murayama1 down size 01

109
8/14/2019 Murayama1 Down Size 01 http://slidepdf.com/reader/full/murayama1-down-size-01 1/109 Cosmology Dark Matter AESHEP 2012 10 25 Kavli IPMU, University of Tokyo UC Berkeley, Lawrence Berkeley Laboratory Hitoshi Murayama I OD IAS TODAIINSTIT UTES FO R ADVANCED STUD Y

Upload: iqbal-robiyana

Post on 04-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 1/109

Cosmology

Dark MatterAESHEP 2012 10 25

Kavli IPMU, University of Tokyo

UC Berkeley, Lawrence Berkeley LaboratoryHitoshi Murayama

I OD IAS

TODAI INSTIT UTES FO R ADVANCED STUD Y

Page 2: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 2/109

How did the Universe begin?

What is its fate?What is it made of?What are its fundamental laws?

Why do we exist?

interdisciplinary institute ofastronomy , physics and mathematics

10-year program by Japanesegovernment since 2007

Page 3: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 3/109

Oct 2007

Page 4: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 4/109

Oct 2008

Page 5: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 5/109

Oct 2009

Page 6: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 6/109

Oct 2010

Page 7: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 7/109

Oct 2011

Page 8: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 8/109

Oct 2012

picture will be taken on Oct 19

Page 9: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 9/109

0

10

20

30

40

50

60

70

80

Oct 1 2007 Apr 1 2008 Oct 1 2008 Apr 1 2009 Oct 1 2009 Apr 1 2010 Oct 1 2010 Apr 1 2011 Oct 1 2011 Apr 1 2012 Oct 1 2012

Japanese Asian American European AustralianOthers*

Full-time Scientists paid by IPMU

*Argentina, Chile, Canada

10/01/2012

+30 students, 35 staffs ! 140 on site

Page 10: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 10/109

brand-new building 2010

Page 11: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 11/109

obelisk “L’Universo é scritto in

lingua matematica ”

“European town square ”

Page 12: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 12/109Asahi TV

Page 13: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 13/109

ofciallyKavli IPMU on April 1, 2012First research institute in Japan namedafter a donor, breaking new grounds

Page 14: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 14/109

May 9, meeting with Prime Minister Noda

http://www.kantei.go.jp/jp/noda/actions/201205/09kavli.html

Page 15: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 15/109

• Basic research is very important, because it is a

common resource shared by the wholehumanity.

Page 16: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 16/109

Cosmology

Dark MatterAESHEP 2012 10 25

Kavli IPMU, University of TokyoUC Berkeley, Lawrence Berkeley Laboratory

Hitoshi Murayama

I OD IAS

TODAI INSTIT UTES FO R ADVANCED STUD Y

Page 17: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 17/109

star

Big Bangdark ages

13.7Gyr

particle soup

Earth

The wholeUniverse wassmaller than

an atom

Page 18: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 18/109

Page 19: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 19/109

Page 20: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 20/109

Page 21: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 21/109

Page 22: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 22/109

Solar System

Page 23: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 23/109

Page 24: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 24/109

375 km2010 4 7

Page 25: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 25/109

Sep 30, 2008Kaguya

380,000km=1.3 light seconds

Page 26: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 26/109

380,000km=1.3 light seconds

Page 27: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 27/109

1.5" 108km=8.3 light minutes

Page 28: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 28/109

Made of atoms

• everything around us is made of atoms• stars are made of atoms, too

• spectroscopy

Page 29: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 29/109

metals

Page 30: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 30/109

1.5" 108km=8.3 light minutes

E=mc 2

5 Mt lighter every secondturning mass to energy

burning hydrogen

proton

4He

+ 2 e + + 2 !e + 25MeV

Page 31: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 31/109

proof nuclear fusion also produces neutrinostens of trillions of neutrinos going through our bodyevery second

1 km underground

SuperKamiokande

Page 32: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 32/109

luck

Feb 231987

1 6 0, 0 0 0 y e a r s

distant stars aremade of atoms, too

N

Page 33: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 33/109

Earth resolves around the Sun with 30km/sec

Solar SystemNeptune

4 light hours

I t ok

a w a

2 0 l i g h

t mi n

u t e s

16

v ∝1

√ r

Page 34: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 34/109

High School physicsF =

M m

r 2

ma = m

v2

r

GM m

r 2 = m

v 2

r

v =GM

r ∝1

√ r

16

v ∝1

√ r

Page 35: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 35/109

Proxima Centauri

4.2 light years

Page 36: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 36/109

Milky Way and Galaxies

Page 37: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 37/109

Page 38: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 38/109

Page 39: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 39/109

28,000light years

~10 11 stars

Page 40: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 40/109

1 5 0 0 l y r

2 8, 0 0 0 l y r

Page 41: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 41/109

28,000light years

few stars

Page 42: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 42/109

Andromeda M33 = 2.5M lyr

will collide with usin 4.5 billion years

Page 43: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 43/109

How do we measure

the rotation curve?• Special relativity

• hyperne splitting inneutral hydrogen

• 21cm line can be excitedby the cosmic

microwave background• kT 0=0.23 meV• h c/ 21cm = 0.94 " eV

f 0 = r c ∓ vc ± v

f ≈ 1 ∓cv

f

F =1

F =0

21cm

Page 44: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 44/109

Page 45: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 45/109

VeraRubin

1960s

Page 46: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 46/109

Page 47: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 47/109

Page 48: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 48/109

100k lyrs

??

Page 49: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 49/109

connects galaxies– 12 –

Fig. 2.— The mean surface mass density prole as a function of the distance from the centre of galaxies. The thick solid curve is the mean of all haloes above the mass threshold. The dash-dottedcurve represents the contribution from particles bound to haloes, i.e., particles that reside withinthe virial radius of all haloes. The data with error bars are the observational estimate by MSFR

as in the previous gure.Ménard et al 2009

– 14 –

Fig. 4.— Fraction of mass contained in the sphere centred on individual haloes with radius α R vir ,where R vir is the pseudovirial radius and α is the multiplier represented in the abscissa. The solidcurve is 0 . 23ln+0 .23 given in the text.

Masaki Fukugita Yoshida 2011

stacking 85k quasars near 20M galaxies

Page 50: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 50/109

Page 51: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 51/109

Center of Milky Way

http://www.eso.org/public/outreach/press-rel/pr-2008/phot-46-08.html

Page 52: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 52/109

http://www.eso.org/public/outreach/press-rel/pr-2008/phot-46-08.html

Page 53: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 53/109

Supermassive Black Hole

• supermassive blackhole of mass~4M Msun at the center of MilkyWay

• swallows gas around it• “death cry” for about 30 min

• but can’t be dark matter, far lessthan 100billion stars

http://www.eso.org/public/outreach/press-rel/pr-2008/phot-46-08.html

Page 54: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 54/109

Cluster of Galaxies

Page 55: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 55/109

Coma cluster

Page 56: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 56/109

motion of galaxies

• galaxies are moving inthe mutual gravitational

potential• assume virialized motion

<v 2>= G N M/r

• but they are too fast, too

• rst proposal of “darkmatter”

Fred Zwicky

i i l l i

Page 57: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 57/109

gravitational lensing

Page 58: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 58/109

Page 59: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 59/109

gravitational lensing

r 0r

starlens

x

y

( x,y)

d 1 d 2 -1 -0.5 0.5 1

-1

-0.5

0.5

1

deection angleθ = 2

r S

r = 4

G N M

c 2 r

Page 60: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 60/109

Page 61: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 61/109

Page 62: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 62/109

Clusters of galaxies

distortion in images of BG galaxies 2D map of dark matter

0

– 8 a r e a

d e n s i t y ( g / c m

2 )

1

2

3

4

1 0 0 K l y – 8

8 0

8

Page 63: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 63/109

“see” invisible dark matter

Subaru telescope

more than 80% of matter is not atoms!

Page 64: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 64/109

Page 65: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 65/109

as expected by theory

Subaru measurements.Okabe, Takada+ 11

45 clusters stacked consistent with NFW prole

Page 66: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 66/109

collion of clusters at 4500 km/s

lucky we are not here

4 billion l r awa

Dark Matter

Page 67: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 67/109

Dark Matter

Page 68: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 68/109

y-through based on SDSS-III data

Page 69: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 69/109

Page 70: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 70/109

Page 71: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 71/109

Page 72: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 72/109

Page 73: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 73/109

galaxy 13.2 billion lyr away

Page 74: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 74/109

dark ages

13.6 billion lyr away

Page 75: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 75/109

Page 76: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 76/109

You can still see the Big Bang13.7 G lyr away= 13.7 Gyr ago

Page 77: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 77/109

CMB temperature

CMB dipole

we are moving at~1% of c relative to CMB

CMB anisotropyat ~10 –5

1mm ripple on 100m sea

Page 78: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 78/109

protons

Page 79: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 79/109

soup of particles

p

electrons quasars

galaxies

Cosmic Microwave Background Radiation

Big Bang 380,000 yrs 10 Gyrs 13.7 Gyrs

r e c o m b i n a t i o n

time

3 8 0 k1 3 . 7 G

Page 80: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 80/109

k y r G y r

CMB

Page 81: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 81/109

Friedmann Universe

Page 82: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 82/109

Page 83: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 83/109

three possible fates• depending on the

“energy”, there arethree possible fates of

the Universe• adiabatic expansion

T ! R –1

• past universe wassmaller and hotter

• “energy” corresponds tothe curvature of space

• actually, it is at

time s i z e o

f t h e

U n

i v e r s e

E<0

E=0E>0

Page 84: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 84/109

Current Universe• knowing the l.h.s. tells us

the current energydensity

•l.h.s. = H02 from Hubblelaw v =H0 d

• r.h.s. denes the criticaldensity %c

• dene &i =%i /%c

• ' i &i =1

R

R !2

=8 π

3G N ρ − const

H 0 =R

R = 71km/s/Mpc

ρ c =8 π

G + N − 1 H 20 = 5 . 3 × 10 − 6 GeVcm − 3

Page 85: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 85/109

Early Universe• adiabatic expansion

T ! R –1

• T =T 0(1+ z )

• z : redshift = R0/R• $=$0(1+ z )• matter: %! R –3

• radiation (masslessparticles): %! R –4

• matter-radiationequality: z ! 3300

• recombination: z! 1300

R

R !2

=8 π

3G N ρ − const

Page 86: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 86/109

Large-Scale Structure

Page 87: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 87/109

CMB temperature

CMB dipole

we are moving at~1% of c relative to CMB

CMB anisotropyat ~10 –5

1mm ripple on 100m sea

2 b i l li

Page 88: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 88/109

nearly homogeneoussmall winkles

2 0 b i l l i onl y r

l i o n l y r

2 b i l l i o n l y r

Page 89: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 89/109

Dark Matter is

Page 90: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 90/109

Dark Matter isour birth mother

no dark matter with dark matter

Page 91: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 91/109

Page 92: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 92/109

reenacting Big Ban with Cal Band

Page 93: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 93/109

Page 94: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 94/109

Known Factsabout Dark Matter

Page 95: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 95/109

• By the time of matter-radiation equality anduntil now, dark matter must be non-relativistic and clump together bygravitational attraction

• must be electrically neutral

Cold and Neutral

Page 96: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 96/109

Search for MACHOs(Massive Compact Halo Objects)

Large Magellanic Cloud

Not enough of them!

Dim Stars?

MACHO95% cl

0.2

−6 −2−8 −4 0 20.0

0.4

0.6

f =

7

EROS−2 + EROS−1upper limit (95% cl)

logM= 2log( /70d)tE

EROSastro-ph/0607207

Mass Limits

Page 97: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 97/109

• Clumps to form structure

•imagine

• “Bohr radius”:

• too small m won’t “t” in a galaxy!

• m >10 ! 22 eV “uncertainty principle” bound(modied from Hu, Barkana, Gruzinov, astro-ph/0003365)

V = G N

m

rr B =

G N M m 2

Mass Limits

“Uncertaint Princi le”

Page 98: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 98/109

• 10-31 GeV to 10 50 GeV

• we narrowed it down towithin 81 orders ofmagnitude

• a big progress in 70 years

since Zwicky

Mass Limits

Page 99: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 99/109

• if self-coupling too big, will “smoothout” cuspy prole at the galacticcenter

• some people want it

(Spergel and Steinhardt, astro-ph/9909386)

• need core < 35 kpc/h from data( < 1.7 x 10 -25 cm2 (m/GeV)

(Yoshida, Springel, White, astro-ph/0006134)

• bullet cluster:( < 1.7x10 -24 cm2 (m/GeV)(Markevitch et al, astro-ph/0309303)

Self-Coupling

f

Page 100: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 100/109

•At least of the order of age of the universe14Gyr

• Beyond that, it depends on decay modes,branching fractions, all model-dependent

Lifetime

l l l

Page 101: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 101/109

Cosmological scales

101

matter

all atoms = 5 .70 +0 .39

− 0 .61

Page 102: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 102/109

(n&)0 = (n&f = 1001(m,m~~g~‘2 JA+)N 10-S/[(m,/GeV)((~A~)/10-27 cm3 s-‘)I,

where the subscript f denotes the value at freezeout and the subscript 0 denotes theThe current entropy density is so N 4000 cmm3,and the critical density

h l l

Page 103: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 103/109

• thermal equilibrium whenT>m !

• Once T<m ! , no more ! created

• if stable, only way to losethem is annihilation• but universe expands and

! get dilute

• at some point they can’tnd each other

• their number in comovingvolume “frozen”

pC II 10-5h2 GeVcmp3, where is the Hubble constant in units of 100 km s-l M ppresent mass d ensity in units of the critical density is given by

0,h2 = mxn,/p, N (3 x 1O-27 cm3 C1/(oAv)) .

The result is independent of the mass of the WIMP (except for logarithmic correcinversely proportional to its annihilation cross section.

Fig. 4 shows numerical solutions to the Boltzmann equation. The equilibrium (sactual (dashed lines) abundan ces per comoving volume a re plotted as a function

0 0 1

0 0 0 1

0 0 0 0 1

10 b

,h10-s

-; 10-7

caJ 10-aa

2

10-Q

p lo-‘9

lo-”

z 10-m

F o-‘3

10 100

x=m/T (time +)

Fig. 4. Comoving number density of a WIMP in the early Universe. The dashed curves are the actual the solid curve is the equilibrium abundance. From [31].

thermal relic

F

Page 104: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 104/109

• WIMP freezes out whenthe annihilation ratedrops below the

expansion rate

• Yield Y=n/s constantunder expansion

• stronger annihilation less abundance

H ≈ g1 / 2∗

T 2

M P lΓ ann ≈ σ ann v n

H (T f ) = Γ ann

n ≈ g1

/2

T 2f

M P l σ ann v

s ≈ g∗ T 3

Y = n

s ≈ g

− 1 / 2∗

1

M P l T f σ ann vΩ

χ =

m χ Y s0

ρ c

≈ g− 1 / 2∗

x f

M 3

P l σ ann v

s 0

H 2

0

Freeze-out

O d f i d

Page 105: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 105/109

• “Known” &! =0.23determines the WIMPannihilation crosssection

• simple estimate of theannihilation crosssection

• weak-scale mass!!!

Ωχ ≈ g

− 1 / 2∗

x f

M 3P l σ ann v

s 0

H 20

σ ann v ≈ 1 .12 × 10− 10

GeV− 2

x f g

1 / 2∗

Ωχ h 2

∼ 10 − 9 GeV − 2

σ ann v ≈ πα

2

m 2χ

m χ ≈ 300 GeV

Order of magnitude

0 0 1

0 0 0 1

0 0 0 0 1

10 b

10 sh l li

Page 106: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 106/109

• Solve the Boltzmann equation

• assume Maxwell distribution, 1=2= ! , E1=E2=m !

• Note momentum dependence may beimportant close to thresholds, resonances

• re roduce the estimate with

dn

dt + 3 Hn = − σ ann v (n 2 − n 2

eq )

xf ≈ 24 + ln

m χ

100GeV + ln

σ ann v

10 − 9 GeV − 2 −

1

2 ln

g ∗

100

dn 1

dt + 3 Hn 1 = −

4

i =1

d3 pi

(2π )3 2E i|M (12 → 34)| 2 (2π )4 δ 4 ( p1 + p2 − p3 − p4 )

[f 1 f 2 (1 ± f 3 )(1 ± f 4 ) − f 3 f 4 (1 ± f 1 )(1 ± f 2 )]

,h10-s

-; 10-7

caJ 10-aa

2

10-Q

p lo-‘9

lo-”

z 10-m

F o-‘3

10 100

x=m/T (time +)

Fig. 4. Comoving number density of a WIMP in the early Universe. The dashed curves are the actualthe solid curve is the equilibrium abundance. From [31].

thermal relic

WIMP

Page 107: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 107/109

• A stable particle at the weak scale with “EM-strength” coupling naturally gives the correctabundance

• This is where we expect new particlesbecause of the hierarchy problem!

• Many candidates of this type: SUSY, little Higgswith T-parity, Universal Extra Dimensinos, etc

• If so, we may even create dark matter ataccelerators

WIMP

Mi i l M d l

Page 108: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 108/109

Minimal Model• Dark Matter clearly a new degree of

freedom

•The smallest degree of freedom you canadd to the QFT is a real Klein-Gordon eldS:dof=1

• assign odd Z 2 parity to S, everything else

even• Most general renormalizable coupling LS =

1

2! µS ! µS −

1

2m2

S S 2 − k 2

| H | 2 S 2 − h4!

S 4 .

C i h k

Page 109: Murayama1 Down Size 01

8/14/2019 Murayama1 Down Size 01

http://slidepdf.com/reader/full/murayama1-down-size-01 109/109

Consistency check • correct Dark Matter abundance• evades direct detection limits• satises triviality/instability limits from RGE

•consistent with precision electroweak data

180

190

170

160

150

140

130

m h

( G e V

) m S

=1

8 0 0 G e V

1 0 0 0

3 0 0

2 0 5 0

7 5

7 5

h (m Z )=01.01.2 i nst a b i l i t y

t r iv ialit y of λ

t r i v i a l i t y o f k

5. 5

σ p

( c m 2 )

10 − 40

10 − 42

10 − 44

10 − 46

DAMA (3 σ )

C D M S - I I ( 9 0 % C L )

mh = 150GeV Ω

S h 2=0.11

C R E S S T I I

Z E P L I N 4 / MA X

C D M S - I I

E d e l w e i s s 2