nasa neil armstrong x-20a dyna soar launch aborts - 1962

Upload: orion2015

Post on 30-May-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    1/24

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    2/24

    -

    0 . 0 .. . ' . 0 . 0 . . . .. 0 .0 . . 0 . ..... . . 0 . . 0 .0 . . . 0 0 . 0 .o m e m. . .. 0 .

    NATIONAL AEROMUTICS AND SPACE ADMINISTRATION-

    TECHNICAL MEMOFANDUM X-637

    FLIGHT-SIMULATED OFF-THE-PAD ESCAPE AND LANDING MANElTvERsFOR A VERTICALLY LAUNCHED HYPERSONIC GLIDEB*

    By Gene J. Matranga, W i l l i a m H. Dana, Iand Neil A . Armstrong

    SUMMARY

    A s e r i e s of subsonic maneuvers s imulat ing typical off - the-padescape and landing procedures fo r a ver t ica l ly launched hypersonic-glider config..ration was flown w i n g a del ta-wing a i rplane having apeak e f f e c t i v e l i f t - d r a g r a t i o of 4.7.

    w None of th e required maneuvers posed any pa r t ic ul ar ly d i f f i c u l t ort ax i ng s i t u a t i o n s f o r t h e p i l o t s . Ci r cu l a r , overhead land ing pa t te rnsflown a t 240 knots indicated a i rspeed were r e l a t i v e l y easy t o performand resu l ted i n touchdown longi tudi nal d isp ers io ns of l e s s than+1,200 f e e t .

    A r ed u ct io n i n t h e p i l o t ' s v i s i b i l i t y from t h e c oc kp it d i d n otno t iceab ly impair hi s a b i l i t y t o nav iga te excep t when view of th e a read i r e c t l y b en ea th t h e a i r p l an e was requ ired. However, po rt io ns of t h eescape and landing maneuvers were adversely affe cte d by the reducedv i ibili y .INTRODUCTION

    From a saf e ty -of -f l i ght s tandpoint , take-off and landing are,genera l ly , two of t h e most c r i t i c a l f l i g h t c o n t r o l areas. For a hyper-son ic g l ide r , which i s launched ver t ica l ly f rom the ground a top a l a r g ebooster rocket and i s land ed unpowered, t h e s e areas a r e p a r t i c u l a r l yc r i t i c a l i n t h e e v en t o f a n emergency p r i o r t o la un ch .p ro v id in g f o r s u r v i v a l o f t h e p i l o t and veh ic le i f a main booster ma l -func t ions on th e pad or s h o rt l y a f t e r l i f t - o f f i s t o p r op el t h e v e h ic l ew e l l away from the danger area by means of an aux i l i a ry boos te r on thev e h i c l e . I f t h e v e h ic l e i s boosted high enough and fa s t enough, t h ep i l o t c an r i g h t t h e a i r p l a n e and la n d on a nearb y runway. The problem

    One proposal f o r

    d

    z -i t l e , Unclass i f ied .

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    3/24

    20 . .... .. . . 0 . . . . 0 . . 0 .. . . 0 . .. . 0 . . . ....

    . . . . .... ... 0 .

    of landing the glider, however, could be critical, since the lift-dragratio of several proposed hypersonic-glide configurations is low(about 4), and the vehicle will land unpowered. To further complicatethe landing problem, thermal-structural considerations generally dictatethat window areas be minimized, thus limiting the pilots view from thecockpit

    Low-speed X-15 landing maneuvers were successfully simulated in thestudy reported in reference 1. Based on this program, a series ofanalytical and flight-simulation studies is being conducted at theNASA Flight Research Center, Edwards, Calif., to investigate the sub-sonic, off-the-pad escape and landing maneuvers of a typical verticallylaunched hypersonic glider.flight-test program in which an attempt was made to match predictedescape and landing maneuvers with flight data. Also considered is theeffect on the maneuvers performed of limited pilot visibiljty from thecockpit.

    This paper considers the results of a brief

    SYMBOLS

    normal acceleration, g unitsairplane lift coefficientacceleration due to gravity, ft/sec2

    geometric altitude above touchdown point, fteffective lift-drag ratiotime, sectrue airspeed, ft/secderivative of airspeed with time, E, ft/sec2indicated airspeed, knots

    vertical velocity, ft/seclongitudinal distance from touchdown point, ftlateral distance from touchdown point, fttrim angle of attack, deg

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    4/24

    . 3

    The t e s t a i r p l a n e i s a s ingle -p lace , de lt a -w ing f ig h te r - i n t e rce p to rpowered by a tu rb oj et engine equipped with an a f t e r b u r n e r . A t h r e e -view drawing and a photograph of t h e a i r p la n e a r e s h a m i n f i g u r e s 1and 2, r e s p e c t i v e l y . The p h y s ic a l c h a r a c t e r i s t i c s of t h e a i r p l a n e a r ep re se nt ed i n t a b l e I.

    The wing has an asp ect r a t i o of 2.02 and varies i n th i ckness from5 percen t a t t h e r o o t t o 3 percent a t t h e t i p .d ur in g t h e t e s t s was 36 l b / s q f t .lower sur face s of t he wings were used i n conjunct ion wi th th e landingg e a r t o p ro vi de t h e a d d i t i o n a l d r ag r e qu i re d f o r t h i s i n v e s t i g a t i o n .

    The average w i n g l oad ingSpeed bra ke s lo ca te d on th e upper and

    To f u r t h e r re du ce t h e e f f e c t i v e l i f t - d r a g r a t i o , t h e t h r o t t l e wasT h i s re du ce d t h e i d l e t h r u s t t omodified

    s o tha t when i d l e power was s e l e c t e d t h e a f t e r b u r n e r n o z z lewas f o r ce d t o t h e f u l l -o p e n p o s i t i o n .s l i g h t l y l e s s th an 200 pounds, compared w it h a normal i d l e thr r rs t ofabout 700 pounds.

    Long i tud ina l and l a t e r a l con t ro l of t he a i r p lan e a r e p rovided bye le vo n s l o c a t e d on t h e t r a i l i n g edge o f t h e wing . D i rec t iona l con t ro li s provided by a conventional rudder.hy dra uli c systems ope rate th e outboard elevons. The inboard elevonsa r e e l e c t r i c a l l y s l a ve d t o t h e o utb oa rd e le v on s and a r e a c t u a t e d bye lec t rohydra u l i c va lves . Long i tud inal - con t ro l fo r ces a r e supp li eda r t i f i c i a l l y b y a bungee and bobweight c om bina tion and a r e programed asa func t ion of Wch number. La te ra l - con tro l fo rce s a r e supp li ed a r t i f i -c i a l l y by a bungee.sys tem providing no exte rna l for ce feedback. Pedal for ces ar e suppl ieda r t i f i c i a l l y w i th a bungee.any of t h e maneuvers performed i n t h i s i n v e s t i g a t i o n .

    Two completely independent

    The rudder i s operated by a h yd ra ul ic al ly poweredN o a r t i f i c i a l damping was provided during

    INSTRUMEXCATION

    No i n t e rn a l r ecording ins truments w ere used dur ing th e t e s t s . A l lThree-

    f l i g h t da t a p resen ted were ob tained from A i r Force Fl ight Tes t CenterAskania ci ne th eo do li t e cameras operat ing a t 1 frame per second.s t a t i o n s o l u t i o n s o f t h e s e d a t a de te rm in ed t h e a i r p l a n e p o s i t i o n i nspace a t any t ime. By di f f er en t ia t in g th e po s i t i on da ta , forwardve lo c i ty and ve r t i c a l ve loc i ty were ob ta ined.speeds were determined.

    From a knowledge of a i r -plane forward velo ci ty , a l t i tu de , and wind condi t ions , indic a ted a i r -

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    5/24

    4TESTS

    .-

    Before attempting any simulated landing or off-the-pad escape~maneuvers, a series of constant-speed, wings-level glides was performedto ascertain the lift-drag-ratio variation with airspeed. Tests weremade at several engine power settings with only the gear extended andwith the gear and the speed brakes extended. For most of the maneuversdiscussed, the configuration consisted of gear and speed brakes in theextended position and engine at idle power with the afterburner nozzleopen.

    The escape maneuvers were entered into by executing a high-speed1,000 feet above the ground in the clean configuration.un aboutpredetermined point, the pilot performed a pull-up. At the vertical-attitude position, engine power was reduced to idle and the speed brakes

    were extended. This position corresponds to glider auxiliary-booster-rocket burnout and is where the simulation begins. As the pull-overcontinued, the gear was extended at the gear-extension-limit speed(260 KIAS) . When the inverted, horizontal position was attained, thepilot rolled the vehicle to the erect, level attitude, accelerated toapproach speed, and landed. Figure 3 aids in visualizing the relationbetween this maneuver and the escape maneuver of a vertically launchedvehicle. This perspective sketch shows that the two trajectories mergewhen the test airplane reaches the vertical attitude and when the glider'sbooster rocket burns out; succeeding portions of the trajectories arecoincident. It should be noted that two different speeds were utilizedin the high-speed run, resulting in different speed and altitude combi-nations at the vertical attitude, thereby simulating a variety ofauxiliary-booster-rocket capabilities.

    At a

    360'180To simulate the approach and landing maneuvers, a series of'-spiral, verhead landing patterns was performed at speeds fromKIAS to 290 KIAS and bank angles from 30" to 60". Several straight-

    All landingsn landing patterns were also performed at about 240 KIAS .executed by the five participating pilots were made on the lakebed ofRogers Dry Lake at Edwards Air Force Base, Calif.

    During most of the tests, the airplane canopy was fitted with anamber Plexiglas mask cut out to provide the pilot with a field of visioncomparable to that of a currently proposed boost-glide vehicle.pilot, with a blue visor in place, could see only through the cut-Outportions of the mask. With the visor raised, the pilot could utilizethe full field of view of the test aircraft.

    The

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    6/24

    .RESULTS AND DISCUSSION

    5

    For convenience of presentation, the results of the various phasesof this investigation are treated individually in the following dis-cussion. First, the ranges of lift-drag ratios and angles of attackutilized are noted and compared with corresponding values anticipatedfor some hypersonic-glider vehicles. Succeeding subsections considerthe off-the-pad escape maneuver; the landing, both following escape andduring normal operations; the flare and touchdown; and the pilot'sevaluation of the influence of cockpit visibility on his performance ofthe various maneuvers. Because of the lack of on-board instrumentationand the importance of qualitative evaluation in the critical flightareas being studied, pilot comments are relied upon heavily throughoutthis paper.

    Glider PerformanceThe variations of angle of attack and effective lift-drag ratiowith lift coefficient for the test airplane with the gear and the speedbrakes extended, the engine at idle power setting, and the afterburnernozzle open are presented in figure 4. The angle-of-attack data wereobtained from unpublished reports of the manufacturer's flight tests.The effective lift-drag ratios were determined from data obtained duringconstant-speed glides from an altitude of 20,000 feet to 5,000 feet by

    utilizing the forward speed and the rate of descent to determine theglide angle y . Also, the rate of change of true airspeed was readilycalculated, since the pilot flew a constant indicated airspeed duringthe approaches. These quantities were then combined in the followingequation to obtain the effective lift-drag ratiog

    g tan 7 - V(L/D) =The average lift coefficient was determined as a function of wingloading and the average dynamic pressure in the glides.

    The faired data of figure 4 show that the peak lift-drag ratioof 4.7 occurred at a lift coefficient of 0.38 and an angle of attackof about 10'.The trim angle-of-attack and effective lift-drag-ratio data from

    For comparison, similar data for afigure 4 re presented in figure 5 as a function of indicated airspeedat a wing loading of 36 lb/sq ft.proposed boost-glide vehicle at a wing loading of 28 lb/sq ft are

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    7/24

    6included.which indicates that the test airplane should closely simulate theperformance of the proposed vehicle.than achieved in the successful simulation of the X-15 airplane dis-cussed in reference 1.

    The data for the two configurations are in good agreement,In fact, the comparison is better

    Off-the-Pad Escape ManeuverMore than 40 simulated off-the-pad escape maneuvers were accom-plished during this phase of the study.low-altitude, high-speed run followed by a pull-up to a vertical attitude.At this point, power is reduced to idle and the speed brakes are extended.The pull-over is continued, and the landing gear is lowered at approxi-mately 260 KIAS. When a horizontal, but inverted, attitude is reached,the pilot rolls to the erect, level attitude and accelerates to theproper approach speed.

    The maneuver is preceded by a

    Two sets of conditions exemplifying typical auxiliary-boost-rocketcapabilities were considered. Figure 6 presents a typical trajectoryof a high-energy escape and landing maneuver, and figure 7 presents atime history of the escape phase only. From an initial airspeed ofabout 500 KIAS during the low-level run, a 3.5g pull-up is performed.The vertical attitude is reached at an altitude of about 10,000 feetwith a speed of less than 400 KIAS .reduced normal acceleration (approx. 2g), the peak altitude of14,300 feet was realized with a speed of 1.72K IAS about 32 seconds afterthe initiation of the maneuver. The approach pattern was flown at240 KIAS with an average bank angle of 30".

    With the pull-over continued at a

    The trajectory and time history of a low-energy maneuver arepresented in figures 8 nd 9 , respectively.about 400 KIAS and a 4.5g pull-up, the airplane reaches the verticalattitude at an altitude of about 5,000 feet with a speed of about320 KIAS. Normal acceleration is again reduced to about 2g, and theairplane goes "over the top" at an altitude of about 8,000 feet and anairspeed of l5O KIAS . Although the approach pattern shown in figure 8is flown at 240 KIAS , it is considered to be a much tighter patternthan that of figure 6 because of the lower initial altitude on thedownwind leg of the pattern. There is also much less margin for error,since little excess altitude is available anywhere around the pattern.

    With an initial speed of

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    8/24

    *

    L

    Over-the-t opimulated

    Vi, knots h, f t an, g Vi, kno t s h, f t an, g Vi, knots h, f tburnout point overntry

    525 1,000 3.5 400 9,500 a2.0 190 15,000400 1,000 4.5 32.5 5,000 ~ 2 . 0 155 8,ooo

    .

    +

    7

    -The following tab ul at io n summarizes th e average con dit io ns f o r t h e

    more than 40 maneuvers performed:

    The p i l o t s repor ted t h a t t h e escape maneuvers, as per formed i n th i si n v e s t i g a t i o n , were n ot p a r t i c u l a r l y d i f f i c u l t o r taxing and showed nos ig n i f i c a n t d i f f e r e n c e i n h an d ling c h a r a c t e r i s t i c s b etw een t h e two ty p e sof maneuvers flown. Th is opi nio n i s b as ed upon t h e a b i l i t y of t h e p i l o tt o place th e a i rp lan e on th e downwind le g of t h e p a t t e r n a t a morepre cis e p os i t i on and energy le v el i n the escape maneuvers than i snormally at ta in ed i n power-off approaches.

    Landing PatternsI n ad di t ion t o th e lan dings performed a f te r each escape maneuver,a se r ies of power-off lan di ng approaches was performed over a speed

    range from 180 KIAS t o 290 KIAS . St ra igh t - in approaches as w e l l as360-s piral , overhead pa tt er ns using from 30" t o 60" of bank an gle weremade.In thes e approaches it i s mo s t s i g ni f ic a n t t h a t t h e p i l o t w a sc o n s i s t e n t ly a b l e t o p o s it i o n t h e a i r c ra f t a t th e approach end of th e

    runway a t th e proper landing speed.agreed t h a t a c i r cu la r , overhead pa t te rn s imi la r t o th a t shown i nf i g u r e 10 was eas ies t and most comfortable because it af fo rded a properbalance of excess energy without an excess ively larg e ra te of descent .T h is p a t t e r n ( f i g . lo), flown a t 240 KIAS with a bank angle between30" and 40", i s e n t e re d a t a high-key a l t i t u d e of about 15,000 fe e t .The ave rage ra di us of t u r n was about 7,000 f e e t and r e s u l t e d i n adownwind-leg a l t i t u d e of 8,000 feet and a base- leg a l t i tu de o f 3,500 fe e t .The average ra te o f s ink i n th i s pa t te rn was about 120 f t / s e c , and t h ep e a k r a t e w a s about 140 f t / s ec .

    Also, a l l f i v e p ar t i c i p a t in g p i l o t s

    I n p a r t i c u l a r , t h e s e la n din g t e s t s showed th a t , w i th a n a l t i t u d eof 7,000 f e e t a n d a l a t e r a l d is pl ac em en t of 2.5 n a u t i c a l m i l e s on thedownwind le g of t h e pa tt er n ( a s with t h e lower-energy off-the-p adescape maneuvers), some i n d i c a t i o n s o f t h e l i m i t a t i o n s o f t h e p a t t e r n

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    9/24

    8

    .

    could be determined.so tha t su f f ic ie n t energy would be av a i l ab le t o su ccess fu l ly execu tet h e fl a r e and touchdown. The combinations of geographic boundaryconditions and mi n imum f l y i n g speed required that a bank angle of about30" b e u t i l i z e d . Any fu r t he r inc rea se i n speed would r eq uir e increasedbank angles with reduced t r a n s i t t imes and increased p i l o t response,thereby making t h e maneuver more tax ing f o r th e p i l o t .

    A v e l o c i t y of 240 KIAS w a s flow n i n t h e p a t t e r n s

    A s i n t h e t e s t s o f r e fe r en c e 2, t h e p i l o t s found t h a t t h e slo we rapproach speeds and s in k r a t e s assoc ia te d with a wing loading of30 l b /s q f t t o 40 l b / s q f t res u l t ed i n more comfor tab le pa t te rn s thanexperienced i n s imi la r t e s t s ( r e f . 3) using a v e h i c l e w i th a wingloading near 80 l b / s q f t .

    Flare and TouchdownThe advantages of low wing l oa di ng a r e p a r t i c u l a r l y ev id en t i n t h eexecution of th e fl a r e . The slow approach speeds and low r a t e s ofdescent av a i l ab le with a low-wing- load ing veh ic le a l low th e p i lo t t o

    d el ay t h e f l a r e t o a lower range of a l t i t u d e s where he can more accu-r a t e l y j ud ge h i s p o s i t i o n . The change of f l ig h t pa th dur ing the f l a r ew a s d e f i n i t e and t h e r a t e of l o s s o f a i rs p e e d du r in g t h e f l a r e w a ss m a l l enough t o a l lo w t h e p i l o t t o t a k e c o r r e c t i v e a c t i o n w it ho utdece le ra t ing to a dangerously low speed.The t ime hi s to ry of a t y p i c a l f l a r e m aneuver i s presented i nf i g u r e 11.

    w a s about 500 f e e t .i shed to 205 KIAS.f o r t he f i n a l gl id e and d ece le r a t i on t o touchdown a t a speed of 174 KIAS.During t h i s f i n a l f l oa t in g phase, no ad d i t io na l d rag cou ld be added t ot h e t e s t a i r pl a n e t o s imulate th e gear extensio n on th e hypersonicv e h ic le . However, even i f average speed blee d-o ff of 3 knots/secondt o 4 knots /second cou ld have been doubled i n the se t e s t s , th e t e s t a i r -plan e would b e i n a c l a s s w it h t h e X-13 ( s e e r e f . l), and t h e touchdownmaneuver s t i l l would n o t b e c r i t i c a l .

    The f l a r e - i n i t i a t i o n sp eed w a s 233 KIAS, and t h e a l t i t u d eA t th e complet ion of t h e f l a r e , th e speed d imin-A t t h i s p o in t, a p pr ox im a te ly 10 seconds remained

    The averag e touchdown speed during th e se t e s t s w a s about 170 K IAS .The ra te of si nk a t touchdown w a s l e s s t ha n 3 f t /sec and averaged about2 f t / s e c .of t h e intende d touchdown poin t, which i s s imi la r t o t h a t measured wi tht h e X-15 a i r pl a n e ( r e f . 1).Touchdown lon gi tu di n al di sp er si on s ranged between +1,200 e e t

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    10/24

    .P i l o t Vis ion-Field Simula t ion

    9

    During a po rt io n of the se maneuvers, th e te st- air pl an e canopy wasr e s t r i c t e d t o g iv e t h e p i l o t a f i e l d of view comparable t o t h a ta n t i c i p a t e d f o r a cu rre nt ly proposed boost -g lide vehic le .a n i l l u s t r a t i o n o f t h e a i r p l a n e c anopy f i t t e d w i th two d i f f e r e n t amberP l e x i g l a s msks. With a b l u e v i s o r i n p la c e, t h e p i l o t c ou ld see onlythrough cut -out p or t ion s of the mask; however, w it h t h e visor r a i sed ,t h e p i l o t w a s f ree t o u t i l i z e t h e v iew f i e l d n or ma lly a v a i l a b l e f romt h e t e s t a i r c r a f t .

    Figure 12 i s

    The r e s t r i c t i o n o f v i s i o n d i d no t n o t i c e a b ly r ed uc e t h e p i l o t ' sh igh-a l t i tude-navigat ion ca pa bi l i t y except when it w a s necessa ry t olo ca te some geographica l landmark d i re c t ly beneath th e a i r c ra f t . Ther e s t r i c t e d v i s i o n d i d c a u se c o ns id e ra b le d i f f i c u l t y b ec au se o f t h e l a c kof a horizon r efe ren ce dur ing th e port io n of th e escape maneuver fromt h e v e r t i c a l - a t t i t u d e p o s i t i o n t o t h e po i n t where t h e h o ri zo n r ea pp ea re d.This segment of 3 t o 4 szconds extended t h roxgh a p p r e x b a t e l y 45" ofro ta t i on i n p i tc h . Once th e hor izon appeared dur ing th e pul l -over, t h ere s t r i c te d v is i on posed no added hardship, however. It was not iced thatth e amber Plex igl as wi thout th e v iso r lowered was s u f f i c i e n t l y r e s t r i c -t i v e t o c au se a no t i ceab le de te r io ra t ion i n the q ua l i t y of th e maneuver.

    Loca tion of th e h igh-key po in t was d i f f i c u l t w i th th e r e s t r i c t edv i s i b i l i t y , s i n c e t h e v e h i c l e p as se d d i r e c t l y ov er t h i s p o i n t . O th erd i f f i c u l t i e s were encountered on th e downwind l e g of th e approachp a t t e r n w here l a t e r a l v i s i o n was i n s u f f i c i e n t , and dur ing the 135" t o4'3" segment p r i o r t o r o l l o u t of t h e t i g h t p a t t e r n s where a view throughth e masked c or ne r of t h e canopy was des i red .adequate a f t e r t h e a i r c r a f t had a r r iv e d w it h i n 45" of the runway headingon th e f i n a l approach and remained adequate throughout th e f l a r e andlanding.

    Otherwise, vision w a s

    CONCLUSIONS

    A del ta-wing a i rp lan e having a maximum e f f e c ti v e l i f t - d r a g r a t i oof 4.7 w a s used t o per form a s e r i e s of subsonic, f l igh t - s im ula ted o f f -the-pad escape and land ing maneuvers o f a ver t ica l ly launched hypersonicg li d er . From t h i s s tudy th e fol lowing conclusions can be made:

    1. The off-the-pad escape maneuvers were not considered d i f f i c u l tor t a x i n g b y t h e p i l o t and were s uc h t h a t t h e p i l o t c ou ld p o s i t i o n t h eai rp la ne on t h e downwind l e g more p re ci se ly th an he could i n normalpower-off approaches.

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    11/24

    10

    2. After performing a series of straight-in and circular, overheadapproaches, the pilots concluded that a circular pattern flown at240 knots indicated airspeed was most desirable.3. The flare maneuver was easy to judge and control. The touch-down longitudinal dispersions could be kept within ?1,200 feet withoutexceeding a touchdown rate of descent of 3 feet per second.4. A reduction in the pilot's visibility from the cockpit did notnoticeably decrease his high-altitude-navigation capability except whenit was necessary to observe the terrain directly beneath the aircraft.However, portions of the off-the-pad escape maneuver and landingapproaches were adversely affected.

    Flight Re earch Center,National Aeronautics and Space Administration,Edwards, Calif., January 22, 1962.

    REFERENCES1. Matranga, Gene J.: Analysis of X-15 Landing Approach and FlareCharacteristics Determined From the First 30 Flights. NASATN D-1057,1961.2. Matranga, Gene J., and Menard, Joseph A.: Approach and LandingInvestigation at Lift-Drag Ratios of 3 to 4 Utilizing a Delta-WingInterceptor Airplane. NASA TM X-125, 1959.3. Matranga, Gene J., and Armstrong, Neil A.: Approach and LandingInvestigation at Lift-Drag Ratios of 2 to 4 Utilizing a Straight-Wing Fighter Airplane. NASA TM X-31, 1959.

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    12/24

    wing :Air fo i l sect ion, roo t . . . . . . . . . . . . . . . . . . . . . . W A 005-1.1-306" (Modified)A i r f o i l s ec t io n , t i p . . . . . . . . . . . . . . . . . . . . . . W A 003-1.1-306 (Modified)A r e a , s q f t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557span, ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33.50Mean aerodynamic chord, f t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.25Root chord, ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.08Tip chord, ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.33A s p e c t r a t i o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.02T a p e r r a t i o . 3 3Sweep a t lea ding edge, deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.50Sweep a t qua rte r chord, deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46.50s e e p a t t r a i l i ng edge, deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.50Incidence, deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0Dihedra l ,deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0Geometric twist, deg 0Area ( p e r s i d e ) , sq ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.26Mutimumdeflection, up, deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40Mutimum de fle cti on , down, deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Area (per s ide) , sq f t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.04spm (noma1 to fuse lage r eference l ine) , f t . . . . . . . . . . . . . . . . . . . . . 2. j 5Mean aerodynamic chord, f t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.75ELurimum def lec tion , up, deg 30ELurimum def lec t ion , dam, deg 5Area (per s id e) , sq ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-96S p n , f t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.56Mean aerodynamic chord, ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.10

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Outboard elevon:

    S p n (normal t o fuse lage r eference l ine ) , f t . . . . . . . . . . . . . . . . . . . . . 11.73Mean aerodynamic chord, f t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.04Inboard elevon:

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .S l a t :

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .lat chord/wing chord -13V er t i ca l t a i l :Air f o i l sec t ion , roo t . . . . . . . . . . . . . . . . . . . . . . Nncn OOOj-l. l-256 (Modifie d)A i r f o i l sec ti o n, t i p . . . . . . . . . . . . . . . . . . . . . WCA 000 3.2-1 .1 -50 6 (Modified)Area, s q f t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69.07S p n , f t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.46Mean aerodynamic chord, ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.85A s p e c t r a t i o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.28Taper rat io . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46Sgeepback of qua rter chord, deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48.22Rudder:Area, s q f t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.29Span ( n o d o fuse lage r eference l ine ) , f t . . . . . . . . . . . . . . . . . . . . . 6.26Mean aerodynamic chord, f t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.23Upper-wing speed brakes :Area (per s ide) , sq f t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.26Spn , ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.38

    Mutimum def lect ion, deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45Area (pe r s ide) , sq ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.26S p n , ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.38Mutimum def lect ion, deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    Lower-wing speed brakes:

    Fuselage:Frontal area, sq ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.70Length, f t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53.80Fi nen ess r a t i o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.86Wetted area, sq ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

    Test center-of -gravit y locatio n, percent mean aerodynamic chord 23. . . . . . . . . . . .Weight:Gross, 1 b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26,100m y , b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17,100

    11

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    13/24

    12

    k0

    I

    d

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    14/24

    t

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    15/24

    14. .. . 0.. .,+ . .... ..

    . 0 . . . ....a . e . ....... .. 0 . 0 .. 0 .

    n u-

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    16/24

    0. 0 .0 .. 0 0 ..... .. 0 .. 0 .. 0 .

    I

    0 .2 .4 .6C L

    Figure 4 .- T r i m angl e of a t t ac k and e f f e c t i ve l i f t - d r a g r a t i o as af u n c ti o n of l i f t c o e f fi c i e n t f o r t h e t e s t a ir p l a n e . Gear andspeed bra ke s extended; engine a t idle power w i t h a f t e r b u r n e rnozzle open.

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    17/24

    16a. 0 . . . a .a a. . . . ... 0 .

    Up 16

    12

    8

    4

    0

    (LID)'

    6

    -L-- .4 120120 I60 200 240 280 320

    Vi, knotsFigure 5 . - T r i m a ng le of a t t a c k and e f f e c t i v e l i f t - d r a g r a t i o as af u nc ti o n of i n d i c a te d a i r s p e e d f o r t h e t e s t a i r p l a n e w it h a wing

    loading of 36 l b / s q f t and the boos t -g l ide veh ic l e w ith a wingloading of 28 l b / sq f t .

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    18/24

    Y 1 f t

    0

    I O

    20

    Touchdown/

    h, f t

    10 0 IO 20 30 x 103x , f t

    Figure 6'. Trajectory of typical high-energy off-the-pad escape andlanding maneuver. Initial Vi = 500 KIAS ; glide Vi = 240 KIAS .

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    19/24

    18

    V i , knots

    S t a r t of simulation1II

    f t

    t, secFigure 7.-Time history of typical high-energy off-the-padmaneuver.

    2

    escape

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    20/24

    .

    Y, f t

    IC

    C

    I O

    2c

    2

    h, f t

    0 0 IO 20x, ft

    Figure 8.- rajectory of typical low-energy off-the-pad escape andlanding maneuver. Initial Vi = 400 KIAS; glide Vi = 240 KIAS .

    lo3

    c: t

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    21/24

    20. e.. 0 .. .... .. . ..: . 0 : . . . 1 . .:. . :

    0 . . 0 .. 0 . . . .

    V i , knots

    h, f t

    IIStart of simulationIIIIII

    0 8 16 24t, sec

    Figure 9.- ime history of typical low-energy off-the-pad escapemaneuver.-

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    22/24

    c

    Y , f t

    0

    I O

    20

    h, f t

    IO

    21

    i

    0 IOx, f t

    20 lo3F i g u r e 10.- Typica l l and ing pa t t e rn . V i rr. 240 KIAS; angle of bank = 30";

    ge ar and speed brakes extended and engine a t i d l e power w i th a f t e r -burner nozzle open.

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    23/24

    22

    300-

    V i , knots 200

    100

    h, f t

    Touchdown1, secFigure 11.- Time hi s t or y of ty pi ca l f l a r e maneuver.

  • 8/14/2019 NASA Neil Armstrong X-20A Dyna Soar Launch Aborts - 1962

    24/24

    .. 0 . ..0 . . 0. 0 . . o. 0 0 , . 0 .

    23

    F i g u r e 1 2.- I l l u s t r a t i o n o f a i r p l a n e cano py f i t t e d w i th t w o d i f f e r e n tamber Plex ig las masks.