near-wall modelling: fluent capabilities - · pdf filenear-wall modelling: fluent capabilities...

54
© 2006 ANSYS, Inc.  All rights reserved. 1 ANSYS, Inc. Proprietary Near-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006

Upload: domien

Post on 22-Feb-2018

287 views

Category:

Documents


16 download

TRANSCRIPT

Page 1: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 1 ANSYS, Inc. Proprietary

Near-Wall Modelling: FLUENT Capabilities

Dr Aleksey GerasimovSenior CFD EngineerFluent Europe LtdOctober 2006

Page 2: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 2 ANSYS, Inc. Proprietary

Modelling the Turbulent Transport

Mean Flow: 

 Two­Equation Turbulence Models Reynolds­Stress Turbulence Closures Large­Eddy Simulation

Near­Wall Flow: 

 Low­Reynolds­Number Approach Wall Functions

Modelling of the mean flow & near­wall behaviour are equally important in complex industrial flows

The thin viscous sublayer is very influential  in determining wall friction and wall heat transfer in turbulent flows

Page 3: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 3 ANSYS, Inc. Proprietary

Near-Wall Flow Phenomena

The  treatment  of  wall  boundaries  requires  particular attention in turbulence modelling due to the presence of the  viscosity­dominated  region  which  is  responsible  for extremely  sharp  gradients  of  mean  and  turbulent  flow variables

DNS data (Kim et al) DNS data (Kim et al)

Page 4: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 4 ANSYS, Inc. Proprietary

Importance of the Importance of the Near-Wall TurbulenceNear-Wall Turbulence

• Walls  are  main  source  of  the  shear  &  vorticity  and  are responsible  for  the  turbulence  generation  and  dissipation mechanisms

• Accurate near­wall modelling  is  important  for most engineering applications:

– Successful prediction of frictional drag for external flows, or pressure drop for  internal  flows, depends on fidelity of  local wall shear predictions

– Pressure  drag  for  bluff  bodies  is  dependent  upon  extent  of separation

– Thermal performance of heat exchangers, etc., is determined by  wall  heat  transfer  whose  prediction  depends  upon  near­wall effects

Page 5: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 5 ANSYS, Inc. Proprietary

Importance of the Importance of the Near-Wall Turbulence (2)Near-Wall Turbulence (2)

dP/dx=0 dP/dx<0 dP/dx>0

• Flows under pressure gradients, flow separation

Page 6: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 6 ANSYS, Inc. Proprietary

• Buoyancy­assisted and buoyancy­opposed flows

Importance of the Importance of the Near-Wall Turbulence (3)Near-Wall Turbulence (3)

q wal

l

(a)

q wal

l

(b)

Examples of the velocity profiles distortions

Page 7: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 7 ANSYS, Inc. Proprietary

Structure of Turbulent Boundary Layer

Near-Wall Modelling Experimental Evidence

Page 8: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 8 ANSYS, Inc. Proprietary

Near-Wall Modelling IssuesNear-Wall Modelling Issues

• High­Reynolds Number (HRN) k­ε and RSM models have been derived for free shear flows and are valid in the mean part of the turbulent flow away from walls– Some of the modelled terms in these equations are based on 

isotropic behavior• Isotropic diffusion ( µt /σ )• Isotropic dissipation• Pressure­strain redistribution• Some model parameters based on experiments of isotropic 

turbulence– Near­wall flows are anisotropic due to the presence of walls

• Special near­wall treatments are necessary since equations cannot be resolved down to the walls in their original form due to the strong gradients in mean and turbulent quantities

Page 9: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 9 ANSYS, Inc. Proprietary

Flow Behaviour in the Near-Wall Region Flow Behaviour in the Near-Wall Region Equilibrium Flows (1)Equilibrium Flows (1)

Concept of local equilibrium:

Turbulence Production = Turbulence Dissipation

kU/uτ

Examples:                     Flow over a Flat Plate & Fully Developed Pipe Flow

Page 10: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 10 ANSYS, Inc. Proprietary

Flow Behaviour in the Near-Wall Region Flow Behaviour in the Near-Wall Region Equilibrium Flows (2)Equilibrium Flows (2)

• Velocity profile exhibits layer structure identified from dimensional analysis– Inner layer: viscous forces rule, U = f(ρ, τw, µ, y)– Outer layer: dependent upon mean flow– Overlap region: Log­law applies

• k production and dissipation are nearly equal in overlap layer– ‘turbulent equilibrium’

• dissipation >> production in sublayer region

Page 11: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 11 ANSYS, Inc. Proprietary

• In many circumstances, even far enough from the wall for viscous stresses to be negligible, one still finds a region where the local mean velocity U depends only on

U = f(ρ, τw, μ, y) 

• Note, velocity is not dependent on the channel width D or boundary layer thickness δ; nor on “upstream history” (i.e. convection effects)

• Since U = f(ρ, τw, μ, y) the Buckingham theorem tells us there are:  

             5 (variables) – 3 (basic dimensions: M, L, T) = 2 dimensionless groups 

usually presented as:

• The quantity                    evidently has the dimension of velocity and it is usually written as Uτ the friction velocity

Near-Wall Distribution of Mean Velocity

U

τ w/ρ= f yτw /ρ

ν τw/ρ

‘Law of the wall’

Page 12: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 12 ANSYS, Inc. Proprietary

Near-Wall Distribution of Mean Velocity (2)

• Now define    U + = U / Uτ  , y + = y Uτ  / ν   and  obtain  a universal relationship for the near­wall flows

U+ = f ( y+ )• While written  especially for the turbulent region, it applies also to the 

viscous sub­layer  if  

f ( y+ ) = ρyUτ  /μ = y+ 

                                                                                            or

• In the fully turbulent region, while U certainly depends on μ, the difference in velocity  between adjacent layers should not. Thus

      should be independent of μ

UUτ

=y Uρ τ               

Uy= Uρ τ

2=τw

∂U∂ y

=U τdf

dydy

dy=U τ

U τ ρ df

dy

Page 13: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 13 ANSYS, Inc. Proprietary

Near-Wall Distribution of Mean Velocity (3)

• This can only happen if:

• After integration wrt y +

• The edge of the viscous sublayer is where      the laminar and the turbulent regions meet

• With κ = 0.42 and C = 5.45

•  y +  <  5  – laminar region

•  y + > 35  – fully turbulent                           logarithmic region

df

dy=Const⋅ y Uρ τ

−1

f =U=1κ

ln yC

yv Uτ

ν=

ln yvU τ

ν C

yv=

yv Uτ

ν≈11

Page 14: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 14 ANSYS, Inc. Proprietary

Near-Wall Distribution of Temperature

• Reynolds' analogy between momentum and energy transport gives a similar logarithmic law for the mean temperature

• The usual  thermal logarithmic law is

• It is possible to replace the thermal log­law with the help of the hydrodynamic one

T=σT U

Π      Π

yv

yP

yn

P

Velocity log­law

yP

yn

P

Temperature log­law

T=1χ

ln yCθ         Cθ= f Pr = f σ

­   Pee function by   Jayatilleke

Pr ~δδ T

~yv

Page 15: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 15 ANSYS, Inc. Proprietary

Flow Behaviour in the Near-Wall Region Flow Behaviour in the Near-Wall Region Non-Equilibrium Flows (1)Non-Equilibrium Flows (1)

• Equilibrium flows are very rare• Great majority of flows are non­equilibrium

Examples of Non­Equilibrium Flows

– Flows developing under pressure gradients– Buoyant flows

dP/dx=0 dP/dx<0 dP/dx>0

Page 16: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 16 ANSYS, Inc. Proprietary

• Two distinct modelling strategies exist for the near­wall region

– Low­Reynolds­number approach (fine mesh)– Wall­function approach (coarse mesh)

• The choice of modelling strategy depends on the application, the engineering question, available resources…  

Boundary Layer Wall­function MeshLRN Mesh

Near-Wall Modelling OptionsNear-Wall Modelling Options

Page 17: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 17 ANSYS, Inc. Proprietary

Low-Reynolds-Number Modelling

• Fine near­wall grid

• Includes near­wall damping terms

+ Accurate (using appropriate turbulence model)

− Slow convergence due to elongated cells− High storage requirements

Too expensive for most industrial applications

Page 18: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 18 ANSYS, Inc. Proprietary

Conventional Wall Functions

• Coarse near­wall grid: first node in  fully­turbulent region (y+≥30)• Based on prescribed U and T profiles in near­wall cell

+ Fast solution  (at least 10x faster than LRN)

+ Low storage requirements

− Poor results in non­equilibrium flows− Near­wall cell size dependency− Does not take into account such effects as:

Insufficient breadth of applicability

pressure gradients, convective transport andgravitational forces

Page 19: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 19 ANSYS, Inc. Proprietary

Near-Wall Modeling Options in FLUENT Near-Wall Modeling Options in FLUENT Wall-Function ApproachWall-Function Approach

τw=∂U∂ y

• Wall functions provide boundary conditions for momentum, energy, species and turbulent quantities

• The Standard and Non­equilibrium Wall Functions(StWF and NEWF) use the law of the wall

• Original flow equations are modified in accord with the chosen law­of­the­wall

yv

yP

yn

P

yv

yP

yn

P

Velocity profile Temperature profile

qw=−k∂T∂ y

Wall Shear Stress Fick’s Law

Page 20: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 20 ANSYS, Inc. Proprietary

Near-Wall Modeling Options in FLUENT Near-Wall Modeling Options in FLUENT Wall-Function Approach (2)Wall-Function Approach (2)

DDt

Uρ =∂

∂ y [ t ∂U∂ y ]SU                         SU ~τw= f UP , k p , yP

DDt

Tρ =∂

∂ y [σ t

σ t∂T∂ y ]ST                       ST ~ qw= f ' τw , T w , k p , UP

DDt

kρ =∂

∂ y [ t

σk ∂ k∂ y ]G k−ρε               G k⇒Gk= f ' ' τw , k p , y n , yv          ε    ⇒    ε

                                                                                                                                          

DDt

ρε =∂

∂ y [ t

σε ∂ε∂ y ]C 1ε

εk

G k− Cρ 2ε

ε2

k                                      εP=

k P3/ 2

l=

kP3/2

c l yP

C =0 . 09 , C 1ε =1. 44 , C 2ε =1. 92 , σ k=1. 0, σε=1. 3

• Streamwise momentum equation:

• Energy equation:

• Turbulent kinetic energy equation:

• Turbulent energy dissipation rate equation:

NOT SOLVED

In the Near­Wall Row of Cells:

Page 21: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 21 ANSYS, Inc. Proprietary

• FLUENT uses Launder­Spalding Wall Functions– U = U(ρ, τ, µ, y, k )

• Introduces additional velocity scale for ‘general’ application

• Similar ‘wall laws’ apply for energy and species.– Generally, k is obtained from solution of k transport equation

• Cell center is immersed in log layer• Local equilibrium (production = dissipation) prevails∀ ∇k∙n = 0 at surface

– ε calculated at wall­adjacent cells using local equilibrium assumption

•  ε = Cµ3/4k3/2/κy

– Wall functions less reliable when cell intrudes viscous sublayer• Forcing (Production = Dissipation) over (Production << Dissipation)

U ¿≡UP C 1/4 k P

1/ 2

τw /ρy¿≡

ρ C 1/ 4 k P1/2 y Pwhere

U ¿=

1κκ

ln Ey ¿U ¿

=y¿

fory¿yv

¿

y¿yv¿

Standard Wall FunctionsStandard Wall Functions

Page 22: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 22 ANSYS, Inc. Proprietary

Wall functions become less reliable when flow departs from the conditions assumed in their derivation:

– Local equilibrium assumption fails• Severe ∇p• Transpiration through wall• strong body forces• highly 3D flow• rapidly changing fluid properties near wall

– Low­Re flows are pervasive throughout model– Small gaps are present

Limitations of Standard Wall FunctionsLimitations of Standard Wall Functions

Page 23: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 23 ANSYS, Inc. Proprietary

• Log­law is sensitized to pressure gradient for better prediction of adverse pressure gradient flows and separation

• Relaxed local equilibrium assumptions for TKE in wall­neighboring cells

U C1/4 k1/2

τ w/ρ=

ln E ρC1/4 k1/2 y U=U−

12

dpdx [ y

v

ρκ k1/2ln y

yv y−y

v

ρκ k 1/2

yv

2

]

Rij, k, ε are estimated in each region and used to determine average ε  and production of k

where

Non-Equilibrium Wall FunctionsNon-Equilibrium Wall Functions

Page 24: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 24 ANSYS, Inc. Proprietary

•   within thermal viscous sublayer

•   in the fully turbulent region

Thermal Wall Functions

T ¿≡T w−T P ρ c p C

14 k P

12

q

T ¿=Pr y¿12ρ Pr

C1/4 k P1/2

qw

U P2

Temperature log­law

yP

yn

P

T=σT U

Π

Similar  to  the  hydrodynamic  wall   functions  ­  thermal  wall  functions  in Fluent  are  based  on  y*  ,  U*  ,  T*  rather than y+ , U+ , T+

T ¿=Prt [ 1κ

ln Ey¿ Π ] 12ρ

C1

4 kP

12

q [ Prt UP2 Pr−Pr t U c

2 ]

­ terms account for heating due to viscous dissipation (supersonic flows)

Page 25: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 25 ANSYS, Inc. Proprietary

• Hydrodynamic log­law is not valid when the flow departs from the state of local equilibrium

• Thermal log­law is expressed in terms of hydrodynamic one and inevitably suffers from the same limitations

• Plus there is a dependence on molecular and turbulent Prandtl numbers

• Example: Prandtl number for water ranges from 10 to 1.5 when the temperature changes from 0°C to 100°C

Thermal Wall Functions - Limitations

T=PrT U

Π

Π=9 . 24 {PrPr T

3/4

−1}[10 . 28 exp −0 . 007PrPrT ]

Page 26: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 26 ANSYS, Inc. Proprietary

Thermal Wall Functions - Limitations (2)

100 101 102

Y+

0

2

4

6

8

10

12

14

16

18

20

U+

x = 6.25 m, Re=17561 , Grq=3.89e+9 , Bo=0.205x = 7.50 m, Re=17682 , Grq=4.00e+9 , Bo=0.208x = 8.75 m, Re=18031 , Grq=4.27e+9 , Bo=0.211x = 10.0 m, Re=18339 , Grq=4.52e+9 , Bo=0.214log law

LRN: q = 9 kW/m2, Re = 16000

100 101 102

Y+

0

25

50

75

100

125

150

175

200

225

250

T+

x = 6.25 m, Re=17561 , Grq=3.89e+9 , Bo=0.205x = 7.50 m, Re=17682 , Grq=4.00e+9 , Bo=0.208x = 8.75 m, Re=18031 , Grq=4.27e+9 , Bo=0.211x = 10.0 m, Re=18339 , Grq=4.52e+9 , Bo=0.214T+=(0.42/0.46)*(π+U+)

LRN: q = 9 kW/m2, Re = 16000q wal

l

(a)

q wal

l

(b)

• Buoyancy­assisted flow in a pipe      – distortion of the velocity profile

       – distortion of the temperature profile

Page 27: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 27 ANSYS, Inc. Proprietary

Thermal Wall Functions - Limitations (3)

Buoyancy­Aided Upflow of Air in Heated Pipes

Re=15000 

(Experimental data of J. Li, 1994)

50 100 150x/d

0

20

40

60

80

100

Nu

Exp.data of Li (1994)y*

n=50yn

*=75y*

n=100yn

*=150Nu=0.023 Pr0.333 Re0.8

LRN Calculation

Inlet: Re=15023, Gr=2.163*108, Bo=0.1124

(a)

LRN terms included

50 100 150x/d

0

20

40

60

80

100

120

140

160

180

200

220

240

Nu

y*n=48

yn*=100

y*n=250

yn*=500

Nu=0.023 Pr0.333 Re0.8

LRN Calculation

Inlet: Re=49635, Gr=1.745*109, Bo=0.0156

(b)

LRN terms included

q wal

l

(a)

q wal

l

(b)

Page 28: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 28 ANSYS, Inc. Proprietary0.2 0.4 0.6 0.8 1.0

(r­y)/r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

U/U

bulk

neutralmoderate heatingsevere heating

(a)

0.2 0.4 0.6 0.8 1.0(r­y)/r

­0.005

­0.0025

0

0.0025

0.005

ρuv/

(ρU

2 bulk)

neutralmoderate heatingsevere heating

(b)

Buoyant effects cause significant changes in Heat Transfer

q wal

l

(a)

q wal

l

(b)

      Ability of buoyant forces to modify turbulent shear stress 

Consequential changes in the turbulence production 

Altered turbulent diffusivity 

Impaired or enhanced heat transfer 

Dominant Factor:

Thermal Wall Functions - Limitations (4)

Page 29: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 29 ANSYS, Inc. Proprietary

Near-Wall Modelling Options in FLUENT Near-Wall Modelling Options in FLUENT EEnhanced nhanced WWall all TTreatment (EWT)reatment (EWT)

• Enhanced Wall Treatment is a ‘Quasi­LRN’ approach which, ideally, requires fine grid

– Combines the use of a two­layer zonal model and blended law­of­the wall. Thus coarser mesh is less of a problem than in LRN models

– Suitable for low­Re flows or flows with complex near­wall phenomena as it employs fine mesh and directly resolves turbulence variables all the way to the wall

– Turbulence models are modified for the inner layer

– Generally requires a fine near­wall mesh capable of resolving the viscous sub­layer (more than 10 cells within the inner layer)

– The EWT is an option for the k­ε and RSM turbulence models

Page 30: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 30 ANSYS, Inc. Proprietary

EEnhanced nhanced WWall all TTreatment (EWT)reatment (EWT)Two-Layer ModelTwo-Layer Model

• A blended two­layer model is used to determine near­wall ε field:– Domain is divided into viscosity­affected (near­wall) region and 

turbulent core region– High Re turbulence model used in outer layer– ‘Simple’ turbulence model used in inner layer

• Solutions for ε and μt in each region are blended

The two regions are demarcated on a cell­by­cell basis in a dynamic, solution­adaptive way:

– Turbulent core region y* > 200– Viscosity affected region y* < 200

Where y* = ρk1/2y/μ  and y is the shortest distance to a nearest wall

Page 31: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 31 ANSYS, Inc. Proprietary

Models used in two-layer zonesModels used in two-layer zones

• In the turbulent region, the selected high­Re turbulence model is used

• In the viscosity­affected region, a one­equation model is used

– k – equation is same as high­Re model– Length scale used in evaluation of µt is not from ε

•  μt = ρ Cμ k1/2 lμ

•  lµ = cl y (1­exp(­y* /Aµ ))•  cl = κ Cµ

3/4

– Dissipation rate, ε, is calculated algebraically and not from the transport equation•  ε = k3/2 / lε •  lε = cl y (1­exp(­y* /Aε ))

– The two ε ­ fields can be quite different along the interface in highly non­equilibrium turbulence

Page 32: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 32 ANSYS, Inc. Proprietary

Two-Layer Zonal Model

• The k – equation is solved throughout the whole domain, but ε – field is determined by two different formulations 

• The two ε – fields can be quite different along the interface in highly non­equilibrium conditions

Wall

Inner layer

Outer layer  

ε=k

32

ε

ε=k

32

ε

DDt

ρε =¿⋅¿

y¿200

y¿≥200

Page 33: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 33 ANSYS, Inc. Proprietary

Blended Blended εε – – equationsequations

• The transition (of ε – field) from one zone to another can be made smoother by blending the two sets of ε – equations (Jongen, 1998)

ε=k

32

ε

Wall

Inner layer

Outer layer  ρDεDt

=¿⋅¿ aPεP∑nb

anb εnb=S ε P

εP=

k

P

32

ε

λε × [aPεP∑nb

anb εnb=Sε P ] 1−λ ε × [εP=k P

3/ 2

ε ]with   λ ε=

12 [1tanh Rey−Rey

¿

A ]

Page 34: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 34 ANSYS, Inc. Proprietary

Blended Turbulent ViscosityBlended Turbulent Viscosity

• Turbulent viscosity, μt , is also blended using the individual 

formulations λ ε t outer

1−λ ε t inner

t outer=ρ Ck2

ε, t inner=ρ C k , =c y [1−exp − Rey

A ]

ε=k

32

ε

Wall

Inner layer

Outer layer   t outer=ρ Ck2

ε

t inner=ρ C k

Page 35: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 35 ANSYS, Inc. Proprietary

EEnhanced nhanced WWall all TTreatment (EWT)reatment (EWT)Enhanced Wall FunctionsEnhanced Wall Functions

• Momentum boundary condition based on blended law­of­the­wall (Kader):

• Similar blended ‘wall laws’ apply for energy, species, and ω

• Kader’s form for blending allows for incorporation of additional physics

– Pressure gradient effects – Thermal (including compressibility) effects

inner layer

outer layer

u=eΓ u lam e

1Γu turb

Page 36: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 36 ANSYS, Inc. Proprietary

Blended HydrodynamicLaw-of-the-Wall

• Mean velocity

• Blended ‘wall laws’ for temperature and species as well 

u=eΓ u lam e

1Γu turb

where u lam

= y

u turb

=1κ

ln E y

u lam =y

u turb =

ln E y

Γ=−a y

4

1by, a=0 . 01 c ,

b=5c

, c=exp E' '

E−1

Page 37: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 37 ANSYS, Inc. Proprietary

Blended ThermalLaw-of-the-Wall

• Mean temperature

t=eΓ t lam e

1Γ t turb

Γ=−a σ y

4

1b σ3 y, a=0 . 01 c , b=

5c

, c=exp E ' '

E−1

where 

t≡T−T w cρ pu¿

qw' '

t lam

=σ y

t turb =σ t u turb

P

P=9 . 24[σσ t 3/4

−1] [10 . 28 exp −0 . 007σσ t ]

Page 38: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 38 ANSYS, Inc. Proprietary

‘‘Wall-Law’ Wall-Law’ Sub-models and OptionsSub-models and Options

• “Pressure Gradient Effects” option– Always available ­ 

deactivated by default

• “Thermal Effects” option

– Available only when energy equation is turned on ­ deactivated by default

– Accounts for• Non­adiabatic wall heat 

transfer effects• Compressibility effects ­ 

takes effect when ideal­gas option is chosen

Page 39: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 39 ANSYS, Inc. Proprietary

‘‘Wall-Law’ Wall-Law’ Sub-models and Options (2)Sub-models and Options (2)

• The base laws­of­the­wall (mean velocity and temperature) are modified using (White and Christoph, 1972) :

         ― “Pressure Gradient Effects” option

          ― “Thermal Effects” option

τ≃τwdpdx

y , α≡νw

τw uτ

dpdx

ρw

ρ≃1− uβ

− uγ

2¿ ,     β≡

σ t qw' ' uτ

Cpτw T wheat transfer parameter

, γ≡σt uτ

2

2Cp T wcompressibility parameter

¿

pressure gradient

effects

1 yα underbracealignl ¿¿

yβ − yγ 2

¿

thermal effects

1−¿

¿ ¿ ]1

2

¿

du

dy=

1

yκ ¿

¿

Page 40: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 40 ANSYS, Inc. Proprietary

Enhanced Wall TreatmentWall Boundary Conditions

• Zero normal­gradient is applied to TKE at walls

• Other turbulence quantities at wall­adjacent cells are computed, whenever possible, using the blended two­layer formulation– Production of TKE at wall­adjacent cells is computed using the velocity 

gradient given by the blended law­of­the­wall for mean velocity

• Dissipation rate, ε, at wall cells is computed using the inner layer formula 

• EWT is the only near­wall option available for the k­ω models

∂ k∂ n

=0

Page 41: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 41 ANSYS, Inc. Proprietary

• Fully­Developed Channel Flow (Ret = 590)

– For fixed pressure drop cross periodic boundaries, different near­wall mesh resolutions yielded different volume flux as follows

– The enhanced near­wall treatment gives a much smaller variation for different near­wall mesh resolutions compared to the variations found using standard wall functions

Enhanced Wall TreatmentEnhanced Wall TreatmentSome ResultsSome Results

Page 42: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 42 ANSYS, Inc. Proprietary

• For standard or non­equilibrium wall functions, each wall­adjacent cell’s centroid should be located within:

• For the enhanced wall treatment (EWT), each wall­adjacent cell’s centroid should be located: – Within the viscous sublayer,             , for the two­layer zonal 

model:– Preferably within                           for the blended wall 

function

• How to estimate the size of wall­adjacent cells before creating the grid:–                                                       ,

– The skin friction coefficient can be estimated from empirical correlations:

uτ≡τw /ρ=U ec f / 2

y p≈30−300

y p≈1

y p≡ y p uτ/ν ⇒ y p≡y p

ν /uτ

Placement of the Near-Wall Grid PointPlacement of the Near-Wall Grid Point

y p≈30−300

Page 43: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 43 ANSYS, Inc. Proprietary

• Use StWF or NEWF in high­Re applications (Re > 106) where you cannot afford to resolve the viscous sub­layer

– Use NEWF for mildly separating, reattaching, or impinging flows

• You may consider using EWT if:

– Near­wall characteristics are important.– The physics and near­wall mesh of the case is such that y+ is 

likely to vary significantly over a wide portion of the wall region.

• Try to make the mesh either coarse or fine enough to avoid placing the wall­adjacent cells in the buffer layer   (y+ = 5 ~ 30)

Near-Wall Modelling: Near-Wall Modelling: Recommended StrategyRecommended Strategy

Page 44: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 44 ANSYS, Inc. Proprietary

• Original ε – equation for HRN flows

• Std. k­ε model modified by damping functions:

• k and ε equations solved on fine mesh (required) right to the wall

DDt

ρε =∂

∂ x j [ t

σ ε ∂ε∂ x j ] f 1⋅C 1ε

εk

G k− f 2⋅ Cρ 2εε2

k

ε ε −− transport equationtransport equation

turbulent viscosityturbulent viscosityt=ρ f C

k 2

ε

f ,  f 1 , f 2

Near-Wall Modelling: Near-Wall Modelling: Low-Reynolds-Number ModellingLow-Reynolds-Number Modelling

Damping Function LRN Models 

DDt

ρε =∂

∂ x j [ t

σ ε ∂ε∂ x j ]      C 1ε

εk

G k−       Cρ 2εε2

k

Page 45: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 45 ANSYS, Inc. Proprietary

Typical damping functionsTypical damping functions

• Damping functions written in terms of Reynolds numbers:

• e.g., Abid’s model:

ℜt =kρ 2

με; ℜy=

ρ k yμ

; ℜε=ρ με /ρ

1/ 4 yμ

f = tanh0 . 008 Rey 14 Ret−3 /4

f 1=1

f 2=[1−29

exp −Ret2

36 ][1−expRey

12 ]

Page 46: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 46 ANSYS, Inc. Proprietary

Low-Re Model Fundamentals

• Most models try to achieve asymptotic consistency

• The models usually end up looking like

U∂ k∂ x

V∂ k∂ y

=ν t ∂U∂ y

2

−ε∂

∂ y [ν ν t

σk ∂ k∂ y ]

u≈A x , z ,t yO y2

v≈B x , z , t y2O y3

w≈C x , z , t yO y2

as y 0k≈

1

2 A2C2 y2O y3

ε≈ν A2C 2O y

τxy≈AB y3O y4

U∂ ε∂ x

V∂ ε∂ y

=C 1ε f 1

εkν t ∂U

∂ y 2

−C 2ε f 2

ε2

kE

∂ y [ν ν t

σ ε ∂ ε∂ y ]

where ε=ε0ε and ν t=C f k2

/ ε

Page 47: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 47 ANSYS, Inc. Proprietary

LRN k­ε Models

• Several full low­Re k­ε models now available              (not documented or officially supported)– Lam Bremhorst– Launder­Sharma– Abid– Chang et al.– Abe­Kondo­Nagano

• Enables modeling of low­Re effects including transitional flows

• Features not visible in GUI, but must be accessed via TUI

Page 48: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 48 ANSYS, Inc. Proprietary

Two-Layer Near-Wall RSM Model

• Two­layer zonal modeling approach combining

– Launder & Sharma’s low­Re model

– Wolfstein’s one­equation model

• RSM can be used with fine near­wall meshes

• RSM can be used for low­Re turbulent flows

DkDt

=∂

∂ x i t

σ k

∂ k∂ x i t

∂U i

∂ x j ∂U i

∂ x j

∂U j

∂ x i −C Dρk 3/ 2

Page 49: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 49 ANSYS, Inc. Proprietary

Near-Wall Adjustments in RSM models

In second­moment­closures explicit transport equations for  the Reynolds stresses are solved:

Du i u j

Dt=PijGijφijd ij−εij

Two different models of this type are implemented in Fluent

•   ‘Basic’ second­moment­closure model

•    Quadratic pressure strain model

φ ij=φ ij1φij 2φ ijw

Pressure Strain term:

Page 50: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 50 ANSYS, Inc. Proprietary

• Wall reflection term

• If EWT option is chosen and grid is fine then LRN modifications are applied to all three pressure redistribution terms

• Quadratic pressure strain model does not require wall­reflection terms

• Quadratic pressure strain model cannot be employed when EWT is used

Near-Wall Adjustments in RSM models (2)

φij1 φ ijw

φ ij1  , φij 2  , φ ijw= f ReT , a ij

Page 51: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 51 ANSYS, Inc. Proprietary

• Durbin (1990) suggests that wall normal fluctuations,   ,  are responsible for near­wall transport

•      behaves quite differently than      and – attenuation of      is a kinematic effect– damping of      is a dynamic effect

• Model                  instead of

• Requires two additional transport equations:– equation for wall­normal fluctuations, – equation for an elliptic relaxation function, f

v 2

u2v 2 w2

t ~ v 2 T t ~ kT

v 2

u2

v 2

VV22F Low-Re F Low-Re k-k-εε ModelModel

Page 52: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 52 ANSYS, Inc. Proprietary

ρDεDt

=∂

∂ x j [ t

σε ∂ ε∂ x j ] 1

T C1ε t S 2−ρC 2εε

εε−−transporttransport  equationequation

ρD v2

Dt=

∂ x j [ t

σk ∂ v2

∂ x j ] kfρ −ρ v2 εk

vv22  ­­transporttransport  equationequation

f −L2 ∂2 f

∂ x j∂ x j

=C1

T 23−

v2

k C2t S2

N−1 v2

kT

relaxation equationrelaxation equation

T=max [ kε

, 6 νε ] ; L2=C L

2 max [ k3

ε2 ,Cη ν3

ε ]scalesscales

VV22F F k­k­εε model equationsmodel equations

Page 53: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 53 ANSYS, Inc. Proprietary

• Very promising results for a wide range of flow and heat transfer test cases– at least as good as the best of the damping 

function approaches in most test cases

• Still an isotropic eddy­viscosity model– Can be extended for RSM

• Needs 2 additional equations, so requires more memory and CPU than damping functions

VV22F F k­k­εε Model Pro’s and Con’sModel Pro’s and Con’s

Page 54: Near-Wall Modelling: FLUENT Capabilities - · PDF fileNear-Wall Modelling: FLUENT Capabilities Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd October 2006 ... Near-Wall

© 2006 ANSYS, Inc.  All rights reserved. 54 ANSYS, Inc. Proprietary

Thank You