neuroscience - thermo fisher scientific · neuroscience publications list 2013 edition. what is...

12
Neuroscience Publications List 2013 Edition

Upload: others

Post on 01-Nov-2019

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Neuroscience - Thermo Fisher Scientific · Neuroscience Publications List 2013 Edition. What is high Content sCreening (hCs)? High content screening (HCS), also known as high content

NeurosciencePublications List

2013 Edition

Page 2: Neuroscience - Thermo Fisher Scientific · Neuroscience Publications List 2013 Edition. What is high Content sCreening (hCs)? High content screening (HCS), also known as high content

What is high Content sCreening (hCs)?High content screening (HCS), also known as high content analysis, image cytometry, quantitative cell analysis or automated cell analysis, is an automated method that is used to identify substances that alter the phenotype of a cell in a desired manner. This technology is primarily used in biological research and drug discovery and combines fluorescent microscopy, automated cell calculations, and phenotyping using image processing algorithms and informatics tools for the user to make decisions about a treatment.

moreKnoWledge

More knowledge evolved into products• More out-of-the-box reagents validated for high content• More flexibility in instrumentation to address new assay needs

More knowledge in how to execute HCA• More technical resources focused on high content• More experience in using, developing, and executing on high content assays

Scientific validity through literature• More peer-reviewed publications in the most relevant and respected journals• Automated solutions to increase throughput

More knowledge about cellular information• More measurements and data about cells and their response• More information than other cell-based assaysCellular

information

Validatedsolutions

ContextualreleVanCe

experienCedexeCution

sCientifiCValidity

More knowledge about cells in their context • More information in the context of a living cell • More tools to characterize complex biologies

thermo sCientifiC high Content produCts The portfolio of High Content Analysis products includes assay development and screening tools like the Thermo Scientific™ ArrayScan™ XTI High Content Analysis (HCA) Reader and the Thermo Scientific™ CellInsight™ NXT High Content Screening (HCS) Platform. Multiple tools are available for assay development on the ArrayScan XTI HCA Reader like the Thermo Scientific™ X1 large field-of-view, high resolution camera; Live Cell Chamber; and the new Confocal Module, while our software products like Thermo Scientific™ HCS Studio™ Software enable users to develop and make decisions about our assays. With the Thermo Scientific™ HCS101 Class and the diverse portfolio of reagents and consumables, we enable scientists to increase their efficiency with their platform while generating more knowledge about the cell.

For more information on Thermo Scientific™ High Content Products, and a full list of applications by application area, go to thermoscientific.com/highcontent

Page 3: Neuroscience - Thermo Fisher Scientific · Neuroscience Publications List 2013 Edition. What is high Content sCreening (hCs)? High content screening (HCS), also known as high content

Monitoring Neurite Morphology and Synapse Formation in Primary Neurons for Neurotoxicity Assessments and Drug Screening Suk J. Hong and Richik N. Ghosh Thermo Fisher Scientific • Pittsburgh, PA USA

Ap

plication

Notes C-A

N_N

T1112

AbstractSynapse formation during nervous system development and degeneration in the pathogenesis of human neurological diseases are highly regulated processes. Subtle changes in the environment of the complex neuronal network may cause either breakdown or creation of synaptic connections. Drug discovery screening for neurological diseases and compound neurotoxicity evaluation would benefit from robust, automated, quantitative in vitro assays that monitor neuronal function. We hypothesized that (1) toxic insults to the nervous system will cause neuronal synapses to deteriorate in the early phase of neurotoxicity, eventually leading to neurite degeneration and neuronal cell death if the damage is severe; and (2) an in vitro functional assay for synapse formation and neuronal morphology could be used to monitor and identify such neurotoxic events. We thus developed an automated, functional, high-content screening imaging assay to track and quantify the dynamic changes in neurite morphology and synapses. This assay identifies primary neuronal cells by a neuron-specific marker and detects synapses on the spines of neurites with pre- and post-synaptic markers. The multiplexed targets, including a nuclear marker, are simultaneously detected with four fluorescent colors, and the fluorescent images of the labeled neurons and synapses are acquired by an automated imaging instrument. The phenotypic features of neuronal morphology and the synapse are automatically identified and quantified on-the-fly by specialized image-analysis software. Such features are potential indicators for neuronal development, differentiation and neurotoxicity, and we could quantify changes in these features under different conditions and for different drug treatments. By monitoring changes in these features, we could also quantitatively evaluate compounds involved in developmental neurotoxicity. In summary, this assay facilitates automation and streamlining of a laborious process in drug discovery screening and compound neurotoxicity assessments; it enables quantitative comparisons between compounds in neuronal morphology and function, particularly in neurite and synapse associated events.

IntroductionNeurons in central and peripheral nervous systems function to transmit electric signals from one location to the other to keep the brain and the body functioning properly. One of the critical structures in the neuron to maintain their proper functional network is synapse, which is the junction between a nerve cell and the cell that receives an impulse from the neuron. The molecular network between these synapses controls not just synaptic signal transmission and synaptic plasticity but also regulates neuronal growth, differentiation and death. The microstructure of synaptic junctions has been extensively studied to understand the relationship between synaptic activity and neuropathophysiology, as well as the molecular mechanism involved in synaptogenesis and the regulation of synapse.Once synaptic function is disrupted by natural or man-made neurotoxic substances, it could lead to long-lasting and often irreversible neuronal damage. Synaptic damage has often been recognized as the first sign of neurodegeneration in many different pathological

conditions, including traumatic nerve injury, ischemic stroke, and many neurodegenerative disorders such as Motor Neuron Disease, Alzheimer’s, Parkinson’s and Huntington’s diseases. Many synaptic proteins play an important role in the progression of neurodegenerative diseases. For example, Amyloid beta precursor protein and Presenilin, alpha-synuclein, Huntingtin, Ataxin-1, Frataxin and Prion protein are all involved in pre-synaptic or post-synaptic structure of the neuron and play a role in synaptic damage and neurodegeneration.To measure the synaptic changes that occur in synaptogenesis or synaptic damage, we needed to develop a reliable, accurate, and efficient method to measure accurate synaptic loss, neurite changes and neuronal death. Here we introduce a new way of measuring synaptic function utilizing the power of automated, quantitative, high-content cell-based imaging and analysis. The Thermo Scientific Synaptogenesis HCS Assay Reagents combined with the Thermo Scientific ArrayScan High Content Screening (HCS) Reader and Neuronal Profiling BioApplication enables the quantitation of neuronal morphology and synapses in vitro. On-the-fly automated image analysis and quantitation accompanying the automated image acquisition is done by the Neuronal Profiling BioApplication, which is an automated image analysis software module on the ArrayScan™ VTI HCS Reader. Using this technology and assay method, we could identify synaptic changes over time and measure synaptic and neurite parameters in an automated manner.

Synaptogenesis Assay Target Candidates

DAPI WCS

Presynaptic Marker

• Mouse cortical neurons 18DIV

• Cellomics Whole Cell Stain (red)

• Synaptophysin (green)

• Imaged on ArrayScan HCS Reader

DAPI Presynaptic Marker

MAP-2

• Rat Hippocampalneurons 22 DIV

• Map2 (green)• Synaptophysin (red)• Imaged on ArrayScan

HCS Reader

A.

B.

Automated Plate DeliveryArrayScan VTI

Automated Image Acquisition

Analysis & Visualization – vHCS Discovery ToolBox

Real Time Quantitative Image Analysis (BioApplications)

Automated DataManagement

(Thermo Scientific Store)

DecisionsThermo Scientific HCSExplorer

Fluorescence Dye & Color:

Candidates for Cellular Target:(best assay target screened in bold)

Cellular EntityTargeted:

Fluorescence Channel:

synaptophysin, synapsin1, syntaxin, synaptobrevin, synaptotagmin

PSD95, drebrin, spinophilin/Neurabin

MAP-2, β3-tubulin, Neurofilament

DNA

DyL649DyL549DyL488DAPI

Presynapticmarker

Postsynaptic marker

Cell Body / Neurite MaskNucleus

Channel 4Channel 3Channel 2Channel 1

Fluorescence Dye & Color:

Candidates for Cellular Target:(best assay target screened in bold)

CellularEntityTargeted:Cellular EntityTargeted:

FluorescenceChannel:Fluorescence Channel:

synaptophysin, synapsin1, syntaxin, synaptobrevin, synaptotagmin

PSD95, drebrin, spinophilin/Neurabin

MAP-2, β3-tubulin, Neurofilament

DNA

DyL649DyL549DyL488DAPIDAPI

Presynapticmarker

Presynapticmarker

Postsynapticmarker

Postsynaptic marker

Cell Body /Neurite MaskCell Body /

Neurite MaskNucleusNucleus

Channel 4Channel 4Channel 3Channel 3Channel 2Channel 2Channel 1Channel 1

Raw ImagePresynaptic Marker Synaptophysin (red) Neuronal Marker MAP-2 (green)

Analyzed ImageBranch point (white)Localized Synaptophysin (purple) Neuronal trace (blue)

Neuronal Marker, MAP-2 (white)Neurite Trace from Cell Body (Blue)

Postsynaptic Marker, PSD-95 (magenta) Co-localization (green) of PSD-95 and Synapt

0.01 0.1 1 10 100 1000

25

50

75

100

125

Neuron numberNeurite Count

Glutamate [µM]

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.01 0.1 1 10 100 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.01 0.1 1 10 100 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

***** ***

0.001 0.01 0.1 1 10 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 100

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 10080

90

100

110

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

* * ****

**

Glu

tam

ate

Kai

nate

Glutamate [µM] Glutamate [µM] Glutamate [µM] Glutamate [µM]

Kainate [µM] Kainate [µM] Kainate [µM] Kainate [µM] Kainate [µM]

A

B

0.001 0.01 0.1 1 10 100 10000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

25

50

75

100

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

**

** **

** **

***

0.01 0.1 1 10 100 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.01 0.1 1 10 100 1000

40

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.01 0.1 1 10 100 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.01 0.1 1 10 100 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

***

* ******

0.001 0.01 0.1 1 10 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 1000

25

50

75

100

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 100

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

H2O

2Zi

ncU

0126

C

D

E

H2O2 [µM] H2O2 [µM] H2O2 [µM] H2O2 [µM] H2O2 [µM]

ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM]

U0126 [µM] U0126 [µM] U0126 [µM] U0126 [µM] U0126 [µM]

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

60

80

100

120

Branch PointNeurite Width

% M

axim

um

Aβ1-42 Toxicity on Primary Hippocampal Neuron (50DIV)

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

25

50

75

100

125

Neurite IntensityNeurite Total Length

% M

axi m

um

**

**

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

**

**

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

20

40

60

80

100

120

Presynaptic vesiclesPostsynaptic spotsSynapse number

% M

axim

um

***

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

25

50

75

100

125

Neuron numberNeurite Count

Aβ1-42 µM]] ] ]

% M

axim

um

***

Aβ1-42 µM] Aβ1-42 µM] ]µM] ]µM]Aβ1-42 Aβ1-42

Spot

Num

ber p

er N

eurit

eLe

ngth

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

Presynaptic Postsynaptic

15 DIV21 DIV

***

HCS Reader

Table 1: Potential synaptogenesis HCS assay targets can be detected in four different colors.

Page 4: Neuroscience - Thermo Fisher Scientific · Neuroscience Publications List 2013 Edition. What is high Content sCreening (hCs)? High content screening (HCS), also known as high content

Ap

plication

Notes C-A

N_N

T1112The Thermo Scientific HCS Platform Seamless Integration of all the Steps in Cellular Analysis

Pre-Synaptic Marker, Synaptophysin, Whole Cell Stain and MAP-2

A.

B.

Automated Measurement of Presynaptic Vesicles and Neurites Using The Thermo Scientific Neuronal Profiling V3.5

Automated, Simultaneous Measurement of Presynaptic Vesicles, Postsynaptic Structure and Neurites

Punctated PSD-95 Stain Increases by Maturation of Neurons

DAPI WCS

Presynaptic Marker

• Mouse cortical neurons 18DIV

• Cellomics Whole Cell Stain (red)

• Synaptophysin (green)

• Imaged on ArrayScan HCS Reader

DAPI Presynaptic Marker

MAP-2

• Rat Hippocampalneurons 22 DIV

• Map2 (green)• Synaptophysin (red)• Imaged on ArrayScan

HCS Reader

A.

B.

Automated Plate DeliveryArrayScan VTI

Automated Image Acquisition

Analysis & Visualization – vHCS Discovery ToolBox

Real Time Quantitative Image Analysis (BioApplications)

Automated DataManagement

(Thermo Scientific Store)

DecisionsThermo Scientific HCSExplorer

Fluorescence Dye & Color:

Candidates for Cellular Target:(best assay target screened in bold)

Cellular EntityTargeted:

Fluorescence Channel:

synaptophysin, synapsin1, syntaxin, synaptobrevin, synaptotagmin

PSD95, drebrin, spinophilin/Neurabin

MAP-2, β3-tubulin, Neurofilament

DNA

DyL649DyL549DyL488DAPI

Presynapticmarker

Postsynaptic marker

Cell Body / Neurite MaskNucleus

Channel 4Channel 3Channel 2Channel 1

Fluorescence Dye & Color:

Candidates for Cellular Target:(best assay target screened in bold)

CellularEntityTargeted:Cellular EntityTargeted:

FluorescenceChannel:Fluorescence Channel:

synaptophysin, synapsin1, syntaxin, synaptobrevin, synaptotagmin

PSD95, drebrin, spinophilin/Neurabin

MAP-2, β3-tubulin, Neurofilament

DNA

DyL649DyL549DyL488DAPIDAPI

Presynapticmarker

Presynapticmarker

Postsynapticmarker

Postsynaptic marker

Cell Body /Neurite MaskCell Body /

Neurite MaskNucleusNucleus

Channel 4Channel 4Channel 3Channel 3Channel 2Channel 2Channel 1Channel 1

Raw ImagePresynaptic Marker Synaptophysin (red) Neuronal Marker MAP-2 (green)

Analyzed ImageBranch point (white)Localized Synaptophysin (purple) Neuronal trace (blue)

Neuronal Marker, MAP-2 (white)Neurite Trace from Cell Body (Blue)

Postsynaptic Marker, PSD-95 (magenta) Co-localization (green) of PSD-95 and Synapt

0.01 0.1 1 10 100 1000

25

50

75

100

125

Neuron numberNeurite Count

Glutamate [µM]

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.01 0.1 1 10 100 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.01 0.1 1 10 100 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

***** ***

0.001 0.01 0.1 1 10 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 100

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 10080

90

100

110

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

* * ****

**

Glu

tam

ate

Kai

nate

Glutamate [µM] Glutamate [µM] Glutamate [µM] Glutamate [µM]

Kainate [µM] Kainate [µM] Kainate [µM] Kainate [µM] Kainate [µM]

A

B

0.001 0.01 0.1 1 10 100 10000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

25

50

75

100

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

**

** **

** **

***

0.01 0.1 1 10 100 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.01 0.1 1 10 100 1000

40

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.01 0.1 1 10 100 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.01 0.1 1 10 100 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

***

* ******

0.001 0.01 0.1 1 10 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 1000

25

50

75

100

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 100

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

H2O

2Zi

ncU

0126

C

D

E

H2O2 [µM] H2O2 [µM] H2O2 [µM] H2O2 [µM] H2O2 [µM]

ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM]

U0126 [µM] U0126 [µM] U0126 [µM] U0126 [µM] U0126 [µM]

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

60

80

100

120

Branch PointNeurite Width

% M

axim

um

Aβ1-42 Toxicity on Primary Hippocampal Neuron (50DIV)

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

25

50

75

100

125

Neurite IntensityNeurite Total Length

% M

axi m

um

**

**

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

**

**

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

20

40

60

80

100

120

Presynaptic vesiclesPostsynaptic spotsSynapse number

% M

axim

um

***

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

25

50

75

100

125

Neuron numberNeurite Count

Aβ1-42 µM]] ] ]

% M

axim

um

***

Aβ1-42 µM] Aβ1-42 µM] ]µM] ]µM]Aβ1-42 Aβ1-42

Spot

Num

ber p

er N

eurit

eLe

ngth

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

Presynaptic Postsynaptic

15 DIV21 DIV

***

HCS Reader

DAPI WCS

Presynaptic Marker

• Mouse cortical neurons 18DIV

• Cellomics Whole Cell Stain (red)

• Synaptophysin (green)

• Imaged on ArrayScan HCS Reader

DAPI Presynaptic Marker

MAP-2

• Rat Hippocampalneurons 22 DIV

• Map2 (green)• Synaptophysin (red)• Imaged on ArrayScan

HCS Reader

A.

B.

Automated Plate DeliveryArrayScan VTI

Automated Image Acquisition

Analysis & Visualization – vHCS Discovery ToolBox

Real Time Quantitative Image Analysis (BioApplications)

Automated DataManagement

(Thermo Scientific Store)

DecisionsThermo Scientific HCSExplorer

Fluorescence Dye & Color:

Candidates for Cellular Target:(best assay target screened in bold)

Cellular EntityTargeted:

Fluorescence Channel:

synaptophysin, synapsin1, syntaxin, synaptobrevin, synaptotagmin

PSD95, drebrin, spinophilin/Neurabin

MAP-2, β3-tubulin, Neurofilament

DNA

DyL649DyL549DyL488DAPI

Presynapticmarker

Postsynaptic marker

Cell Body / Neurite MaskNucleus

Channel 4Channel 3Channel 2Channel 1

Fluorescence Dye & Color:

Candidates for Cellular Target:(best assay target screened in bold)

CellularEntityTargeted:Cellular EntityTargeted:

FluorescenceChannel:Fluorescence Channel:

synaptophysin, synapsin1, syntaxin, synaptobrevin, synaptotagmin

PSD95, drebrin, spinophilin/Neurabin

MAP-2, β3-tubulin, Neurofilament

DNA

DyL649DyL549DyL488DAPIDAPI

Presynapticmarker

Presynapticmarker

Postsynapticmarker

Postsynaptic marker

Cell Body /Neurite MaskCell Body /

Neurite MaskNucleusNucleus

Channel 4Channel 4Channel 3Channel 3Channel 2Channel 2Channel 1Channel 1

Raw ImagePresynaptic Marker Synaptophysin (red) Neuronal Marker MAP-2 (green)

Analyzed ImageBranch point (white)Localized Synaptophysin (purple) Neuronal trace (blue)

Neuronal Marker, MAP-2 (white)Neurite Trace from Cell Body (Blue)

Postsynaptic Marker, PSD-95 (magenta) Co-localization (green) of PSD-95 and Synapt

0.01 0.1 1 10 100 1000

25

50

75

100

125

Neuron numberNeurite Count

Glutamate [µM]

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.01 0.1 1 10 100 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.01 0.1 1 10 100 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

***** ***

0.001 0.01 0.1 1 10 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 100

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 10080

90

100

110

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

* * ****

**

Glu

tam

ate

Kai

nate

Glutamate [µM] Glutamate [µM] Glutamate [µM] Glutamate [µM]

Kainate [µM] Kainate [µM] Kainate [µM] Kainate [µM] Kainate [µM]

A

B

0.001 0.01 0.1 1 10 100 10000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

25

50

75

100

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

**

** **

** **

***

0.01 0.1 1 10 100 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.01 0.1 1 10 100 1000

40

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.01 0.1 1 10 100 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.01 0.1 1 10 100 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

***

* ******

0.001 0.01 0.1 1 10 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 1000

25

50

75

100

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 100

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

H2O

2Zi

ncU

0126

C

D

E

H2O2 [µM] H2O2 [µM] H2O2 [µM] H2O2 [µM] H2O2 [µM]

ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM]

U0126 [µM] U0126 [µM] U0126 [µM] U0126 [µM] U0126 [µM]

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

60

80

100

120

Branch PointNeurite Width

% M

axim

umAβ1-42 Toxicity on Primary Hippocampal Neuron (50DIV)

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

25

50

75

100

125

Neurite IntensityNeurite Total Length

% M

axi m

um

**

**

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um**

**

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

20

40

60

80

100

120

Presynaptic vesiclesPostsynaptic spotsSynapse number

% M

axim

um

***

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

25

50

75

100

125

Neuron numberNeurite Count

Aβ1-42 µM]] ] ]

% M

axim

um

***

Aβ1-42 µM] Aβ1-42 µM] ]µM] ]µM]Aβ1-42 Aβ1-42

Spot

Num

ber p

er N

eurit

eLe

ngth

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

Presynaptic Postsynaptic

15 DIV21 DIV

***

HCS Reader

DAPI WCS

Presynaptic Marker

• Mouse cortical neurons 18DIV

• Cellomics Whole Cell Stain (red)

• Synaptophysin (green)

• Imaged on ArrayScan HCS Reader

DAPI Presynaptic Marker

MAP-2

• Rat Hippocampalneurons 22 DIV

• Map2 (green)• Synaptophysin (red)• Imaged on ArrayScan

HCS Reader

A.

B.

Automated Plate DeliveryArrayScan VTI

Automated Image Acquisition

Analysis & Visualization – vHCS Discovery ToolBox

Real Time Quantitative Image Analysis (BioApplications)

Automated DataManagement

(Thermo Scientific Store)

DecisionsThermo Scientific HCSExplorer

Fluorescence Dye & Color:

Candidates for Cellular Target:(best assay target screened in bold)

Cellular EntityTargeted:

Fluorescence Channel:

synaptophysin, synapsin1, syntaxin, synaptobrevin, synaptotagmin

PSD95, drebrin, spinophilin/Neurabin

MAP-2, β3-tubulin, Neurofilament

DNA

DyL649DyL549DyL488DAPI

Presynapticmarker

Postsynaptic marker

Cell Body / Neurite MaskNucleus

Channel 4Channel 3Channel 2Channel 1

Fluorescence Dye & Color:

Candidates for Cellular Target:(best assay target screened in bold)

CellularEntityTargeted:Cellular EntityTargeted:

FluorescenceChannel:Fluorescence Channel:

synaptophysin, synapsin1, syntaxin, synaptobrevin, synaptotagmin

PSD95, drebrin, spinophilin/Neurabin

MAP-2, β3-tubulin, Neurofilament

DNA

DyL649DyL549DyL488DAPIDAPI

Presynapticmarker

Presynapticmarker

Postsynapticmarker

Postsynaptic marker

Cell Body /Neurite MaskCell Body /

Neurite MaskNucleusNucleus

Channel 4Channel 4Channel 3Channel 3Channel 2Channel 2Channel 1Channel 1

Raw ImagePresynaptic Marker Synaptophysin (red) Neuronal Marker MAP-2 (green)

Analyzed ImageBranch point (white)Localized Synaptophysin (purple) Neuronal trace (blue)

Neuronal Marker, MAP-2 (white)Neurite Trace from Cell Body (Blue)

Postsynaptic Marker, PSD-95 (magenta) Co-localization (green) of PSD-95 and Synapt

0.01 0.1 1 10 100 1000

25

50

75

100

125

Neuron numberNeurite Count

Glutamate [µM]

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.01 0.1 1 10 100 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.01 0.1 1 10 100 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

***** ***

0.001 0.01 0.1 1 10 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 100

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 10080

90

100

110

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

* * ****

**

Glu

tam

ate

Kai

nate

Glutamate [µM] Glutamate [µM] Glutamate [µM] Glutamate [µM]

Kainate [µM] Kainate [µM] Kainate [µM] Kainate [µM] Kainate [µM]

A

B

0.001 0.01 0.1 1 10 100 10000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

25

50

75

100

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

**

** **

** **

***

0.01 0.1 1 10 100 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.01 0.1 1 10 100 1000

40

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.01 0.1 1 10 100 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.01 0.1 1 10 100 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

***

* ******

0.001 0.01 0.1 1 10 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 1000

25

50

75

100

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 100

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

H2O

2Zi

ncU

0126

C

D

E

H2O2 [µM] H2O2 [µM] H2O2 [µM] H2O2 [µM] H2O2 [µM]

ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM]

U0126 [µM] U0126 [µM] U0126 [µM] U0126 [µM] U0126 [µM]

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

60

80

100

120

Branch PointNeurite Width

% M

axim

um

Aβ1-42 Toxicity on Primary Hippocampal Neuron (50DIV)

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

25

50

75

100

125

Neurite IntensityNeurite Total Length

% M

axi m

um

**

**

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

**

**

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

20

40

60

80

100

120

Presynaptic vesiclesPostsynaptic spotsSynapse number

% M

axim

um

***

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

25

50

75

100

125

Neuron numberNeurite Count

Aβ1-42 µM]] ] ]

% M

axim

um

***

Aβ1-42 µM] Aβ1-42 µM] ]µM] ]µM]Aβ1-42 Aβ1-42

Spot

Num

ber p

er N

eurit

eLe

ngth

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

Presynaptic Postsynaptic

15 DIV21 DIV

***

HCS Reader

DAPI WCS

Presynaptic Marker

• Mouse cortical neurons 18DIV

• Cellomics Whole Cell Stain (red)

• Synaptophysin (green)

• Imaged on ArrayScan HCS Reader

DAPI Presynaptic Marker

MAP-2

• Rat Hippocampalneurons 22 DIV

• Map2 (green)• Synaptophysin (red)• Imaged on ArrayScan

HCS Reader

A.

B.

Automated Plate DeliveryArrayScan VTI

Automated Image Acquisition

Analysis & Visualization – vHCS Discovery ToolBox

Real Time Quantitative Image Analysis (BioApplications)

Automated DataManagement

(Thermo Scientific Store)

DecisionsThermo Scientific HCSExplorer

Fluorescence Dye & Color:

Candidates for Cellular Target:(best assay target screened in bold)

Cellular EntityTargeted:

Fluorescence Channel:

synaptophysin, synapsin1, syntaxin, synaptobrevin, synaptotagmin

PSD95, drebrin, spinophilin/Neurabin

MAP-2, β3-tubulin, Neurofilament

DNA

DyL649DyL549DyL488DAPI

Presynapticmarker

Postsynaptic marker

Cell Body / Neurite MaskNucleus

Channel 4Channel 3Channel 2Channel 1

Fluorescence Dye & Color:

Candidates for Cellular Target:(best assay target screened in bold)

CellularEntityTargeted:Cellular EntityTargeted:

FluorescenceChannel:Fluorescence Channel:

synaptophysin, synapsin1, syntaxin, synaptobrevin, synaptotagmin

PSD95, drebrin, spinophilin/Neurabin

MAP-2, β3-tubulin, Neurofilament

DNA

DyL649DyL549DyL488DAPIDAPI

Presynapticmarker

Presynapticmarker

Postsynapticmarker

Postsynaptic marker

Cell Body /Neurite MaskCell Body /

Neurite MaskNucleusNucleus

Channel 4Channel 4Channel 3Channel 3Channel 2Channel 2Channel 1Channel 1

Raw ImagePresynaptic Marker Synaptophysin (red) Neuronal Marker MAP-2 (green)

Analyzed ImageBranch point (white)Localized Synaptophysin (purple) Neuronal trace (blue)

Neuronal Marker, MAP-2 (white)Neurite Trace from Cell Body (Blue)

Postsynaptic Marker, PSD-95 (magenta) Co-localization (green) of PSD-95 and Synapt

0.01 0.1 1 10 100 1000

25

50

75

100

125

Neuron numberNeurite Count

Glutamate [µM]

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.01 0.1 1 10 100 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.01 0.1 1 10 100 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

***** ***

0.001 0.01 0.1 1 10 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 100

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 10080

90

100

110

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

* * ****

**

Glu

tam

ate

Kai

nate

Glutamate [µM] Glutamate [µM] Glutamate [µM] Glutamate [µM]

Kainate [µM] Kainate [µM] Kainate [µM] Kainate [µM] Kainate [µM]

A

B

0.001 0.01 0.1 1 10 100 10000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

25

50

75

100

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

**

** **

** **

***

0.01 0.1 1 10 100 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.01 0.1 1 10 100 1000

40

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.01 0.1 1 10 100 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.01 0.1 1 10 100 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

***

* ******

0.001 0.01 0.1 1 10 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 1000

25

50

75

100

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 100

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

H2O

2Zi

ncU

0126

C

D

E

H2O2 [µM] H2O2 [µM] H2O2 [µM] H2O2 [µM] H2O2 [µM]

ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM]

U0126 [µM] U0126 [µM] U0126 [µM] U0126 [µM] U0126 [µM]

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

60

80

100

120

Branch PointNeurite Width

% M

axim

um

Aβ1-42 Toxicity on Primary Hippocampal Neuron (50DIV)

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

25

50

75

100

125

Neurite IntensityNeurite Total Length

% M

axi m

um**

**

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

**

**

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

20

40

60

80

100

120

Presynaptic vesiclesPostsynaptic spotsSynapse number

% M

axim

um

***

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

25

50

75

100

125

Neuron numberNeurite Count

Aβ1-42 µM]] ] ]

% M

axim

um

***

Aβ1-42 µM] Aβ1-42 µM] ]µM] ]µM]Aβ1-42 Aβ1-42

Spot

Num

ber p

er N

eurit

eLe

ngth

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

Presynaptic Postsynaptic

15 DIV21 DIV

***

HCS Reader

DAPI WCS

Presynaptic Marker

• Mouse cortical neurons 18DIV

• Cellomics Whole Cell Stain (red)

• Synaptophysin (green)

• Imaged on ArrayScan HCS Reader

DAPI Presynaptic Marker

MAP-2

• Rat Hippocampalneurons 22 DIV

• Map2 (green)• Synaptophysin (red)• Imaged on ArrayScan

HCS Reader

A.

B.

Automated Plate DeliveryArrayScan VTI

Automated Image Acquisition

Analysis & Visualization – vHCS Discovery ToolBox

Real Time Quantitative Image Analysis (BioApplications)

Automated DataManagement

(Thermo Scientific Store)

DecisionsThermo Scientific HCSExplorer

Fluorescence Dye & Color:

Candidates for Cellular Target:(best assay target screened in bold)

Cellular EntityTargeted:

Fluorescence Channel:

synaptophysin, synapsin1, syntaxin, synaptobrevin, synaptotagmin

PSD95, drebrin, spinophilin/Neurabin

MAP-2, β3-tubulin, Neurofilament

DNA

DyL649DyL549DyL488DAPI

Presynapticmarker

Postsynaptic marker

Cell Body / Neurite MaskNucleus

Channel 4Channel 3Channel 2Channel 1

Fluorescence Dye & Color:

Candidates for Cellular Target:(best assay target screened in bold)

CellularEntityTargeted:Cellular EntityTargeted:

FluorescenceChannel:Fluorescence Channel:

synaptophysin, synapsin1, syntaxin, synaptobrevin, synaptotagmin

PSD95, drebrin, spinophilin/Neurabin

MAP-2, β3-tubulin, Neurofilament

DNA

DyL649DyL549DyL488DAPIDAPI

Presynapticmarker

Presynapticmarker

Postsynapticmarker

Postsynaptic marker

Cell Body /Neurite MaskCell Body /

Neurite MaskNucleusNucleus

Channel 4Channel 4Channel 3Channel 3Channel 2Channel 2Channel 1Channel 1

Raw ImagePresynaptic Marker Synaptophysin (red) Neuronal Marker MAP-2 (green)

Analyzed ImageBranch point (white)Localized Synaptophysin (purple) Neuronal trace (blue)

Neuronal Marker, MAP-2 (white)Neurite Trace from Cell Body (Blue)

Postsynaptic Marker, PSD-95 (magenta) Co-localization (green) of PSD-95 and Synapt

0.01 0.1 1 10 100 1000

25

50

75

100

125

Neuron numberNeurite Count

Glutamate [µM]

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.01 0.1 1 10 100 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.01 0.1 1 10 100 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

***** ***

0.001 0.01 0.1 1 10 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 100

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 10080

90

100

110

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

* * ****

**

Glu

tam

ate

Kai

nate

Glutamate [µM] Glutamate [µM] Glutamate [µM] Glutamate [µM]

Kainate [µM] Kainate [µM] Kainate [µM] Kainate [µM] Kainate [µM]

A

B

0.001 0.01 0.1 1 10 100 10000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

25

50

75

100

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

**

** **

** **

***

0.01 0.1 1 10 100 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.01 0.1 1 10 100 1000

40

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.01 0.1 1 10 100 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.01 0.1 1 10 100 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

***

* ******

0.001 0.01 0.1 1 10 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 1000

25

50

75

100

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 100

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

H2O

2Zi

ncU

0126

C

D

E

H2O2 [µM] H2O2 [µM] H2O2 [µM] H2O2 [µM] H2O2 [µM]

ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM]

U0126 [µM] U0126 [µM] U0126 [µM] U0126 [µM] U0126 [µM]

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

60

80

100

120

Branch PointNeurite Width

% M

axim

um

Aβ1-42 Toxicity on Primary Hippocampal Neuron (50DIV)

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

25

50

75

100

125

Neurite IntensityNeurite Total Length

% M

axi m

um

**

**

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

**

**

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

20

40

60

80

100

120

Presynaptic vesiclesPostsynaptic spotsSynapse number

% M

axim

um

***

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

25

50

75

100

125

Neuron numberNeurite Count

Aβ1-42 µM]] ] ]

% M

axim

um***

Aβ1-42 µM] Aβ1-42 µM] ]µM] ]µM]Aβ1-42 Aβ1-42

Spot

Num

ber p

er N

eurit

eLe

ngth

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

Presynaptic Postsynaptic

15 DIV21 DIV

***

HCS Reader

DAPI WCS

Presynaptic Marker

• Mouse cortical neurons 18DIV

• Cellomics Whole Cell Stain (red)

• Synaptophysin (green)

• Imaged on ArrayScan HCS Reader

DAPI Presynaptic Marker

MAP-2

• Rat Hippocampalneurons 22 DIV

• Map2 (green)• Synaptophysin (red)• Imaged on ArrayScan

HCS Reader

A.

B.

Automated Plate DeliveryArrayScan VTI

Automated Image Acquisition

Analysis & Visualization – vHCS Discovery ToolBox

Real Time Quantitative Image Analysis (BioApplications)

Automated DataManagement

(Thermo Scientific Store)

DecisionsThermo Scientific HCSExplorer

Fluorescence Dye & Color:

Candidates for Cellular Target:(best assay target screened in bold)

Cellular EntityTargeted:

Fluorescence Channel:

synaptophysin, synapsin1, syntaxin, synaptobrevin, synaptotagmin

PSD95, drebrin, spinophilin/Neurabin

MAP-2, β3-tubulin, Neurofilament

DNA

DyL649DyL549DyL488DAPI

Presynapticmarker

Postsynaptic marker

Cell Body / Neurite MaskNucleus

Channel 4Channel 3Channel 2Channel 1

Fluorescence Dye & Color:

Candidates for Cellular Target:(best assay target screened in bold)

CellularEntityTargeted:Cellular EntityTargeted:

FluorescenceChannel:Fluorescence Channel:

synaptophysin, synapsin1, syntaxin, synaptobrevin, synaptotagmin

PSD95, drebrin, spinophilin/Neurabin

MAP-2, β3-tubulin, Neurofilament

DNA

DyL649DyL549DyL488DAPIDAPI

Presynapticmarker

Presynapticmarker

Postsynapticmarker

Postsynaptic marker

Cell Body /Neurite MaskCell Body /

Neurite MaskNucleusNucleus

Channel 4Channel 4Channel 3Channel 3Channel 2Channel 2Channel 1Channel 1

Raw ImagePresynaptic Marker Synaptophysin (red) Neuronal Marker MAP-2 (green)

Analyzed ImageBranch point (white)Localized Synaptophysin (purple) Neuronal trace (blue)

Neuronal Marker, MAP-2 (white)Neurite Trace from Cell Body (Blue)

Postsynaptic Marker, PSD-95 (magenta) Co-localization (green) of PSD-95 and Synapt

0.01 0.1 1 10 100 1000

25

50

75

100

125

Neuron numberNeurite Count

Glutamate [µM]

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.01 0.1 1 10 100 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.01 0.1 1 10 100 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

***** ***

0.001 0.01 0.1 1 10 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 100

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 10080

90

100

110

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

* * ****

**

Glu

tam

ate

Kai

nate

Glutamate [µM] Glutamate [µM] Glutamate [µM] Glutamate [µM]

Kainate [µM] Kainate [µM] Kainate [µM] Kainate [µM] Kainate [µM]

A

B

0.001 0.01 0.1 1 10 100 10000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

25

50

75

100

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

**

** **

** **

***

0.01 0.1 1 10 100 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.01 0.1 1 10 100 1000

40

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.01 0.1 1 10 100 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.01 0.1 1 10 100 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

***

* ******

0.001 0.01 0.1 1 10 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 1000

25

50

75

100

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 100

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

H2O

2Zi

ncU

0126

C

D

E

H2O2 [µM] H2O2 [µM] H2O2 [µM] H2O2 [µM] H2O2 [µM]

ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM]

U0126 [µM] U0126 [µM] U0126 [µM] U0126 [µM] U0126 [µM]

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

60

80

100

120

Branch PointNeurite Width

% M

axim

um

Aβ1-42 Toxicity on Primary Hippocampal Neuron (50DIV)

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

25

50

75

100

125

Neurite IntensityNeurite Total Length

% M

axi m

um

**

**

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

**

**

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

20

40

60

80

100

120

Presynaptic vesiclesPostsynaptic spotsSynapse number

% M

axim

um

***

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

25

50

75

100

125

Neuron numberNeurite Count

Aβ1-42 µM]] ] ]

% M

axim

um

***

Aβ1-42 µM] Aβ1-42 µM] ]µM] ]µM]Aβ1-42 Aβ1-42

Spot

Num

ber p

er N

eurit

eLe

ngth

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

Presynaptic Postsynaptic

15 DIV21 DIV

***

HCS Reader

Figure 1: A. Synaptophysin is a good presynaptic marker. DAPI and Whole Cell Stain is used to detect the nuclei and the fine structure of neurites, respectively (Mouse cortical neuron, 18DIV).

B. Synaptophysin and MAP-2 staining for presynaptic vesicle and neurite detection (Rat hippocampal neuron, 22DIV).

Figure 2: Mouse cortical neurons (14 DIV) were stained for synaptophysin (red) and MAP-2 (green) (left panel), and analyzed (right panel) with the ArrayScan VTI HCS Reader and the Neuronal Profiling v3.5 BioApplication.

Figure 3: Rat hippocampal neurons (21 DIV) were stained for synaptophysin, PSD-95 and MAP-2, imaged and analyzed.

Left panel: Neurite detection with MAP-2 staining. Right panel: Postsynaptic marker spot detection with PSD-95 staining (magenta spots) and co-localization with synaptophysin spots (green spot). Co-localized spots (green) represent the location of potential synapses.

Figure 4: Mouse cortical neurons were cultured for 15 DIV or 21 DIV and stained for synaptophysin, PSD- 95 and MAP-2, imaged and analyzed. Only postsynaptic spots stained with PSD-95 antibody increases in 21 DIV neurons compared to 15 DIV neurons (Student’s t-test, p<0.001). Presynaptic spots show no significant change.

• Mouse cortical neurons 18 DIV• Thermo Scientific Whole Cell Stain (red)• Synaptophysin (green)• Imaged on the ArrayScan VTI HCS Reader

• Rat Hippocampal Neurons 22 DIV• Map-2 (green)• Synaptophysin (red)• Imaged on the ArrayScan VTI HCS Reader

Page 5: Neuroscience - Thermo Fisher Scientific · Neuroscience Publications List 2013 Edition. What is high Content sCreening (hCs)? High content screening (HCS), also known as high content

Ap

plication

Notes C-A

N_N

T1112

thermoscientific.com/highcontent

C-AN_NT1112

usa +1 800 432 4091 [email protected]

asia +81 3 5826 1659 [email protected]

europe +32 (0)53 85 71 84 [email protected]

Neurite and Synapse Changes as Neurotoxicity Response Against Drug Treatments

Neurite and Synapse Changes as Neurotoxicity Response Against Aβ1-42 Aggregates

© 2013 Thermo Fisher Scientific Inc. All rights reserved. Alexa Fluor is a trademark of Molecular Probes, Inc. Packard is a trademark of Perkin Elmer Inc. X-Light is a trademark of Crisel Electrooptical Systems & Technology s.r.l. All other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.

DAPI WCS

Presynaptic Marker

• Mouse cortical neurons 18DIV

• Cellomics Whole Cell Stain (red)

• Synaptophysin (green)

• Imaged on ArrayScan HCS Reader

DAPI Presynaptic Marker

MAP-2

• Rat Hippocampalneurons 22 DIV

• Map2 (green)• Synaptophysin (red)• Imaged on ArrayScan

HCS Reader

A.

B.

Automated Plate DeliveryArrayScan VTI

Automated Image Acquisition

Analysis & Visualization – vHCS Discovery ToolBox

Real Time Quantitative Image Analysis (BioApplications)

Automated DataManagement

(Thermo Scientific Store)

DecisionsThermo Scientific HCSExplorer

Fluorescence Dye & Color:

Candidates for Cellular Target:(best assay target screened in bold)

Cellular EntityTargeted:

Fluorescence Channel:

synaptophysin, synapsin1, syntaxin, synaptobrevin, synaptotagmin

PSD95, drebrin, spinophilin/Neurabin

MAP-2, β3-tubulin, Neurofilament

DNA

DyL649DyL549DyL488DAPI

Presynapticmarker

Postsynaptic marker

Cell Body / Neurite MaskNucleus

Channel 4Channel 3Channel 2Channel 1

Fluorescence Dye & Color:

Candidates for Cellular Target:(best assay target screened in bold)

CellularEntityTargeted:Cellular EntityTargeted:

FluorescenceChannel:Fluorescence Channel:

synaptophysin, synapsin1, syntaxin, synaptobrevin, synaptotagmin

PSD95, drebrin, spinophilin/Neurabin

MAP-2, β3-tubulin, Neurofilament

DNA

DyL649DyL549DyL488DAPIDAPI

Presynapticmarker

Presynapticmarker

Postsynapticmarker

Postsynaptic marker

Cell Body /Neurite MaskCell Body /

Neurite MaskNucleusNucleus

Channel 4Channel 4Channel 3Channel 3Channel 2Channel 2Channel 1Channel 1

Raw ImagePresynaptic Marker Synaptophysin (red) Neuronal Marker MAP-2 (green)

Analyzed ImageBranch point (white)Localized Synaptophysin (purple) Neuronal trace (blue)

Neuronal Marker, MAP-2 (white)Neurite Trace from Cell Body (Blue)

Postsynaptic Marker, PSD-95 (magenta) Co-localization (green) of PSD-95 and Synapt

0.01 0.1 1 10 100 1000

25

50

75

100

125

Neuron numberNeurite Count

Glutamate [µM]

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.01 0.1 1 10 100 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.01 0.1 1 10 100 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

***** ***

0.001 0.01 0.1 1 10 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 100

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 10080

90

100

110

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

* * ****

**

Glu

tam

ate

Kai

nate

Glutamate [µM] Glutamate [µM] Glutamate [µM] Glutamate [µM]

Kainate [µM] Kainate [µM] Kainate [µM] Kainate [µM] Kainate [µM]

A

B

0.001 0.01 0.1 1 10 100 10000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

25

50

75

100

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

**

** **

** **

***

0.01 0.1 1 10 100 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.01 0.1 1 10 100 1000

40

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.01 0.1 1 10 100 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.01 0.1 1 10 100 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

***

* ******

0.001 0.01 0.1 1 10 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 1000

25

50

75

100

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 100

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

H2O

2Zi

ncU

0126

C

D

E

H2O2 [µM] H2O2 [µM] H2O2 [µM] H2O2 [µM] H2O2 [µM]

ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM]

U0126 [µM] U0126 [µM] U0126 [µM] U0126 [µM] U0126 [µM]

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

60

80

100

120

Branch PointNeurite Width

% M

axim

um

Aβ1-42 Toxicity on Primary Hippocampal Neuron (50DIV)

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

25

50

75

100

125

Neurite IntensityNeurite Total Length

% M

axi m

um

**

**

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

**

**

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

20

40

60

80

100

120

Presynaptic vesiclesPostsynaptic spotsSynapse number

% M

axim

um

***

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

25

50

75

100

125

Neuron numberNeurite Count

Aβ1-42 µM]] ] ]

% M

axim

um

***

Aβ1-42 µM] Aβ1-42 µM] ]µM] ]µM]Aβ1-42 Aβ1-42

Spot

Num

ber p

er N

eurit

eLe

ngth

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

Presynaptic Postsynaptic

15 DIV21 DIV

***

HCS Reader

DAPI WCS

Presynaptic Marker

• Mouse cortical neurons 18DIV

• Cellomics Whole Cell Stain (red)

• Synaptophysin (green)

• Imaged on ArrayScan HCS Reader

DAPI Presynaptic Marker

MAP-2

• Rat Hippocampalneurons 22 DIV

• Map2 (green)• Synaptophysin (red)• Imaged on ArrayScan

HCS Reader

A.

B.

Automated Plate DeliveryArrayScan VTI

Automated Image Acquisition

Analysis & Visualization – vHCS Discovery ToolBox

Real Time Quantitative Image Analysis (BioApplications)

Automated DataManagement

(Thermo Scientific Store)

DecisionsThermo Scientific HCSExplorer

Fluorescence Dye & Color:

Candidates for Cellular Target:(best assay target screened in bold)

Cellular EntityTargeted:

Fluorescence Channel:

synaptophysin, synapsin1, syntaxin, synaptobrevin, synaptotagmin

PSD95, drebrin, spinophilin/Neurabin

MAP-2, β3-tubulin, Neurofilament

DNA

DyL649DyL549DyL488DAPI

Presynapticmarker

Postsynaptic marker

Cell Body / Neurite MaskNucleus

Channel 4Channel 3Channel 2Channel 1

Fluorescence Dye & Color:

Candidates for Cellular Target:(best assay target screened in bold)

CellularEntityTargeted:Cellular EntityTargeted:

FluorescenceChannel:Fluorescence Channel:

synaptophysin, synapsin1, syntaxin, synaptobrevin, synaptotagmin

PSD95, drebrin, spinophilin/Neurabin

MAP-2, β3-tubulin, Neurofilament

DNA

DyL649DyL549DyL488DAPIDAPI

Presynapticmarker

Presynapticmarker

Postsynapticmarker

Postsynaptic marker

Cell Body /Neurite MaskCell Body /

Neurite MaskNucleusNucleus

Channel 4Channel 4Channel 3Channel 3Channel 2Channel 2Channel 1Channel 1

Raw ImagePresynaptic Marker Synaptophysin (red) Neuronal Marker MAP-2 (green)

Analyzed ImageBranch point (white)Localized Synaptophysin (purple) Neuronal trace (blue)

Neuronal Marker, MAP-2 (white)Neurite Trace from Cell Body (Blue)

Postsynaptic Marker, PSD-95 (magenta) Co-localization (green) of PSD-95 and Synapt

0.01 0.1 1 10 100 1000

25

50

75

100

125

Neuron numberNeurite Count

Glutamate [µM]

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.01 0.1 1 10 100 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.01 0.1 1 10 100 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

***** ***

0.001 0.01 0.1 1 10 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 100

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 10080

90

100

110

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

* * ****

**

Glu

tam

ate

Kai

nate

Glutamate [µM] Glutamate [µM] Glutamate [µM] Glutamate [µM]

Kainate [µM] Kainate [µM] Kainate [µM] Kainate [µM] Kainate [µM]

A

B

0.001 0.01 0.1 1 10 100 10000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

25

50

75

100

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 100 10000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

**

** **

** **

***

0.01 0.1 1 10 100 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.01 0.1 1 10 100 1000

40

60

80

100

120

Neurite IntensityNeurite Total Length

% M

axim

um

0.01 0.1 1 10 100 1000

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.01 0.1 1 10 100 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.01 0.1 1 10 100 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

***

* ******

0.001 0.01 0.1 1 10 1000

25

50

75

100

125

Neuron numberNeurite Count

% M

axim

um

0.001 0.01 0.1 1 10 1000

25

50

75

100

Neurite IntensityNeurite Total Length

% M

axim

um

0.001 0.01 0.1 1 10 100

60

80

100

120

Branch PointNeurite Width

% M

axim

um

0.001 0.01 0.1 1 10 1000

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

0.001 0.01 0.1 1 10 1000

20

40

60

80

100

120

Presynaptic vesiclPostsynaptic spotsSynapse number

% M

axim

um

**

H2O

2Zi

ncU

0126

C

D

E

H2O2 [µM] H2O2 [µM] H2O2 [µM] H2O2 [µM] H2O2 [µM]

ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM] ZnCl2 [µM]

U0126 [µM] U0126 [µM] U0126 [µM] U0126 [µM] U0126 [µM]

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

60

80

100

120

Branch PointNeurite Width

% M

axim

um

Aβ1-42 Toxicity on Primary Hippocampal Neuron (50DIV)

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

25

50

75

100

125

Neurite IntensityNeurite Total Length

% M

axi m

um

**

**

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

30

60

90

120

Presynaptic intensityPostsynaptic intensity

% M

axim

um

**

**

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

20

40

60

80

100

120

Presynaptic vesiclesPostsynaptic spotsSynapse number

% M

axim

um

***

0.062

50.1

25 0.25 0.5 1 2 4 8 16 32

0

25

50

75

100

125

Neuron numberNeurite Count

Aβ1-42 µM]] ] ]

% M

axim

um

***

Aβ1-42 µM] Aβ1-42 µM] ]µM] ]µM]Aβ1-42 Aβ1-42

Spot

Num

ber p

er N

eurit

eLe

ngth

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

Presynaptic Postsynaptic

15 DIV21 DIV

***

HCS Reader

Figure 5: Mouse, rat cortical or hippocampal primary neurons were cultured for 21 DIV, and the dose dependent responses of drugs towards various properties of these neurons were investigated. (A) Glutamate with 10 mM glycine in HBSS was treated for 30 min, washed and replaced with culture media. After 24 hr incubation, neurons were fixed, stained and analyzed. (B) Kainate, (C) H2O2, (D) Zinc, (E) U0126 were treated for 24 hrs in culture media. (Student’s t-test, *p<0.05, **p<0.01, ***p<0.001).

Figure 6: Rat hippocampal primary neurons were cultured for 50 DIV. Dose dependent responses of Aβ1-42 aggregates were investigated. 500 mM Aβ1-42 was incubated at 37 °C in media for 3 days to induce oligomerization. Neurons were incubated with the Aβ1-42 oligomers for 48 hrs, and then fixed, stained, and analyzed. Aβ1-42 toxicity leads to synapse loss. (Student’s t-test, *p<0.05, **p<0.01, ***p<0.001).

Summary Multiparameter Synaptogenesis Assay simultaneously identifies and quantifies neurites, pre- and post-synaptic structures and synapse in an automated manner.

• Neurotoxicity from neurotoxic substances is accurately detected.

• Substances only affecting synapse can be detected.

• Assay works for acute or chronic neurodegenerative disease cell models.

Page 6: Neuroscience - Thermo Fisher Scientific · Neuroscience Publications List 2013 Edition. What is high Content sCreening (hCs)? High content screening (HCS), also known as high content

Bajenaru, M.L. et al. β1 Integrin-Focal Adhesion Kinase (FAK) Signaling Modulates Retinal Ganglion Cells Survival. Invest. Ophthalmol. Vis. Sci. 53, 3482- (2012).

Bao, R. et al. Targeting Heat Shock Protein 90 with Cudc-305 Overcomes Erlotinib Resistance in Non-Small Cell Lung Cancer. Mol. Cancer Ther. 8, 3296-3306 (2009).

Bauer, P.O. et al. Inhibition of Rho Kinases Enhances the Degradation of Mutant Huntingtin. J. Biol. Chem. 284, 13153-13164 (2009).

Blackmore, M.G. et al. High Content Screening of Cortical Neurons Identifies Novel Regulators of Axon Growth. Mol. Cell. Neurosci. 44, 43-54 (2010).

Blackmore, M.G. et al. Krüppel-Like Factor 7 Engineered for Transcriptional Activation Promotes Axon Regeneration in the Adult Corticospinal Tract. Proc. Natl. Acad. Sci. U. S. A. 109, 7517-7522 (2012).

Borikova, A.L. et al. Rho Kinase Inhibition Rescues the Endothelial Cell Cerebral Cavernous Malformation Phenotype. J. Biol. Chem. 285, 11760-11764 (2010).

Breier, J.M., Radio, N.M., Mundy, W.R. & Shafer, T.J. Development of a High-Throughput Screening Assay for Chemical Effects on Proliferation and Viability of Immortalized Human Neural Progenitor Cells. Toxicol. Sci. 105, 119-133 (2008).

Brickelmaier, M. et al. Identification and Characterization of Mefloquine Efficacy against JC Virus in Vitro. Antimicrob. Agents Chemother. 53, 1840-1849 (2009).

Buchser, W.J., Pardinas, J.R., Shi, Y., Bixby, J.L. & Lemmon, V.P. 96-Well Electroporation Method for Transfection of Mammalian Central Neurons. BioTechniques 41, 619-624 (2006).

Buchser, W.J., Slepak, T.I., Gutierrez-Arenas, O., Bixby, J.L. & Lemmon, V.P. Kinase/Phosphatase Overexpression Reveals Pathways Regulating Hippocampal Neuron Morphology. Mol. Syst. Biol. 6, 391 (2010).

Chantong, B., Kratschmar, D.V., Nashev, L.G., Balazs, Z. & Odermatt, A. Mineralocorticoid and Glucocorticoid Receptors Differentially Regulate NF-κB Activity and Pro-Inflammatory Cytokine Production in Murine BV-2 Microglial Cells. J. Neuroinflammation 9, 260 (2012).

Clement, C.M., Dandepally, S.R., Williams, A.L. & Ibeanu, G.C. A Synthetic Analog of Verbenachalcone Potentiates NGF-Induced Neurite Outgrowth and Enhances Cell Survival in Neuronal Cell Models. Neurosci. Lett. 459, 157-161 (2009).

Culbert, A.A. et al. MAPK-Activated Protein Kinase 2 Deficiency in Microglia Inhibits Pro-Inflammatory Mediator Release and Resultant Neurotoxicity: Relevance to Neuroinflammation in a Transgenic Mouse Model of Alzheimer Disease. J. Biol. Chem. 281, 23658-23667 (2006).

Dahl, J.P. et al. Characterization of the Wave1 Knock-out Mouse: Implications for Cns Development. J. Neurosci. 23, 3343-3352 (2003).

del Valle, K., Theus, M.H., Bethea, J.R., Liebl, D.J. & Ricard, J. Neural Progenitors Proliferation Is Inhibited by Ephb3 in the Developing Subventricular Zone. Int. J. Dev. Neurosci. 29, 9-14 (2011).

Denis, J.A. et al. MTOR-Dependent Proliferation Defect in Human ES-Derived Neural Stem Cells Affected by Myotonic Dystrophy Type 1. J. Cell Sci. 126, 1763-1772 (2013).

Doi, H. et al. RNA-Binding Protein TLS Is a Major Nuclear Aggregate-Interacting Protein in Huntingtin Exon 1 with Expanded Polyglutamine-Expressing Cells. J. Biol. Chem. 283, 6489-6500 (2008).

neurosCienCe publiCations list

Page 7: Neuroscience - Thermo Fisher Scientific · Neuroscience Publications List 2013 Edition. What is high Content sCreening (hCs)? High content screening (HCS), also known as high content

Doumanis, J., Wada, K., Kino, Y., Moore, A.W. & Nukina, N. Rnai Screening in Drosophila Cells Identifies New Modifiers of Mutant Huntingtin Aggregation. PLoS One 4 (2009).

Draghetti, C. et al. Functional Whole-Genome Analysis Identifies Polo-Like Kinase 2 and Poliovirus Receptor as Essential for Neuronal Differentiation Upstream of the Negative Regulator αB-Crystallin. J. Biol. Chem. 284, 32053-32065 (2009).

Drew, K.L., McGee, R.C., Wells, M.S. & Kelleher-Andersson, J.A. Growth and Differentiation of Adult Hippocampal Arctic Ground Squirrel Neural Stem Cells. J. Vis. Exp. (2011).

Du, W., Hozumi, N., Sakamoto, M., Hata, J. & Yamada, T. Reconstitution of Schwannian Stroma in Neuroblastomas Using Human Bone Marrow Stromal Cells. Am. J. Pathol. 173, 1153-1164 (2008).

Ehrnhoefer, D.E. et al. A Quantitative Method for the Specific Assessment of Caspase-6 Activity in Cell Culture. PLoS One 6 (2011).

Emery, A.C. & Eiden, L.E. Signaling through the Neuropeptide Gpcr PAC1 Induces Neuritogenesis Via a Single Linear Camp- and ERK-Dependent Pathway Using a Novel Camp Sensor. FASEB J. 26, 3199-3211 (2012).

Emery, A.C., Eiden, M.V. & Eiden, L.E. A New Site and Mechanism of Action for the Widely Used Adenylate Cyclase Inhibitor SQ22,536. Mol. Pharmacol. 83, 95-105 (2013).

Eva, R., Bouyoucef-Cherchalli, D., Patel, K., Cullen, P.J. & Banting, G. IP3 3-Kinase Opposes NGF Driven Neurite Outgrowth. PLoS One 7 (2012).

Falsig, J., Porzgen, P., Lotharius, J. & Leist, M. Specific Modulation of Astrocyte Inflammation by Inhibition of Mixed Lineage Kinases with Cep-1347. J. Immunol. 173, 2762-2770 (2004).

Fennell, M., Chan, H. & Wood, A. Multiparameter Measurement of Caspase 3 Activation and Apoptotic Cell Death in NT2 Neuronal Precursor Cells Using High-Content Analysis. J. Biomol. Screen. 11, 296-302 (2006).

Foley, N.H. et al. Micrornas 10a and 10b Are Potent Inducers of Neuroblastoma Cell Differentiation through Targeting of Nuclear Receptor Corepressor 2. Cell Death Differ. 18, 1089-1098 (2011).

Fowler, A. et al. A Nonradioactive High-Throughput/High-Content Assay for Measurement of the Human Serotonin Reuptake Transporter Function in Vitro. J. Biomol. Screen. 11, 1027-1034 (2006).

Furukawa, Y., Kaneko, K., Yamanaka, K., O’Halloran, T.V. & Nukina, N. Complete Loss of Post-Translational Modifications Triggers Fibrillar Aggregation of SOD1 in the Familial Form of Amyotrophic Lateral Sclerosis. J. Biol. Chem. 283, 24167-24176 (2008).

Gao, Y. et al. Inhibition of Y-Box Binding Protein-1 Slows the Growth of Glioblastoma Multiforme and Sensitizes to Temozolomide Independent O6-Methylguanine-DNA Methyltransferase. Mol. Cancer Ther. 8, 3276-3284 (2009).

Gaublomme, D., Buyens, T. & Moons, L. Automated Analysis of Neurite Outgrowth in Mouse Retinal Explants. J. Biomol. Screen., 1087057112471989 (2012).

Gaughwin, P., Ciesla, M., Yang, H., Lim, B. & Brundin, P. Stage-Specific Modulation of Cortical Neuronal Development by Mmu-Mir-134. Cereb. Cortex 21, 1857-1869 (2011).

ge, Y. et al. Promoting Retinal Ganglion Cell Axonal Regeneration by Inhibition of Transforming Growth Factor Beta (Tgf{Beta}) Signaling. Invest. Ophthalmol. Vis. Sci. 52, 4617- (2011).

Gies, E. et al. Niclosamide Prevents the Formation of Large Ubiquitin-Containing Aggregates Caused by Proteasome Inhibition. PLoS One 5 (2010).

Page 8: Neuroscience - Thermo Fisher Scientific · Neuroscience Publications List 2013 Edition. What is high Content sCreening (hCs)? High content screening (HCS), also known as high content

Guan, J.S. et al. Hdac2 Negatively Regulates Memory Formation and Synaptic Plasticity. Nature 459, 55-60 (2009).

Hahn, A.T., Jones, J.T. & Meyer, T. Quantitative Analysis of Cell Cycle Phase Durations and PC12 Differentiation Using Fluorescent Biosensors. Cell Cycle 8, 1044-1052 (2009).

Hansen, C. et al. A-Synuclein Propagates from Mouse Brain to Grafted Dopaminergic Neurons and Seeds Aggregation in Cultured Human Cells. J. Clin. Invest. 121, 715-725 (2011).

Harrill, J.A. et al. Transcriptional Response of Rat Frontal Cortex Following Acute in Vivo Exposure to the Pyrethroid Insecticides Permethrin and Deltamethrin. BMC Genomics 9, 546 (2008).

Henn, A., Kirner, S. & Leist, M. TLr2 Hypersensitivity of Astrocytes as Functional Consequence of Previous Inflammatory Episodes. J. Immunol. 186, 3237-3247 (2011).

Hu, Y. et al. Netrin-4 Promotes Glioblastoma Cell Proliferation through Integrin B4 Signaling12. Neoplasia 14, 219-227 (2012).

Hutson, T.H., Buchser, W.J., Bixby, J.L., Lemmon, V.P. & Moon, L.D.F. Optimization of a 96-Well Electroporation Assay for Postnatal Rat Cns Neurons Suitable for Cost–Effective Medium-Throughput Screening of Genes That Promote Neurite Outgrowth. Front. Mol. Neurosci. 4 (2011).

Ilyin, S.E. et al. Integrated Expressional Analysis: Application to the Drug Discovery Process. Methods 37, 280-288 (2005).

Jain, S., van Kesteren, R.E. & Heutink, P. High Content Screening in Neurodegenerative Diseases. J. Vis. Exp. (2012).

Jepson, S. et al. Lingo-1, a Transmembrane Signaling Protein, Inhibits Oligodendrocyte Differentiation and Myelination through Intercellular Self-Interactions. J. Biol. Chem. 287, 22184-22195 (2012).

Jossin, Y. & Cooper, J.A. Reelin, Rap1 and N-Cadherin Orient the Migration of Multipolar Neurons in the Developing Neocortex. Nat. Neurosci. 14, 697-703 (2011).

Kaltenbach, L.S. et al. Composite Primary Neuronal High-Content Screening Assay for Huntington’s Disease Incorporating Non-Cell-Autonomous Interactions. J. Biomol. Screen. 15, 806-819 (2010).

Kerrison, J.B., Duh, E.J., Yu, Y., Otteson, D.C. & Zack, D.J. A System for Inducible Gene Expression in Retinal Ganglion Cells. Invest. Ophthalmol. Vis. Sci. 46, 2932-2939 (2005).

Kino, Y. et al. Intracellular Localization and Splicing Regulation of FUS/Tls Are Variably Affected by Amyotrophic Lateral Sclerosis-Linked Mutations. Nucleic Acids Res. 39, 2781-2798 (2011).

Kuai, L. et al. Aak1 Identified as an Inhibitor of Neuregulin-1/ERBB4-Dependent Neurotrophic Factor Signaling Using Integrative Chemical Genomics and Proteomics. Chem. Biol. 18, 891-906 (2011).

Kuai, L. et al. Chemical Genetics Identifies Small-Molecule Modulators of Neuritogenesis Involving Neuregulin-1/ERBB4 Signaling. ACS Chem. Neurosci. 1, 325-342 (2010).

Kunzevitzky, N.J. et al. FOxN4 Is Required for Retinal Ganglion Cell Distal Axon Patterning. Mol. Cell. Neurosci. 46, 731-741 (2011).

Larsson, D.E., Hassan, S.B., Oberg, K. & Granberg, D. The Cytotoxic Effect of Emetine and CGP-74514A Studied with the Hollow Fiber Model and Arrayscan Assay in Neuroendocrine Tumors in Vitro. Anticancer Agents Med. Chem. 12, 783-790 (2012).

Page 9: Neuroscience - Thermo Fisher Scientific · Neuroscience Publications List 2013 Edition. What is high Content sCreening (hCs)? High content screening (HCS), also known as high content

Larsson, D.E., Wickstrom, M., Hassan, S., Oberg, K. & Granberg, D. The Cytotoxic Agents NSC-95397, Brefeldin a, Bortezomib and Sanguinarine Induce Apoptosis in Neuroendocrine Tumors in Vitro. Anticancer Res. 30, 149-156 (2010).

Le, M.T. et al. Microrna-125b Is a Novel Negative Regulator of p53. Genes Dev. 23, 862-876 (2009).

Le, M.T.N. et al. Microrna-125b Promotes Neuronal Differentiation in Human Cells by Repressing Multiple Targets†. Mol. Cell. Biol. 29, 5290-5305 (2009).

Lerch, J.K. et al. Isoform Diversity and Regulation in Peripheral and Central Neurons Revealed through RNA-Seq. PLoS One 7 (2012).

Leyva, M.J. et al. Identification and Evaluation of Novel Small Molecule Pan-Caspase Inhibitors in Huntington’s Disease Models. Chem. Biol. 17, 1189-1200 (2010).

Lie, M., Grover, M. & Whitlon, D.S. Accelerated Neurite Growth from Spiral Ganglion Neurons Exposed to the Rho Kinase Inhibitor H-1152. Neuroscience 169, 855-862 (2010).

Lipinski, M.M. et al. Genome-Wide Analysis Reveals Mechanisms Modulating Autophagy in Normal Brain Aging and in Alzheimer’s Disease. Proc. Natl. Acad. Sci. U. S. A. 107, 14164-14169 (2010).

Liu, D. et al. Screening of Immunophilin Ligands by Quantitative Analysis of Neurofilament Expression and Neurite Outgrowth in Cultured Neurons and Cells. J. Neurosci. Methods 163, 310-320 (2007).

Liu, R. et al. Pinocembrin Protects against B-Amyloid-Induced Toxicity in Neurons through Inhibiting Receptor for Advanced Glycation End Products (Rage)-Independent Signaling Pathways and Regulating Mitochondrion-Mediated Apoptosis. BMC Med. 10, 105 (2012).

Lodge, A.P., Langmead, C.J., Daniel, G., Anderson, G.W. & Werry, T.D. Performance of Mouse Neural Stem Cells as a Screening Reagent: Characterization of PAC1 Activity in Medium-Throughput Functional Assays. J. Biomol. Screen. 15, 159-168 (2010).

Lotharius, J. et al. Progressive Degeneration of Human Mesencephalic Neuron-Derived Cells Triggered by Dopamine-Dependent Oxidative Stress Is Dependent on the Mixed-Lineage Kinase Pathway. J. Neurosci. 25, 6329-6342 (2005).

Low, J. et al. Knockdown of Cancer Testis Antigens Modulates Neural Stem Cell Marker Expression in Glioblastoma Tumor Stem Cells. J. Biomol. Screen. 15, 830-839 (2010).

MacGillavry, H.D. et al. NFIL3 and Camp Response Element-Binding Protein Form a Transcriptional Feedforward Loop That Controls Neuronal Regeneration-Associated Gene Expression. J. Neurosci. 29, 15542-15550 (2009).

Mallon, R. et al. Antitumor Efficacy Profile of PKI-402, a Dual Phosphatidylinositol 3-Kinase/Mammalian Target of Rapamycin Inhibitor. Mol. Cancer Ther. 9, 976-984 (2010).

Matsui, H. et al. PINK1 and Parkin Complementarily Protect Dopaminergic Neurons in Vertebrates. Hum. Mol. Genet. 22, 2423-2434 (2013).

McNeish, J. et al. High-Throughput Screening in Embryonic Stem Cell-Derived Neurons Identifies Potentiators of α-Amino-3-Hydroxyl-5-Methyl-4-Isoxazolepropionate-Type Glutamate Receptors. J. Biol. Chem. 285, 17209-17217 (2010).

Moore, D.L. et al. Klf Family Members Regulate Intrinsic Axon Regeneration Ability. Science 326, 298-301 (2009).

Page 10: Neuroscience - Thermo Fisher Scientific · Neuroscience Publications List 2013 Edition. What is high Content sCreening (hCs)? High content screening (HCS), also known as high content

Nakamura, Y., Lee, S., Haddox, C.L., Weaver, E.J. & Lemmon, V.P. The Role of the Cytoplasmic Domain of the L1 Cell Adhesion Molecule in Brain Development. J. Comp. Neurol. 518, 1113-1132 (2010).

Nguyen, L. et al. Quantifying Amyloid Beta (Abeta)-Mediated Changes in Neuronal Morphology in Primary Cultures: Implications for Phenotypic Screening. J. Biomol. Screen. 17, 835-842 (2012).

Noël, G., Stevenson, S. & Moukhles, H. A High Throughput Screen Identifies Chemical Modulators of the Laminin-Induced Clustering of Dystroglycan and Aquaporin-4 in Primary Astrocytes. PLoS One 6 (2011).

Oliva, A.A., Jr, Atkins, C.M., Copenagle, L. & Banker, G.A. Activated C-Jun N-Terminal Kinase Is Required for Axon Formation. J. Neurosci. 26, 9462-9470 (2006).

Papkovskaia, T.D. et al. G2019s Leucine-Rich Repeat Kinase 2 Causes Uncoupling Protein-Mediated Mitochondrial Depolarization. Hum. Mol. Genet. 21, 4201-4213 (2012).

Pease, M.E. et al. Effect of CNTF on Retinal Ganglion Cell Survival in Experimental Glaucoma. Invest. Ophthalmol. Vis. Sci. 50, 2194-2200 (2009).

Pescini Gobert, R. et al. Convergent Functional Genomics of Oligodendrocyte Differentiation Identifies Multiple Autoinhibitory Signaling Circuits. Mol. Cell. Biol. 29, 1538-1553 (2009).

Qian, M.D. et al. Novel Agonist Monoclonal Antibodies Activate TRKB Receptors and Demonstrate Potent Neurotrophic Activities. J. Neurosci. 26, 9394-9403 (2006).

Radio, N.M., Breier, J.M., Shafer, T.J. & Mundy, W.R. Assessment of Chemical Effects on Neurite Outgrowth in Pc12 Cells Using High Content Screening. Toxicol. Sci. 105, 106-118 (2008).

Radio, N.M., Breier, J.M., Shafer, T.J. & Mundy, W.R. Assessment of Chemical Effects on Neurite Outgrowth in PC12 Cells Using High Content Screening. Cold Spring Harb. Protoc. 2010, pdb.tab2top84- (2010).

Radio, N.M., Freudenrich, T.M., Robinette, B.L., Crofton, K.M. & Mundy, W.R. Comparison of PC12 and Cerebellar Granule Cell Cultures for Evaluating Neurite Outgrowth Using High Content Analysis. Neurotoxicol. Teratol. 32, 25-35 (2010).

Richards, G.R., Millard, R.M., Leveridge, M., Kerby, J. & Simpson, P.B. Quantitative Assays of Chemotaxis and Chemokinesis for Human Neural Cells. Assay Drug Dev. Technol. 2, 465-472 (2004).

Rigamonti, D. et al. Loss of Huntingtin Function Complemented by Small Molecules Acting as Repressor Element 1/Neuron Restrictive Silencer Element Silencer Modulators. J. Biol. Chem. 282, 24554-24562 (2007).

Robinette, B.L., Harrill, J.A., Mundy, W.R. & Shafer, T.J. In Vitro Assessment of Developmental Neurotoxicity: Use of Microelectrode Arrays to Measure Functional Changes in Neuronal Network Ontogeny1. Front Neuroeng. 4 (2011).

Roy Chowdhury, S.K. et al. Impaired Adenosine Monophosphate-Activated Protein Kinase Signalling in Dorsal Root Ganglia Neurons Is Linked to Mitochondrial Dysfunction and Peripheral Neuropathy in Diabetes. Brain 135, 1751-1766 (2012).

Ruan, B. et al. Binding of Rapamycin Analogs to Calcium Channels and FKBP52 Contributes to Their Neuroprotective Activities. Proc. Natl. Acad. Sci. U. S. A. 105, 33-38 (2008).

Ruscher, K. et al. The Sigma-1 Receptor Enhances Brain Plasticity and Functional Recovery after Experimental Stroke. Brain 134, 732-746 (2011).

Page 11: Neuroscience - Thermo Fisher Scientific · Neuroscience Publications List 2013 Edition. What is high Content sCreening (hCs)? High content screening (HCS), also known as high content

Saito, S., Honma, K., Kita-Matsuo, H., Ochiya, T. & Kato, K. Gene Expression Profiling of Cerebellar Development with High-Throughput Functional Analysis. Physiol. Genomics 22, 8-13 (2005).

Santos, A.R.C. et al. B1 Integrin-Focal Adhesion Kinase (Fak) Signaling Modulates Retinal Ganglion Cell (RGC) Survival. PLoS One 7 (2012).

Sarkar, S. et al. Complex Inhibitory Effects of Nitric Oxide on Autophagy. Mol. Cell 43, 19-32 (2011).

Scannevin, R.H. et al. Fumarates Promote Cytoprotection of Central Nervous System Cells against Oxidative Stress Via the Nuclear Factor (Erythroid-Derived 2)-Like 2 Pathway. J. Pharmacol. Exp. Ther. 341, 274-284 (2012).

Schildknecht, S. et al. Neuroprotection by Minocycline Caused by Direct and Specific Scavenging of Peroxynitrite. J. Biol. Chem. 286, 4991-5002 (2011).

Schmidt, F. et al. Identification of VHY/Dusp15 as a Regulator of Oligodendrocyte Differentiation through a Systematic Genomics Approach. PLoS One 7 (2012).

Simpson, P.B. et al. Retinoic Acid Evoked-Differentiation of Neuroblastoma Cells Predominates over Growth Factor Stimulation: An Automated Image Capture and Quantitation Approach to Neuritogenesis. Anal. Biochem. 298, 163-169 (2001).

Stiegler, N.V., Krug, A.K., Matt, F. & Leist, M. Assessment of Chemical-Induced Impairment of Human Neurite Outgrowth by Multiparametric Live Cell Imaging in High-Density Cultures. Toxicol. Sci. 121, 73-87 (2011).

Strum, J.C. et al. 13th International Symposium on Neural Regeneration (ISNR) Microrna 132 Regulates Nutritional Stress-Induced Chemokine Production through Repression of Sirt1. Neurorehabil. Neural Repair 23, 954-1000 (2009).

Tan, C.W., Chan, Y.F., Sim, K.M., Tan, E.L. & Poh, C.L. Inhibition of Enterovirus 71 (Ev-71) Infections by a Novel Antiviral Peptide Derived from Ev-71 Capsid Protein Vp1. PLoS One 7 (2012).

Theus, M.H., Ricard, J., Bethea, J.R. & Liebl, D.J. Ephb3 Inhibits the Expansion of Neural Progenitor Cells in the Svz by Regulating p53 During Homeostasis and Following Traumatic Brain Injury. Stem Cells 28, 1231-1242 (2010).

Toops, K.A., Berlinicke, C., Zack, D.J. & Nickells, R.W. Hydrocortisone Stimulates Neurite Outgrowth from Mouse Retinal Explants by Modulating Macroglial Activity. Invest. Ophthalmol. Vis. Sci. 53, 2046-2061 (2012).

Torper, O. et al. Generation of Induced Neurons Via Direct Conversion in Vivo. Proc. Natl. Acad. Sci. U. S. A. 110, 7038-7043 (2013).

Underwood, B.R. et al. Antioxidants Can Inhibit Basal Autophagy and Enhance Neurodegeneration in Models of Polyglutamine Disease. Hum. Mol. Genet. 19, 3413-3429 (2010).

Usher, L.C. et al. A Chemical Screen Identifies Novel Compounds That Overcome Glial-Mediated Inhibition of Neuronal Regeneration. J. Neurosci. 30, 4693-4706 (2010).

Vergara, M.N., Gutierrez, C. & Canto-Soler, M.V. New Ex-Ovo Electroporation Technique Offers High Transfection Efficiency for Primary Retinal Cell Cultures. Invest. Ophthalmol. Vis. Sci. 53, 1121- (2012).

von Schack, D. et al. Dynamic Changes in the Microrna Expression Profile Reveal Multiple Regulatory Mechanisms in the Spinal Nerve Ligation Model of Neuropathic Pain. PLoS One 6 (2011).

Wheeler, H.E. et al. Integration of Cell Line and Clinical Trial Genome-Wide Analyses Supports a Polygenic Architecture of Paclitaxel-Induced Sensory Peripheral Neuropathy. Clin. Cancer Res. 19, 491-499 (2013).

Page 12: Neuroscience - Thermo Fisher Scientific · Neuroscience Publications List 2013 Edition. What is high Content sCreening (hCs)? High content screening (HCS), also known as high content

Wickstrom, M. et al. The Novel Melphalan Prodrug J1 Inhibits Neuroblastoma Growth in Vitro and in Vivo. Mol. Cancer Ther. 6, 2409-2417 (2007).

Williams, A.L., Dandepally, S.R., Gilyazova, N., Witherspoon, S.M. & Ibeanu, G. Microwave-Assisted Synthesis of 4-Chloro-N-(Naphthalen-1-Ylmethyl)-5-(3-(Piperazin-1-Yl)Phenoxy)Thiophene-2-Sulfo Namide (B-355252): A New Potentiator of Nerve Growth Factor (NGF)-Induced Neurite Outgrowth. Tetrahedron 66, 9577-9581 (2010).

Williams, G. et al. Ganglioside Inhibition of Neurite Outgrowth Requires Nogo Receptor Function: Identification of Interaction Sites and Development of Novel Antagonists. J. Biol. Chem. 283, 16641-16652 (2008).

Wong, H.K. et al. Blocking Acid-Sensing Ion Channel 1 Alleviates Huntington’s Disease Pathology Via an Ubiquitin-Proteasome System-Dependent Mechanism. Hum. Mol. Genet. 17, 3223-3235 (2008).

Wood-Kaczmar, A. et al. Pink1 Is Necessary for Long Term Survival and Mitochondrial Function in Human Dopaminergic Neurons. PLoS One 3 (2008).

Wright, K.T., Griffiths, G.J. & Johnson, W.E.B. A Comparison of High-Content Screening Versus Manual Analysis to Assay the Effects of Mesenchymal Stem Cell-Conditioned Medium on Neurite Outgrowth in Vitro. J. Biomol. Screen. 15, 576-582 (2010).

Yeyeodu, S.T., Witherspoon, S.M., Gilyazova, N. & Ibeanu, G.C. A Rapid, Inexpensive High Throughput Screen Method for Neurite Outgrowth. Curr. Chem. Genomics 4, 74-83 (2010).

Yin, Y. et al. Oncomodulin Links Inflammation to Optic Nerve Regeneration. Proc. Natl. Acad. Sci. U. S. A. 106, 19587-19592 (2009).

Zago, W. et al. Neutralization of Soluble, Synaptotoxic Amyloid β Species by Antibodies Is Epitope Specific. J. Neurosci. 32, 2696-2702 (2012).

Zhang, L. et al. Small Molecule Regulators of Autophagy Identified by an Image-Based High-Throughput Screen. Proc. Natl. Acad. Sci. U. S. A. 104, 19023-19028 (2007).

Zheng, J. et al. Latanoprost Promotes Neurite Outgrowth in Differentiated Rgc-5 Cells Via the PI3K-AKT-MTOR Signaling Pathway. Cell. Mol. Neurobiol. 31, 597-604 (2011).

Zhou, Y. et al. The ZFx Gene Is Expressed in Human Gliomas and Is Important in the Proliferation and Apoptosis of the Human Malignant Glioma Cell Line U251. J. Exp. Clin. Cancer Res. 30, 114 (2011).

C-AC_DNT0913

©2013 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.

thermoscientific.com/highcontent

usa +1 800 432 4091 [email protected]

asia +81 3 5826 1659 [email protected]

europe +32 (0)53 85 71 84 [email protected]