multilayer formulation of the multi-configuration time-dependent hartree theory

36
Multilayer Formulation of the Multi- Configuration Time-Dependent Hartree Theory Haobin Wang Department of Chemistry and Biochemistry New Mexico State University Las Cruces, New Mexico, USA Collaborator: Michael Thoss Support: NSF

Upload: ogden

Post on 05-Jan-2016

33 views

Category:

Documents


1 download

DESCRIPTION

Multilayer Formulation of the Multi-Configuration Time-Dependent Hartree Theory. Haobin Wang Department of Chemistry and Biochemistry New Mexico State University Las Cruces, New Mexico, USA. Collaborator: Michael Thoss Support: NSF. Outline. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

Multilayer Formulation of the Multi-Configuration

Time-Dependent Hartree Theory

Haobin WangDepartment of Chemistry and

BiochemistryNew Mexico State UniversityLas Cruces, New Mexico, USA

Collaborator: Michael ThossSupport: NSF

Page 2: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

• Conventional brute-force approach to wave packet propagation

• Multi-configuration time-dependent Hartree (MCTDH) method

• Multilayer formulation of MCTDH (ML-MCTDH)

• Quantum simulation of time correlation functions

• Application to ultrafast electron transfer reactions

Outline

Page 3: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

Conventional Wave Packet Propagation

• Dirac-Frenkel variational principle

• Conventional Full CI Expansion (orthonormal basis)

• Equations of Motion

• Capability: <10 degrees of freedom (<~n10 configurations)even for separable limit

Page 4: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

Multi-Configuration Time-Dependent Hartree

• Multi-configuration expansion of the wave function

• Variations

• Both expansion coefficients and configurations are time-dependent

Meyer, Manthe, Cederbaum, Chem. Phys. Lett. 165 (1990) 73

Page 5: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

MCTDH Equations of Motion

• Some notations

Page 6: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

MCTDH Equations of Motion

• Reduced density matrices and mean-field operators

The “single hole” function

Page 7: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

Implementation of the MCTDH

• Full CI expansion of the single particle functions (mode grouping and adiabatic basis contraction)

• Only a few single particle functions are selected among the full CI space

Example: 5 single particle groups, each has 1000 basis functions

Conventional approach: 10005 = 1015 configurations MCTDH with 10 single particle functions per group: 10×1000×5 + 105 = 1.5×105 parameters

• Capability of the MCTDH theory: ~10×10 = 100 degrees of freedom

Page 8: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

Multi-Layer Formulation of the MCTDH Theory

• Multi-configurational expansion of the SP functions

• More complex way of expressing the wave function

• Two-layer MCTDH

Wang, Thoss, J. Chem. Phys. 119 (2003) 1289

Page 9: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

The Multilayer MCTDH Theory

Wang, Thoss, J. Chem. Phys. 119 (2003) 1289

…….

Page 10: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

The Multilayer MCTDH Theory

Wang, Thoss, J. Chem. Phys. 119 (2003) 1289

Page 11: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

Exploring Dynamical Simplicity Using ML-MCTDH

• Capability of the two-layer ML-MCTDH: ~10×10×10 = 1000 degrees of freedom

• Capability of the three-layer ML-MCTDH: ~10×10×10×10 = 10000 degrees of freedom

Conventional

MCTDH

ML-MCTDH

Page 12: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

The Scaling of the ML-MCTDH Theory

• f: the number of degrees of freedom • L: the number of layers• N: the number of (contracted) basis functions• n: the number of single-particle functions

Page 13: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

• The Spin-Boson Model

The Scaling of the ML-MCTDH Theory

electronic

nuclear

coupling

• Hamiltonian

• Bath spectral density

Page 14: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

Model Scaling of the ML-MCTDH Theory

Page 15: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

Model Scaling of the ML-MCTDH Theory

Page 16: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

Model Scaling of the ML-MCTDH Theory

Page 17: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

Simulating Time Correlation Functions

• Examples

• Imaginary Time Propagation and Monte Carlo Sampling

Page 18: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

Quantum Study of Transport Processes

Electron transfer at dye-semiconductor interfaces

Photochemical reactions

e-

Electron transfer in mixed-valence compounds in solution

e-

cis

trans

V

Charge transport through single molecule junctions

Page 19: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

pumpprobe

Basic Models

|g>

|d>|k>

Page 20: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

Intervalence Electron Transfer

• Experiment: - Back ET in ≈ 100 – 200 fs

- Coherent structure in Pump-Probe signal

Page 21: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

Photoinduced ET in Mixed-Valence Complexes

Experiment [Barbara et al., JPC A 104 (2000)

10637]: ET bimodal decay ≈ 100 fs / 2 ps

Wang, Thoss, J. Phys. Chem. A 107 (2003) 2126

Page 22: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

Validity of Different Methods

Mean-field (Hartree)

Classical Ehrenfest

Self-consistent hybrid

Golden rule (NIBA)

Page 23: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

Vibrational Dynamics in Intervalence ET

Thoss, Wang, Domcke, Chem. Phys. 296 (2004) 217

Charge-Transfer State Ground state

Page 24: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

Electron-transfer at dye-semiconductor interfaces

Zimmermann, Willig, et al., J. Chem. Phys. B 105 (2001) 9345

e-

Page 25: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

Example: Coumarin 343 – TiO2

e-

Page 26: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

ET at dye-semiconductor interfaces: Coumarin 343 - TiO2

Page 27: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

ET at dye-semiconductor interfaces: Coumarin 343 - TiO2

Absorption spectra

Experiment: Huber et al., Chem. Phys. 285 (2002) 39

C343 in solutionC343 adsorbed on TiO2

experiment

simulation

Page 28: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

Experiments: electron injection 20 - 200 fs

Rehm, JCP 100 (1996) 9577 Murakoshi, Nanostr. Mat. 679 (1997) 221 Gosh, JPCB 102 (1998) 10208 Huber, Chem. Phys. 285 (2002) 39

ET at dye-semiconductor interfaces: Coumarin 343 -

TiO2

population of the donor state

|d>|k>

|g>

Kondov, Thoss, Wang, J. Phys. Chem. A 110 (2006) 1364

Page 29: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

ET at dye-semiconductor interfaces: Coumarin 343 - TiO2

vibrational dynamics

|d>|k>

|g>

donor state

acceptor statesω = 1612 cm-1

Page 30: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

ET at dye-semiconductor interfaces: Coumarin 343 - TiO2

vibrational dynamics

Vibrational motion induced by ultrafast ET

donor state

acceptor states

|d> |k>

|g>

ω = 133 cm-1

Page 31: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

ET at dye-semiconductor interfaces

ML-MCTDH

Ehrenfest

Mean-Field (Hartree)

|d>|k>

|g>

Electron injection dynamics - comparison of different methods

population of the donor state

Page 32: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

ET at dye-semiconductor interfaces: Coumarin 343 - TiO2

photoinduced electron injection dynamics

Simulation of the dynamics including the coupling to the laser field

|d>|k>

|g>

laser pulse (5 fs)

donor population

acceptor population

Page 33: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

ET at dye-semiconductor interfaces: Coumarin 343 - TiO2

photoinduced electron injection dynamics

Simulation of the dynamics including the coupling to the laser field

|d>|k>

|g>

laser pulse (20 fs)

donor population

acceptor population

Page 34: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

ET at dye-semiconductor interfaces: Coumarin 343 - TiO2

photoinduced electron injection dynamics

Simulation of the dynamics including the coupling to the laser field

|d>|k>

|g>

laser pulse

donor population

acceptor population

(40 fs)

Page 35: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

Experiment: electron injection 6 fsHuber, Moser, Grätzel, Wachtveitl, J. Phys. Chem. B 106 (2002) 6494

ET at dye-semiconductor interfaces: Alizarin - TiO2

population of the donor state

Page 36: Multilayer Formulation of the Multi-Configuration  Time-Dependent Hartree Theory

Summary of the ML-MCTDH Theory

• Powerful tool to propagate wave packet in complex systems

• Can reveal various dynamical information– population dynamics and rate constant– reduced wave packet motions – time-resolved nonlinear spectroscopy– dynamic/static properties: real and imaginary time

• Current status– Has been implemented for certain potential energy functions:

two-body, three-body, etc.– The (time-dependent) correlation DVR of Manthe

• Challenges– Implementation: somewhat difficult– Long time dynamics: “chaos”