cathode for FI/FD

Filament for EI

Lens unit

Page 9: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Direct Probes Glass tube

Direct Inlet Probe (DIP) • EI and CI

• For insoluble compounds and solids

Direct Exposure Probe (DEP) • DEI and DCI

• For thermolabile compounds

Field Desorption Probe (FDP) • GC/FI and FD

• It is suited to Hydrocarbon analysis

Liquid Injection FD Probe (LIFDI) • FD

• Quick sampling

Pt filament

Carbon emitter Carbon emitter

Capillary tube

Page 10: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

AccuTOF GCv 4G Spec

State-of-the-arts GC-HRTOFMS

Reflectron Time-of-Flight MS system

Usable as both GC/MS and Direct MS

Resolving power: R≥8,000 (FWHM) @ m/z 617

Mass range: m/z 4 – 5,000

Mass accuracy: 1.5 mDa or 4 ppm (RMS)

Sensitivity: S/N ≥ 100 for 1pg OFN (GC/EI)

Acquisition rate: up to 50 spectra/s

Auto tuning for all ionization modes

Page 11: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

GC/MS Applications

Page 12: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Impurity Analysis Using GC/EI and

Ammonia CI

Mode No. Obs. m/z Error

(mDa) Formula

EI+ 1 31.0187 0.3 CH3O

2 45.0346 0.6 C2H5O

3 73.0290 0.0 C3H5O2

4 87.0444 -0.2 C4H7O2

5 104.0471 -0.2 C4H8O3

CI+ 6 124.0987 1.3 C4H14NO3

7 210.1336 -0.6 C8H20NO5

EI+

CI+

Unknown

1

2

3

4

5

6

7 [M+NH4]

+

2-Methoxyethanol

Diethylene glycol

monomethyester

Diethylene glycol Ethylene glycol

1,4-Dioxane-2-ol

Triethylene glycol (main component)

Suggested impurity

unknown component

m/z 73

m/z 87

m/z 104

m/z 45

m/z 31

Triethylene glycol

Page 13: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Liquid Crystal Analysis Using GC/EI

and Isobutane CI

Unknown

Mode No. Obs. m/z Error

(mDa) Formula

EI+ 1 69.0715 1.1 C5H9

2 111.1187 1.3 C8H15

3 195.0689 1.4 C13H9NO

4 333.1743 1.4 C22H23NO2

CI+ 5 334.1802 -0.5 C22H24NO2

1 2

3

5 [M+H]+

GC/EI

TIC

GC/CI

TIC

EI+

CI+

Calculator LCD

Suggested unknown component

m/z 69

m/z 111

m/z 195

4

Page 14: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

UV-Curing Adhesive Analysis Using

GC/EI and FI

m/z

UV-curing

adhesive

Mode No. Obs. m/z Error

(mDa)

Formula

EI+ 1 119.0853 -0.8 C9H11

2 147.0801 -0.9 C10H11O

3 201.0475 0.6 C12H10OP

FI+ 4 348.1283 0.4 C22H21O2P

1

2

3

4, [M]+・

EI+

FI+

Unknown GC/EI TIC

GC/FI TIC

m/z 119

m/z 147

m/z 201

Suggested unknown component

m/z

Time (min)

Time (min)

No molecule ion

Page 15: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Organic Fluorine Compounds Analysis

Using GC/EI and FI Hydrofluorocarbon ether

Trifluoroethanol

EI+

FI+

EI+

FI+

m/z 150.0107

[M]+・, C3H3F5O

(Error: 0.3 mDa)

m/z 149

[M-H]+

m/z 100.0142

[M]+・, C2H3F3O

(Error: 0.6 mDa)

m/z 100

[M]+・

m/z

Time (min)

m/z

m/z

m/z

m/z 131

[M-F]+

m/z 69

[CF3]+

m/z 69

[CF3]+

Page 16: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Diesel Oil Analysis Using GC/EI and FI TIC[1]; / EI+(eiFi) / EI+(eifi)_DieselOil_1023_003 0.2uL Inj, Split200

0

2

4

6

8

10

12

14

16

Intensity (17885739)x106

9.819.22

8.61 10.89

4.907.96 11.39

5.74 6.53 7.27

11.87

9.50

4.01 12.339.00

8.357.53

12.766.23 7.065.38 11.114.59 13.19

TIC[1]; / FI+(eiFi) / FI+(eifi)_DieselOil_1024_002 0.2uL Inj, Split200

2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0Time[min]

0

500

1000

1500

2000

2500

Intensity (2515297)x103

9.23 9.81 10.37

8.61

11.39

7.96

11.87

7.27

6.5312.33

5.75 9.014.9012.778.36

GC/EI

GC/FI

C11H24 C12H26 C13H28

C14H30

C15H32

C16H34

C17H36

C18H38

C19H40

C20H42

C21H44

C22H46

C23H48

C10H22

+

C9H12

C24H50

C25H52

C26H54

C9H20

C9H20

C10H22

+

C9H12 C11H24

C12H26

C13H28

C14H30

C15H32

C16H34 C17H36 C18H38

C19H40

C20H42

C21H44

C22H46

C24H50

C25H52

C23H48 C26H54

m/z 207.0329 (Background)

is used as external calibrant

m/z 226.26605 (C16H34)

is used as external calibrant

Next slide

Next slide

Page 17: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Mass Spectra of the Component at R.T. 4.90 min MS[1];4.89..4.91;-1.0*MS[1];4.93..4.94; / EI+(eiFi) / EI+(eif i)_DieselOil_1023_003

0.2uL Inj, Split200

0

50

100

150

200

Intensity (244804)x103

57.07143.055

105.070

71.085

85.100

120.093

56.062

70.07755.054

84.093

119.085142.17299.11691.054

58.07351.023

MS[1];4.89..4.91; / FI+(eiFi) / FI+(eif i)_DieselOil_1024_002

0.2uL Inj, Split200

40 60 80 100 120 140 160 180 200

m/z

0

5

10

15

20

25

Intensity (27559)x103

142.172

120.095

143.176

121.100

EI+

FI+

M+・, C10H22

(0.8 mDa)

M+・, C9H12

(1.6 mDa)

M+・, C10H22

(-0.2 mDa)

M+・, C9H12

(-0.7 mDa)

C8H9

(-0.4 mDa)

C6H13

(-1.0 mDa)

C5H11

(-0.8 mDa)

C4H9

(0.9 mDa) C3H7

(0.6 mDa)

No fragment ions

FI spectrum showed that

the component at R.T. 4.90 (min)

consists of different two

hydrocarbons.

Page 18: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Direct MS Applications

Page 19: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Tristearin Analysis Using DEP

200 300 400 500 600 700 800 900質量電荷比(m/z)

0

10

20

30

強度 (36551)x103

200 300 400 500 600 700 800 900質量電荷比(m/z)

0

100

200

300

400

強度 (412610)x103

x 50

Direct Exposure Probe (DEP) • EI and CI

• For high boiling point compounds

• For thermolabile compounds

Pt filament Desorption EI+

Desorption CI+ with Ammonia

[M]+・

890

[M-H2O]+

872

607

607

341

341

267

[M+NH4]+

908

m/z 607

m/z 395

395

m/z 267

Page 20: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Synthetic Organic Pigment Analysis

Using Direct Probes

Pigment Yellow 83(C36H32Cl4N6O8)

NHOCCH N N

ClCl

N N CHCOHN

COCH3

Cl

H3CO

OCH3

Cl

H3CO

OCH3

COCH3

Pigment Red 144(C40H23Cl5N6O4)

N N

HOCl

Cl

CONH

Cl

NHOC OH

N N

Cl

Cl

Desorption EI+ Desorption EI+

FD+ FD+ [M]+・ [M]+・

Page 21: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Liquid Crystal Analysis Using

Direct Probes

200 400 600 800質量電荷比(m/z)

0

20

40

60

80

100相対強度

830.49

590.46

EI+

CI+

FD+ [M]+・

No molecular ion

No protonated

molecule

PEG600

(Internal calibrant)

Mode Obs. m/z Error

(mDa)

Formula

FD+ 830.4864 -0.6 C52H66N2O7

m/z m/z

m/z

Page 22: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Organic Electro-Luminescence (OEL) and

Ionic Liquid Analysis Using Direct Probes

Desorption EI+

FD+

[M]+・

m/z 510.2338, [M]+・

(Error: -1.0 mDa)

Mass Spectra of OEL

FD+

N

C4H9

CH3

S

O

O

F3C

N S

O

O

CF3

m/z 150.1289

[Cation]+

(Error 0.6 mDa) m/z 580.1766

[M+Cation]+

(Error 2.8 mDa) [Cation]2+

FD Mass Spectrum of Ionic liquid

OEL

Ionic liquid

Page 23: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Polymer Analysis Using FD

Polystyrene 4,000

FD mode on the “AccuTOF

GCv 4G” can measure

heavier ions than m/z 5,000 !

1000 2000 3000 4000 5000 m/z

FD+

Page 24: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Copolymer Analysis Using FD

Ethylene Oxide (EO)/ Propylene Oxide (PO)

block copolymer

m/z

H OCH2CH2 OCH2CH

CH3

OCH2CH2 OHx y z

Repeat A

PO: (C3H6O)n

Repeat B, EO: (C2H4O)n

Copolymer distribution and type analysis results using the Polymerix Software (Sierra)

FD+

Mn Mw Mz PD

1053.2 1077.1 1100.9 1.03

Mn:Number-average M.W.

Mw:Weight-average M.W.

Mz:Z-average M.W.

PD:Mw/Mn

Page 25: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Microcrystalline Wax Analysis Using FD

Series Mn Mw Mz PD %

Total 657.0 686.9 718.9 1.0 100

CnH2n+2 571.1 617.3 665.3 1.1 17.3

CnH2n 529.7 655.0 680.8 1.0 24.2

CnH2n-2 670.5 692.3 715.6 1.0 13.1

CnH2n-4 715.6 739.0 764.7 1.0 8.4

CnH2n-6 688.3 717.9 751.1 1.0 22.5

CnH2n-8 710.0 739.6 772.8 1.0 14.5

Mn:Number-average M.W.

Mw:Weight-average M.W.

Mz:Z-average M.W.

PD:Mw/Mn

Microcrystalline

Wax

It is possible to determine the

component ratio and the average

M.W. in the microcrystalline wax

using FD type analysis.

Page 26: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Pyrolysis GC/MS

Applications

Page 27: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Pyrolysis System

Pyrolysis GC/MS • For material and polymer science

• Any material samples can be

introduced into the temperature

controlled furnace.

• Pyrolysis measurements with higher

temperatures (400 - 600 ⁰C)

• Thermal extraction measurements

with lower temperatures (200 - 400 ⁰C)

• Generated components by pyrolysis

and/or thermal extraction are separated

by the capillary GC column.

• This technique provides useful

information about the material

composition of the samples. to MS

Page 28: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Pyrolysis GC/EI of the

Brominated Flame Retardant “FRPC” TIC[1]; / EI+ / FRPC(溶液)_01 10mg/mLを2uL導入, Split200, 2400V

2000

4000

6000

8000

強度 (8593437)x103

13.63

0.36

3.30

2.99

17.20

10.44

1.16 4.35 12.958.60 9.505.294.77

TIC[1]; / EI+ / FRPC(溶液)+TMAH_01 10mg/mLを2uL導入, TMAH2uL導入, Split200, 2400V

0 2 4 6 8 10 12 14 16 18 20経過時間[min]

50

100

強度 (124694505)x106

9.74

0.32

9.23

8.79

8.222.82

4.36

熱分解GC

誘導体化熱分解GC

HBr

OH BrOH

Br

Br Br

Br

HO OH

Br

Br Br

Br

HO O

O

O

O

O

O

Br

Br

Br

Br

O

O

O

Monomer

O

H

Br Br

Br

HO OH

H

Br Br

Br

O O

Br

Br Br

Br

O O

Br

Br H

H

O O

H

Br H

H

O O

H

Br H

Br

O O

etc…

TIC[1]; / EI+ / FRPC(溶液)_01 10mg/mLを2uL導入, Split200, 2400V

2000

4000

6000

8000

強度 (8593437)x103

13.63

0.36

3.30

2.99

17.20

10.44

1.16 4.35 12.958.60 9.505.294.77

TIC[1]; / EI+ / FRPC(溶液)+TMAH_01 10mg/mLを2uL導入, TMAH2uL導入, Split200, 2400V

0 2 4 6 8 10 12 14 16 18 20経過時間[min]

50

100

強度 (124694505)x106

9.74

0.32

9.23

8.79

8.222.82

4.36

熱分解GC

誘導体化熱分解GC

HBr

OH BrOH

Br

Br Br

Br

HO OH

Br

Br Br

Br

HO O

O

O

O

O

O

Br

Br

Br

Br

O

O

O

Monomer

O

H

Br Br

Br

HO OH

H

Br Br

Br

O O

Br

Br Br

Br

O O

Br

Br H

H

O O

H

Br H

H

O O

H

Br H

Br

O O

etc…

[min]

MS[1];9.50..9.51;-1.0*MS[1];9.54..9.55; / EI+ / FRPC(溶液)_01 10mg/mLを2uL導入, Split200, 2400V

0

100相対強度

448.8 450.8

446.8 452.8181.1 369.9215.0152.1 467.8289.0

MS[1];10.46;-1.0*MS[1];10.48; / EI+ / FRPC(溶液)_01 10mg/mLを2uL導入, Split200, 2400V

0

100相対強度

528.7526.7

543.8524.7292.9448.879.9 152.0

MS[1];13.64;-1.0*MS[1];13.66; / EI+ / FRPC(溶液)_01 10mg/mLを2uL導入, Split200, 2400V

0

100相対強度

660.8135.1658.8

528.7107.0

656.8 664.8150.1 292.9 448.8344.9

719.8

MS[1];17.22;-1.0*MS[1];17.27..17.27; / EI+ / FRPC(溶液)_01 10mg/mLを2uL導入, Split200, 2400V

200 400 600 800 1000質量電荷比(m/z)

0

100相対強度

135.1107.0

836.9150.1 660.8

792.9580.9 895.9

Br

Br Br

Br

HO OH

Br

Br Br

Br

HO O

O

O

O

O

O

Br

Br

Br

Br

O

O

O

H

Br Br

Br

HO OH

m/z

m/z

m/z

m/z

Rel

ativ

e in

ten

sity

(%)

Rel

ativ

e in

ten

sity

(%)

Rel

ativ

e in

ten

sity

(%)

Rel

ativ

e in

ten

sity

(%)

MS[1];9.50..9.51;-1.0*MS[1];9.54..9.55; / EI+ / FRPC(溶液)_01 10mg/mLを2uL導入, Split200, 2400V

0

100相対強度

448.8 450.8

446.8 452.8181.1 369.9215.0152.1 467.8289.0

MS[1];10.46;-1.0*MS[1];10.48; / EI+ / FRPC(溶液)_01 10mg/mLを2uL導入, Split200, 2400V

0

100相対強度

528.7526.7

543.8524.7292.9448.879.9 152.0

MS[1];13.64;-1.0*MS[1];13.66; / EI+ / FRPC(溶液)_01 10mg/mLを2uL導入, Split200, 2400V

0

100相対強度

660.8135.1658.8

528.7107.0

656.8 664.8150.1 292.9 448.8344.9

719.8

MS[1];17.22;-1.0*MS[1];17.27..17.27; / EI+ / FRPC(溶液)_01 10mg/mLを2uL導入, Split200, 2400V

200 400 600 800 1000質量電荷比(m/z)

0

100相対強度

135.1107.0

836.9150.1 660.8

792.9580.9 895.9

Br

Br Br

Br

HO OH

Br

Br Br

Br

HO O

O

O

O

O

O

Br

Br

Br

Br

O

O

O

H

Br Br

Br

HO OH

m/z

m/z

m/z

m/z

Rel

ativ

e in

ten

sity

(%)

Rel

ativ

e in

ten

sity

(%)

Rel

ativ

e in

ten

sity

(%)

Rel

ativ

e in

ten

sity

(%)

HBr

Monomer

EI mass spectrum of Monomer

Obs. Isotopic pattern

Calc. Isotopic pattern

of C37H36O6Br4

O O

Br

BrBr

Br

O O

OO

n

Brominated Flame Retardant “FRPC” (m/z)

(m/z)

[M]+・

FRPC

only

Page 29: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Derivatization Pyrolysis GC/EI of the

Brominated Flame Retardant “FRPC”

TIC[1]; / EI+ / FRPC(溶液)_01 10mg/mLを2uL導入, Split200, 2400V

2000

4000

6000

8000

強度 (8593437)x103

13.63

0.36

3.30

2.99

17.20

10.44

1.16 4.35 12.958.60 9.505.294.77

TIC[1]; / EI+ / FRPC(溶液)+TMAH_01 10mg/mLを2uL導入, TMAH2uL導入, Split200, 2400V

0 2 4 6 8 10 12 14 16 18 20経過時間[min]

50

100

強度 (124694505)x106

9.74

0.32

9.23

8.79

8.222.82

4.36

熱分解GC

誘導体化熱分解GC

HBr

OH BrOH

Br

Br Br

Br

HO OH

Br

Br Br

Br

HO O

O

O

O

O

O

Br

Br

Br

Br

O

O

O

Monomer

O

H

Br Br

Br

HO OH

H

Br Br

Br

O O

Br

Br Br

Br

O O

Br

Br H

H

O O

H

Br H

H

O O

H

Br H

Br

O O

etc…

TIC[1]; / EI+ / FRPC(溶液)_01 10mg/mLを2uL導入, Split200, 2400V

2000

4000

6000

8000

強度 (8593437)x103

13.63

0.36

3.30

2.99

17.20

10.44

1.16 4.35 12.958.60 9.505.294.77

TIC[1]; / EI+ / FRPC(溶液)+TMAH_01 10mg/mLを2uL導入, TMAH2uL導入, Split200, 2400V

0 2 4 6 8 10 12 14 16 18 20経過時間[min]

50

100

強度 (124694505)x106

9.74

0.32

9.23

8.79

8.222.82

4.36

熱分解GC

誘導体化熱分解GC

HBr

OH BrOH

Br

Br Br

Br

HO OH

Br

Br Br

Br

HO O

O

O

O

O

O

Br

Br

Br

Br

O

O

O

Monomer

O

H

Br Br

Br

HO OH

H

Br Br

Br

O O

Br

Br Br

Br

O O

Br

Br H

H

O O

H

Br H

H

O O

H

Br H

Br

O O

etc…

[min]MS[1];2.81..2.84;-1.0*MS[1];2.89..2.91; / EI+ / FRPC(溶液)+TMAH_01 10mg/mLを2uL導入, TMAH2uL導入, Split200, 2400V

0

50

100相対強度

149.1121.0

164.1

109.077.0

65.0MS[1];10.22;-1.0*MS[1];10.24..10.24; / EI+ / FRPC(溶液)+TMAH_01 10mg/mLを2uL導入, TMAH2uL導入, Split200, 2400V

200 400 600 800 1000質量電荷比(m/z)

0

50

100相対強度

556.8

554.8 558.8

571.8552.8306.9

MS[1];9.50..9.51;-1.0*MS[1];9.54..9.55; / EI+ / FRPC(溶液)_01 10mg/mLを2uL導入, Split200, 2400V

0

100相対強度

448.8 450.8

446.8 452.8181.1 369.9215.0152.1 467.8289.0

MS[1];10.46;-1.0*MS[1];10.48; / EI+ / FRPC(溶液)_01 10mg/mLを2uL導入, Split200, 2400V

0

100相対強度

528.7526.7

543.8524.7292.9448.879.9 152.0

MS[1];13.64;-1.0*MS[1];13.66; / EI+ / FRPC(溶液)_01 10mg/mLを2uL導入, Split200, 2400V

0

100相対強度

660.8135.1658.8

528.7107.0

656.8 664.8150.1 292.9 448.8344.9

719.8

MS[1];17.22;-1.0*MS[1];17.27..17.27; / EI+ / FRPC(溶液)_01 10mg/mLを2uL導入, Split200, 2400V

200 400 600 800 1000質量電荷比(m/z)

0

100相対強度

135.1107.0

836.9150.1 660.8

792.9580.9 895.9

Br

Br Br

Br

HO OH

Br

Br Br

Br

HO O

O

O

O

O

O

Br

Br

Br

Br

O

O

O

H

Br Br

Br

HO OH

m/z

m/z

m/z

m/z

Rel

ativ

e in

ten

sity

(%)

Rel

ativ

e in

ten

sity

(%)

Rel

ativ

e in

ten

sity

(%)

Rel

ativ

e in

ten

sity

(%)

MS[1];9.50..9.51;-1.0*MS[1];9.54..9.55; / EI+ / FRPC(溶液)_01 10mg/mLを2uL導入, Split200, 2400V

0

100相対強度

448.8 450.8

446.8 452.8181.1 369.9215.0152.1 467.8289.0

MS[1];10.46;-1.0*MS[1];10.48; / EI+ / FRPC(溶液)_01 10mg/mLを2uL導入, Split200, 2400V

0

100相対強度

528.7526.7

543.8524.7292.9448.879.9 152.0

MS[1];13.64;-1.0*MS[1];13.66; / EI+ / FRPC(溶液)_01 10mg/mLを2uL導入, Split200, 2400V

0

100相対強度

660.8135.1658.8

528.7107.0

656.8 664.8150.1 292.9 448.8344.9

719.8

MS[1];17.22;-1.0*MS[1];17.27..17.27; / EI+ / FRPC(溶液)_01 10mg/mLを2uL導入, Split200, 2400V

200 400 600 800 1000質量電荷比(m/z)

0

100相対強度

135.1107.0

836.9150.1 660.8

792.9580.9 895.9

Br

Br Br

Br

HO OH

Br

Br Br

Br

HO O

O

O

O

O

O

Br

Br

Br

Br

O

O

O

H

Br Br

Br

HO OH

m/z

m/z

m/z

m/z

Rel

ativ

e in

ten

sity

(%)

Rel

ativ

e in

ten

sity

(%)

Rel

ativ

e in

ten

sity

(%)

Rel

ativ

e in

ten

sity

(%)

B A

A

B

A

B

EI mass spectra of chemicals that show structure

A (m/z)

Brominated Flame Retardant “FRPC” monomer

FRPC

+ Tetramethylammonium

hydroxide (Derivatizing Agent)

Page 30: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Thermal Extraction GC/EI

of Wire Coating Material

Squalene

(Lubricant)

Decabromodiphenyl Ethane

(Flame retardant)

Irganox1330

(Antioxidant)

Unknown

C50H70O3 Isotopic pattern Red: Measured

Blue: Calculated

Wire coating

Irganox1330

Unknown

-263 u

-555 u

[M]+・

-263 u -555 u

m/z 718.5340, [M]+・ ?

C50H70O3, Error: 1.5 mDa

Irganox1330 Suggested unknown

component

Page 31: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Pyrolysis GC/EI, CI and FI of ABS Polymer TIC[1]; / EI+ / 1024-ABS

8 10 12 14 16 18 20 22経過時間[min]

40

50

強度 (55480000)x106

20.130

17.882

Unknown

Mode No. Obs. m/z Error

(mDa) Formula

EI+ 1 77.0392 0.1 C6H5

2 104.0629 0.3 C8H8

3 168.0808 -0.5 C12H10N

4 183.1035 -1.3 C13H13N

CI+ 5 184.1127 0.1 C13H14N

FI+ 6 183.1055 0.7 C13H13N

1

2 EI+

CI+

Benzenepropane

-nitrile

Dimers

β-Methyl-styrene

α-Methylstyrene

Methylene glutaronitrile

FI+

3

5 [M+H]+

6 [M]+・

4 [M]+・

m/z 168 m/z 104

m/z 77

Suggested unknown component

(min) (m/z)

Page 32: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Comprehensive 2DGC/MS

Applications

Page 33: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

2DGC(GCxGC) System

2DGC/MS

• Higher separation power than normal

GC/MS.

• 2DGC measurement can be done with one

GC. A second GC oven is unnecessary.

• Time-of-flight mass spectrometer (TOFMS)

is the best detector for 2DGC/MS.

• For many applications including: Petroleum,

Flavors, Metabolomics, Environmental.

• Any GC inlet technique, such as

Split/Splitless, Pyrolyser, Head-Space, etc.,

can be utilized.

• This technique provides useful informations

for a wide range of chemicals all at once.

GC Oven

GC Inlet Cold jet Hot jet

Modulator

Trap time: 3-8 sec

to MS or other detector

1st Column

Meas. time:

30-90 min

2nd Column

Meas. time:

3-8 sec

Page 34: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Rosemary Aroma Oil Analysis

Using GCxGC/EI

2D TIC

3D TIC 1st column (Nonpolar) separation

2n

d c

olu

mn

(P

ola

r) s

ep

ara

tio

n

(sec

)

(min)

6

45 35 25 15 0

3

0

Page 35: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Petroleum Liquids Analysis

Using GCxGC/EI Merged 2D mass chromatogram

of Dibenzothiophenes

A B

C

Kerosene 2D TIC

Light Oil 2D TIC

m/z 184.0343

C12H8S

Error: -0.4 mDa

m/z 198.0495

C13H10S

Error: -0.8 mDa

m/z 212.0654

C14H12S

Error: -0.6 mDa

A

B

C

Page 36: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

GCxGC/FI Technique with a

Normal Column Set

1st column: Nonpolar column

(BPX5, 30m x 0.25mm, I.D. 0.25um)

2n

d c

olu

mn

: P

ola

r co

lum

n

(BP

X50, 2m

x 0

.1m

m, I.

D. 0.1

mm

)

Page 37: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

GCxGC/FI Technique with a

Reverse Column Set

1st column: Polar column

(DB-WAXETR, 30m x 0.25mm, I.D. 0.1um)

2n

d c

olu

mn

: N

on

po

lar

co

lum

n

(DB

-1, 1m

x 0

.1m

m, I.

D. 0.1

um

)

Page 38: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

PAHs Analysis in Exhaust Gas

Using GCxGC/EI

3D Mass chromatogram (m/z 228.0930±0.01)

m/z 228.0933

C18H12

(Error: 0.3 mDa)

2D TIC

(a)

3D TIC

Page 39: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Pyrolysis GCxGC/EI and FI Analysis of

Nylon 6,6

100 200 300

質量電荷比(m/z)

0

100相対面積

82.155.1

41.0110.1

56.1

100.158.1 127.1 167.1

2D TIC

Unknown

m/z 210.1729

C12H22N2O

Error: -0.4 mDa

(m/z)

(m/z)

EI+

FI+

H8C4

Suggested unknown component 1st column (Nonpolar) separation

2n

d c

olu

mn

(P

ola

r) s

ep

ara

tio

n

No molecule ion

Page 40: New generation GC-HRTOFMS “AccuTOF GCv 4G” GCv 4G Automatic isolation valve Gas clean or change sources without breaking analyzer vacuum Direct inlet flange for both GC/MS and

Summary AccuTOF GCv 4G is a state-of-the-art GC-

HRTOFMS.

This latest GC-TOFMS simultaneously

provides high-sensitivity, high mass resolution,

high mass accuracy and high speed data

acquisition capabilities for each analysis.

EI/FI/FD combination ion source is a unique

capability that is only offered by JEOL.

AccuTOF GCv 4G can be used as both a

GC/MS and Direct MS system.

It is very easy to perform accurate mass

measurement in all ionization modes.

JMS-T100GCV AccuTOF GCv 4G