net 04 signal encoding

34
1 Electronic Engineering Electronic Engineering ELE4NET: Signal Encoding ELE4NET: Signal Encoding Lecture 4: Signal Encoding Techniques

Upload: azmat-ali-shah

Post on 04-Oct-2015

233 views

Category:

Documents


0 download

DESCRIPTION

Signal encoding techniques

TRANSCRIPT

Lecture 4:
Encoding and Modulation Techniques
Encoding and Modulation Techniques
Digital Data Digital Signal
! Digital signal  –  Discrete discontinuous voltage ulses
 –  Each ulse is a signal ele.ent
 
/ser inut at a ,- is converted into a strea. o0 %inar&
digits (1s and 2s)3 'inar& 1 is reresented %& 5v and
 %inar& 2 %& 65v3
So.e Ter.s
! /niolar   –  ll signal ele.ents have sa.e sign (all ositive or all negative)
! ,olar  –  One logic state reresented %& ositive voltage the other %&
negative voltage
! Data signaling rate (or 7ust data rate)  –  #ate o0 data trans.ission in %its er second (%s)
! Duration or length o0 a %it  –  Ti.e ta8en 0or trans.itter to e.it the %it (0or data rate # %it
duration is 19#)
 –  Measured in %aud signal ele.ents er second
 
;nterreting Signals
! To interret digital signals the receiver needs to 8now  –  Ti.ing o0 each %it when a %it starts and ends
 –  Signal level (high <2= or low <1=) 0or each %it osition
! +actors a00ecting success0ul interreting o0 signals  –  Signal to noise ratio (S"#)
 –  Data rate
 –  Encoding sche.e (i3e3 mapping data bits to signal elements)
! >ith other 0actors held constant the 0ollowing are true:  –  n increase in data rate increases %it error rate ('E#)3
 –  n increase in S"# decreases 'E#3
 
we need to consider 
! Signal Sectru.  –  Lac8 o0 high 0requencies reduces required %andwidth
 –  Lac8 o0 dc co.onent allows ac couling via trans0or.er roviding electrical isolation
 –  -oncentrate ower in the .iddle o0 the trans.ission %andwidth
! -loc8ing  –  S&nchroni?ing trans.itter and receiver 
 –  E@ternal cloc8 or sel0 cloc8ingA
! Error detection  –  #esonsi%ilit& o0 data lin8 control
 –  'ut can %e %uilt into signal encoding to detect errors .ore quic8l&
! Signal inter0erence and noise i..unit&  –  So.e codes are %etter than others er0or.ance .easured %& 'E# 
! -ost and co.le@it&  –  Bigher signaling rate lead to higher costs
 –  So.e codes require signaling rate greater than data rate
 
 "onreturn to $eroLevel ("#$L)
! Two di00erent voltage levels 0or two %inar& %its
! Coltage constant during %it interval
 –  no transition i3e3 no return to ?ero voltage
! ;.le.entations:
 –  /niolar (a%sence o0 voltage 0or one constant ositive voltage 0or
?ero)
 –  ,olar (negative voltage 0or one value and ositive 0or the other)
2 high level
1 low level
 "onreturn to $ero ;nverted ("#$;)
! -onstant voltage ulse 0or duration o0 %it
! Data encoded as resence or a%sence o0 signal transition at  %eginning o0 %it ti.e
! Transition (low to high or high to low) denotes a %inar& 1
!  "o transition denotes %inar& 2
!  "#$; is a t&e o0 di00erential encoding  –  Di00erential encoding rule: i0 the current %it is a %inar& 2 then the
current %it is encoded with the sa.e signal as the receding %it i0 the current %it is a %inar& 1 then the current %it is encoded with a di00erent signal than the receding %it3
 
 "#$ ,ros and -ons
! ,ros  –  Eas& to engineer 
 –  Ma8e good use o0 %andwidth (requires hal0 the %andwidth o0 Manchester in so.e cases)
! -ons  –  dc co.onent
 –  Lac8 o0 s&nchroni?ation caa%ilit&
e3g3 with a long string o0 1s or 2s 0or "#$L or a long string o0 2s 0or "#$; the outut is a constant voltage over a long eriod o0 ti.e3 So an& dri0t %etween the cloc8s o0 trans.itter and receiver will result in loss o0 s&nchroni?ation %etween the two
! /sed 0or digital .agnetic recording
!  "ot o0ten used 0or signal trans.ission
 
! 'iolarM; (lternate Mar8 ;nversion)
 –  2’ reresented %& no line signal (2v)
 –  1’ reresented %& alternating ositive and negative ulses (e3g3 65 5 65)
 –  'inar& 1 ulses alternate in olarit&
 –  "o loss o0 s&nc i0 a long string o0 1s occurs (2s still a  ro%le.)
 
Multilevel 'inar& – ,seudoternar&
 –  1’ reresented %& no line signal (2v)
 –  2’ reresented %& alternate ositive and negative ulses (e3g3
65 5 65)
 –  'inar& 2 ulses alternate in olarit&
 –  "o loss o0 s&nc i0 a long string o0 2s occurs (1s still a ro%le.)
 –  "o advantage or disadvantage over %iolarM;
 
 
! /se .ore than two voltage levels to reresent data:  –  'iolarM; (lternate Mar8 ;nversion)
 –  ,seudoternar&
 –  Less %andwidth than "#$
 –   "o loss o0 s&nchroni?ation i0 a long string o0 1s occurs in 'iolar M; or a long string o0 2s in ,seudoternar&
! Disadvantages:  –  S&nchroni?ation ro%le. with long runs o0 2s in the case o0 M;
or 1s in the case o0 seudoternar&
 –   "ot as e00icient as "#$ ! Each signal ele.ent onl& reresents one %it (although 0or Flevel
s&ste.s each signal ele.ent could reresent logGF 135H %its)
 –  #eceiver .ust distinguish %etween three levels (6 2)
 
'ihase – Manchester 
! Transition serves as cloc8 and data
! Low to high reresents one
! Bigh to low reresents ?ero
! Seci0ied in ;EEE H2G3F (Ethernet) 0or %ase%and coa@ial
ca%le and twistedair %us L"s
 
'ihase – Di00erential Manchester 
! lwa&s a transition in .iddle o0 interval
! Transition at start o0 a %it eriod reresents ?ero
!  "o transition at start o0 a %it eriod reresents one
 
! t least one – ossi%l& G transitions er %it ti.e
! T&es:  –  Manchester 
as a cloc8)
 –  "o dc co.onent
 –  'uiltin error detection (a%sence o0 an e@ected transition can %e used to detect errors)
! Disadvantages  –  [email protected]. .odulation rate is twice that 0or "#$
 –  #equires .ore %andwidth than .ultilevel %inar& codes
 
 %its er second) and
rate is 19T b where T b 
 %it duration3
signal ele.ents are
twice that o0 "#$;3
Scra.%ling
! Desite the sel0cloc8ing .echanis. %ihase codes are not widel& used in longdistance alications %ecause the& require a high signaling rate relative to data rate
! Scra.%ling – use 0illing sequences to relace sequences that would roduce constant voltage
! #equire.ents:  –  Must roduce enough transitions to .aintain s&nc
 –  Must %e recogni?ed %& receiver and relaced with original sequence
 –  Sa.e length as original
 –   "o dc co.onent
 –   "o reduction in data rate
 –  Error detection caa%ilit&
! ;.le.entations:  –  'H$S (%iolar with H?eros su%stitution)
 –  BD'F (highdensit& %iolarF ?eros)
 
'H$S ('iolar with H$eros Su%stitution) 
! 'ased on %iolarM;
! ;0 an octet o0 all ?eros occurs and last voltage ulse receding this octet was ositive encode as 222626
! ;0 an octet o0 all ?eros occurs and last voltage ulse receding this octet was negative encode as 222626
! -auses two violations o0 M; code an event unli8el& to occur as a result o0 noise
 
BD'F (BighDensit& 'iolarF $eros)
! 'ased on %iolarM;
! String o0 4 ?eros relaced with one or two ulses with 4 th ?ero relaced with a code violation
'valid %iolar signal
C'iolar violation
 
Digital Data nalog Signal
• Transmitting digital data using analog signals
! ,u%lic telehone s&ste.  –  Coice 0requenc& range F22B? to F422B?
 –  /se .ode. (.odulatorde.odulator) which converts digital data to analog signals, and vice versa
! Modulation involves oeration on one or .ore o0 the three characteristics o0 a carrier signal: a.litude 0requenc& and hase3
! Encoding9.odulation techniques  –  .litude shi0t 8e&ing (S*)
 –  +requenc& shi0t 8e&ing (+S*)
 –  ,hase shi0t 8e&ing (,S*)
 
.litude Shi0t *e&ing
! Two %inar& values reresented %& two di00erent a.litudes o0 the carrier 0requenc&
! /suall& one a.litude is ?ero
 –  i3e3 one %inar& digit is reresented %& the resence at constant a.litude o0 the carrier the other %& the a%sence o0 the carrier3
! Susceti%le to sudden gain changes
! ;ne00icient .odulation
! /sed to trans.it digital

  cπ  
! Most co..on 0or. is %inar& +S* ('+S*)
! Two %inar& values reresented %& two di00erent 0requencies (near carrier)
where 0 1 and 0 G are o00set 0ro. the carrier 0requenc& %& equal %ut oosite a.ounts
! Less susceti%le to error than S* 
! / to 1G22%s on voicegrade lines

π  
π  
.ore than two
,hase Shi0t *e&ing
! ,hase o0 carrier signal is shi0ted to reresent data
! 'inar& ,S*   –  Two hases reresent two %inar& digits
! Di00erential ,S*   –  ,hase shi0t is relative to
 revious trans.ission rather
sending a signal burst of the
same phase as the previous
signal burst sent. Binary 1 is
represented by sending a
 to the preceding one. 
cc
c
Modulation o0 nalog Signals 0or Digital Data
 
nalog Data Digital Signal
! Trans0or.ing analog data into digital signals
! nalog data such as voice and video is o0ten digiti?ed to %e a%le to use digital trans.ission 0acilities3 Strictl& sea8ing the  rocess o0 converting analog data into digital data is 8nown as digitization3 
! Once analog data have %een converted into digital data the 0ollowing can haen:  –  The digital data can %e trans.itted using "#$L3 ;n this case we
have in 0act gone directl& 0ro. analog data to a digital signal3
 –  The digital data can %e encoded as a digital signal using a code other than "#$L3 Thus an e@tra ste is required3
 –  The digital data can %e converted into an analog signal via S* +S* or ,S*3
 – 
 
,ulse -ode Modulation
! ,-M is %ased on sampling theorem: ;0 a signal is
sa.led at regular intervals at a rate higher than twice the
highest signal 0requenc& the sa.les contain all the
in0or.ation o0 the original signal3
! Coice data are li.ited to %elow 4222B?3 #equire H222
sa.les er second3
! Bowever these are analog sa.les called ulse a.litude
.odulation (,M) sa.les3
! To convert to digital each o0 these analog sa.les .ust %e
assigned a %inar& code3
 
 
3030 Electronic EngineeringElectronic EngineeringELE4NET: Signal EncodingELE4NET: Signal Encoding
,ulse -ode Modulation (cont’d)
! ;0 we use an H%it sa.le which allows G5I quanti?ing levels the qualit& o0 the recovered voice signal is co.ara%le with that achieved via analog trans.ission3
! This i.lies that a data rate o0 H222 sa.les er second ×  H %its er sa.le I4 8%s is needed 0or a single voice signal3
,-M %loc8 diagra.
Delta Modulation
! variet& o0 techniques have %een used to i.rove the
 er0or.ance o0 ,-M or to reduce its co.le@it&3 One o0
the .ost oular alternatives to ,-M is delta .odulation
(DM)3
! >ith DM analog inut is [email protected] %& a staircase
0unction that .oves u or down one quanti?ation level (δ)
at each sa.ling interval3
! The staircase 0unction has %inar& %ehavior 
 –  Bence encode each sa.le as a single %inar& digit
 –  1 0or u 2 0or down
 
Delta Modulation [email protected]
DM J ,-M ,er0or.ance
! Two i.ortant ara.eters in DM: ste si?e δ and sa.ling rate3
! >hen the analog wave0or. changes ver& slowl& there will %e quanti?ing noise3 This noise increases as δ increases3 >hen the analog wave0or. changes .ore raidl& than the staircase can 0ollow there is sloe overload noise3 This noise increases as δ  decreases3 So δ .ust %e chosen to %alance two t&es o0 noise3
! The accurac& o0 DM can %e i.roved %& increasing the sa.ling rate3 Bowever this increases the data rate o0 the outut signal3
! DM is si.ler to i.le.ent than ,-M3
! ,-M e@hi%its %etter S"# characteristics at the sa.e data rate3
! 'andwidth issue: 0or good voice reroduction with ,-M  –  1GH levels (K %its)
 –  >ith voice %andwidth 4 8B? we need H222 @ K 5I8%s this digital signal could require on the order o0 GH 8B? o0 %andwidth3
 
nalog Data nalog Signals
! nalog data can %e .odulated %& a carrier 0requenc& to  roduce an analog signal in a di00erent 0requenc& %and which can %e utili?ed on an analog trans.ission s&ste.3
! >h& .odulate analog signalsA  –  higher 0requenc& is needed 0or e00ective trans.ission e3g3 voice
signals are transmitted over telephone lines at their original spectrum (baseband transmission), for unguided transmission, it is virtually impossible to transmit baseband signals.
 –  ,er.its 0requenc& division .ultile@ing (chater H)
! T&es o0 .odulation  –  .litude modulation (AM)
 –  +requenc& modulation (FM)
 –  ,hase modulation (PM)