nanophotonics with silicon nanocrystals -...

72
NanoScience Laboratory Nanophotonics with silicon nanocrystals Lorenzo Pavesi

Upload: others

Post on 30-Aug-2019

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Nanophotonicswith silicon nanocrystals

Lorenzo Pavesi

Page 2: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Material of choice for microelectronics:

• Advanced fabrication capabilities • Mass production• Cheap

Introduction – Silicon photonics

Courtesy of Intel.

Solarpowerninja.com

CMOS compatibility

http://www.galleries.com/Rock_crystal

Silicon photonicsIntegrated “On-chip” optical elements

SiSiO2

• Semiconductor• Band-gap:1.12 eV

• Refractive index:3.4

• Transparent in IR

• Insulator• Band-gap:

8.9 eV• Refractive index:

1.46 • Transparent in

visible and IR

Page 3: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Luxtera single-chip 100-Gbps transceiver targets multiple applications

• The new transceiver chip, which measures 5x6 mm, offers 4x28-Gbps transmission over single mode fiber.

• The device features waveguide, waveguide structures, modulators, couplers, and photodetectors integrated at the wafer level. The photodetectors are germanium, but applied to the wafer using the same CMOS processes as the other devices. A single CW laser powers all four channels; it attaches to the CMOS wafer via a hybrid integration process.

November 8, 2011

Page 4: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Projected integration density

Silicon photonic NOC

Page 5: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Silicon Nanocrystalsa material to widen the scope of silicon

photonics

Page 6: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Silicon quantum dots

• Light emission

• Optical gain

• Nonlinear optical effects

• Photoresponse

• Biocompatibility

• Interface properties

• Sensitization action

• …

Page 7: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Silicon quantum dots

50 nm

Page 8: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Silicon quantum dots

• Light emission

• Optical gain

• Nonlinear optical effects

• Photoresponse

• Biocompatibility

• Interface properties

• Sensitization action

• …

Page 9: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Micro-disk resonatorsWhispering-gallery mode (WGM) resonators:

Light recirculation by total internal reflection.

• Free-standing geometry(Silicon-rich oxide film [SRO] on silicon pedestal)

• Far field detection based on radiative loss of optical resonator

SRO film thickness:200 nm

µ-disk diameter:7 µm

4 µm diameter

|E|2

Si pedestal

SEM imageMicroscope image

Page 10: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory10/3522/11/2012

Active microdisks

Low dimensional Si (Si nanoclusters)

2

Whispering gallery mode microdisk-cavity:

Page 11: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Q factors > 3000

Optics Express 16, 13218 (2008)

Page 12: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Page 13: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

~200 - upper limit on cavity Q

Page 14: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Silicon quantum dots

• Light emission

• Optical gain

• Nonlinear optical effects

• Photoresponse

• Biocompatibility

• Interface properties

• Sensitization action

• …

Page 15: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Silicon quantum dots

• Light emission

• Optical gain

• Nonlinear optical effects

• Photoresponse

• Biocompatibility

• Interface properties

• Sensitization action

• …

Photoluminescence: excitation by optical pumping

Electroluminescence: excitation by electrical injection

Page 16: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Injection into a dielectric

• The only way is to use the tunneling effect

Page 17: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Injection rate engineering

Page 18: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

nc-Si/SiO2 Multilayer LED

• Confined growth of nanocrystals• Better oxide quality• Control over the oxide thickness

Page 19: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

-6 -4 -2 0 2 4 610

-13

10-11

10-9

10-7

10-5

(2 nm SiO2 / 3 nm SRO)

(2 nm SiO2 / 4 nm SRO)

| Gat

e cu

rren

t | (

A)

Gate voltage (V)

Reverse biasForward bias

EL data

points

Low onset of EL voltages, < 3.2 V

J. Appl. Phys. 106, 033104 (2009)

Page 20: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

20

Si-NC LEDon a CMOS wafer

CMOS LED

Page 21: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

21

Si-NC LEDon a CMOS wafer

CMOS LED

Page 22: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Graded gap active layer

Large nanocrystals: Easy injectionSmall nanocrystals: high emission

Injection rate engineering

Page 23: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

10-3

10-2

10-1 1

0.00

0.05

0.10

0.15

0.20 (2 nm SiO2 / 3 nm SRO)

Optimized

(2 nm SiO2 / 4 nm SRO)

Po

we

r p

lug

-in

eff

icie

ncy

(%

)

Current density (mA / cm2)

Page 24: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Silicon quantum dots

• Light emission

• Optical gain

• Nonlinear optical effects

• Photoresponse

• Biocompatibility

• Interface properties

• Sensitization action

• …

Page 25: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Silicon quantum dots

• Light emission

• Optical gain

• Nonlinear optical effects

• Photoresponse

• Biocompatibility

• Interface properties

• Sensitization action

• …

Page 26: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Optical gain

JAP 96, 5747

expON PL

QZ Q SiZ nc P Si nc

O

gI

JI

T d dI

IT I0

Page 27: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

How we measured gain

JAP 96, 5747

I0IT

expON PL

QZ Q SiZ nc P Si nc

O

gI

JI

T d dI

Page 28: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Summary on optical properties of Si-nc

Page 29: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

N4

N3

N2

N1

fast

spontaneous

fast

stimulated

Auger

pump

4 levels system model

1

4

2

3

Page 30: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Model for the 4 levels

Si=O bond formed

at the interface of

the Si-nc with the

matrix

A. Filonov, S. Ossicini, PRB 65 195317 (2002)

Ground state

Excited state

oxygen

oxygen

Page 31: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Silicon quantum dots

• Light emission

• Optical gain

• Nonlinear optical effects

• Photoresponse

• Biocompatibility

• Interface properties

• Sensitization action

• …

Page 32: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Silicon quantum dots

• Light emission

• Optical gain

• Nonlinear optical effects

• Photoresponse

• Biocompatibility

• Interface properties

• Sensitization action

• …

Page 33: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Silicon nanocrystal nonlinearity

Silica

Bulk Silicon

GaAs

Si-ncs

n2= (1.54x10-16) cm2/W

n2= (1.59x10-13) cm2/W

n2= (4.5x10-14) cm2/W

n2= (2 ÷ 8x10-13) cm2/W

n=n0+n2I

Page 34: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

All optical switching

l = n d

A. Martinez et al. Nanoletters (2010)

Page 35: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience LaboratoryA. Martinez et al. Nanoletters (2010)

Page 36: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Active microdisk for optical switching

The top of the waveguide is free

Page 37: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Active microdisk for optical switching

Silicon nanocrystals

silicon

Page 38: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Optical bistability

Page 39: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Silicon quantum dots

• Light emission

• Optical gain

• Nonlinear optical effects

• Photoresponse

• Biocompatibility

• Interface properties

• Sensitization action

• …

Page 40: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Silicon quantum dots

• Light emission

• Optical gain

• Nonlinear optical effects

• Photoresponse

• Biocompatibility

• Interface properties

• Sensitization action

• …

Page 41: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Use of solar spectrum in crystalline silicon cells

Page 42: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Use of nanocrystals: tandem cells

Page 43: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Use of nanocrystals: downshifter layer

Page 44: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

The structure of the device

Page 45: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

No. Active layerPeriod of multi-layer

Layer thickness

Q1 SRO/SiO2 5 2 nm +1 nm

Q2 SRO/SiO2 5 3 nm + 1 nm

Q3 SRO 20 nm

Q5 -Si/SiO2 5 3 nm + 1 nm

Q7 SRN/SiO2 5 3 nm + 1 nm

Q8 SRO/Si3N4 5 3 nm + 1 nm

Q9 SRN/Si3N4 5 3 nm + 1 nm

The structure of the device

Page 46: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.41E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

ICu

rre

nt (A

)I

Voltage (V)

SRO/SiO2

SRO

a-Si/SiO2

I-V curves measured in dark

Page 47: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Photoresponsivity

400 500 600 700 800

10-5

10-4

10-3

Q1(SRO/SiO2=2nm/1nm)

Q2(SRO/SiO2=3nm/1nm)

Q3(SRO)

Q5(-Si/SiO2=3nm/1nm)

Q7(SRN/SiO2=3nm/1nm)

Ph

oto

resp

on

siv

ity (

A/W

)

Wavelength (nm)

Q5

Page 48: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

a-Si/SiO2 shows the best PV effect

0.00 0.05 0.10 0.15 0.200

1

2

3

4

5

6

7

Cu

rre

nt

(A

)

Voltage (V)

3.4 A

120 mV

FF: 30.2

Isc

: 6 ± 1 A

Voc

: 220 ± 1 mV

Pmax

: 40.8 W/cm2

Rserial = 23.6 kΩ

Rshunt = 51.2 kΩ

Rserial = 6.41 kΩ

Rshunt = 54.1 kΩ

Lambert W function

Conversion efficiency 0.41 %

Page 49: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Si-nc as down-shifter layer

Silicon nanocrystals

Page 50: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Si-nc as down-shifter layer

Page 51: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

400 500 600 7000.0

0.2

0.4

0.6

0.8

1.0

Op

tica

l fu

nctio

n

Wavelength (nm)

TSRO

RSRO

ASRO

Page 52: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

400 500 600 7000.0

0.2

0.4

0.6

0.8

1.0

Op

tica

l fu

nctio

n

Wavelength (nm)

TSRO

RSRO

ASRO

0.0

0.1

0.2

0.3

Ph

oto

resp

on

siv

ity (

A/W

)

PRARC

(b) PDS-2

PRARC calculated photoresponsivity with a passive layer

ARCPR

ARC

Page 53: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

400 500 600 7000.0

0.2

0.4

0.6

0.8

1.0

Op

tica

l fu

nctio

n

Wavelength (nm)

TSRO

RSRO

ASRO

0.0

0.1

0.2

0.3

Ph

oto

resp

on

siv

ity (

A/W

)

PR

PRARC

(b) PDS-2

PR measured photoresponsivityPRARC calculated photoresponsivity with a passive layer

PL+ARCPR

ARCPR

ARC

Page 54: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

A maximum enhancement of the internal quantum efficiency of 14%

400 500 600 7000.0

0.2

0.4

0.6

0.8

1.0

Op

tica

l fu

nctio

n

Wavelength (nm)

TSRO

RSRO

ASRO

0.0

0.1

0.2

0.3

Ph

oto

resp

on

siv

ity (

A/W

)

Inte

rnal q

ua

ntu

m e

ffic

iency e

nh

an

ce

me

nt

PR

PRARC

INT

(b) PDS-2

Page 55: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Modeling of Si-QD solar cells

Laboratory reference

LaboratoryDS layer

CommercialReference

CommercialDS layer

16.50 % 17.56 % 14.20 % 15.11 %

Page 56: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Silicon quantum dots

• Light emission

• Optical gain

• Nonlinear optical effects

• Photoresponse

• Biocompatibility

• Interface properties

• Sensitization action

• …

Page 57: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Silicon quantum dots

• Light emission

• Optical gain

• Nonlinear optical effects

• Photoresponse

• Biocompatibility

• Interface properties

• Sensitization action

• …

Page 58: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Si-nc as imaging agents

Preparation:

1. Sonication of poroussilicon

2. Photoinduced hydrosilylation reaction between undecylenic acid and hydrogen passivated Si-nc surface

Page 59: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Si-nc as bioimaging agent

COOH

COOH

CO

OH

Hydrophilic alkyl-capped Si-nc

High quantum yieldQY ~ 30 %

TEM image

Luminescent clear suspensionin different solvents (water, ethanol).

No change in PL lineshapein different solvents.

Page 60: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Si-nc as bioimaging agent

1. Si-nc-COOH can be storedin ethanol for long periods

of time.

2. In water Si-nc-COOH slowlyoxidized and dissolve.

Biodegradability is achieved.

Si-nc-COOH without physical coating:

Page 61: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Si-nc-COOH with physical coating:

Biodegradability is mantained.

Si-nc as bioimaging agent

Page 62: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

DCA was not added

Bio imaging

• DCA (sodium deoxycholate monohydrate ) shows similiarbehaviour as SDS

• DCA less toxic than SDS

Fluorescence images of SKOV-3 cells incubated with Si-nc-COOH+DCA for 30 min.

Page 63: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Silicon quantum dots

• Light emission

• Optical gain

• Nonlinear optical effects

• Photoresponse

• Biocompatibility

• Interface properties

• Sensitization action

• …

Page 64: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Silicon quantum dots

• Light emission

• Optical gain

• Nonlinear optical effects

• Photoresponse

• Biocompatibility

• Interface properties

• Sensitization action

• …

Page 65: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Si-nc as Er3+ sensitizer

Si-nc

Er3+

Sensitization:

Si-nc upon excitation (optical or electrical)transfers its energy to nearby Er3+ ions.

• Increase in effective excitationcross-section for up to 5 ordersof magnitudes(≈ 10-21 → ≈ 10-16 cm2)

• Broadband excitation

4I13/2 - 4I15/2 Er3+ radiative transitions falls in the third telecom window (maximum transparency

of silica fibers).

Page 66: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Si-NCs:Er LEDs

• SiOx: LPCVD ~ 50 nm, Si excess: 9-16 at. %;

• SiOx anneal: 900°C, 1 h;

• Er implantation: 20 keV, 1x1015/cm2;

• Er post-implantation anneal: 800°C, 6 h

Page 67: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Si-NCs:Er LEDs - Results

External

Quantum

Efficiency

0.55 % in DC

Page 68: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Si-NCs:Er LEDs - Results

External

Quantum

Efficiency

0.55 % in DC

Page 69: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Conclusions

• Silicon nanocrystals are a viable platform to improve-enable-widen the scope of silicon photonics

• A lot of new physics can be found in an already mature research field such as Silicon Photonics

Page 70: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Page 71: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Acknowledgments

Page 72: Nanophotonics with silicon nanocrystals - unitn.itscience.unitn.it/~semicon/presentations/Vigoni2012.pdf · NanoScienceLaboratory Luxtera single-chip 100-Gbps transceiver targets

NanoScience Laboratory

Acknowledgments