multigrid methods for isogeometric analysis · stefan takacs, multigrid methods for isogeometric...

82
Johann Radon Institute for Computational and Applied Mathematics Multigrid methods for Isogeometric analysis Stefan Takacs joint work with Clemens Hofreither Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences (ÖAW) Linz, Austria AANMPDE(JS)-9-16 Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Ap www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Upload: others

Post on 19-Mar-2020

19 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Multigrid methods for Isogeometric analysis

Stefan Takacs

joint work withClemens Hofreither

Johann Radon Institute for Computational and Applied Mathematics (RICAM)Austrian Academy of Sciences (ÖAW)

Linz, Austria

AANMPDE(JS)-9-16

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 2: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Outline

1 Introduction

2 Abstract multigrid theory

3 Approximation error and inverse estimates

4 A robust multigrid solver

5 Numerical results

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 3: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Model problemElliptic model problem: Find u ∈ H1(Ω):

−∆u + u = f in Ω,∂u∂n = 0 on ∂Ω

Variational formulation: Find u ∈ V :a(u, v) = 〈f , v〉 ∀v ∈ V

where

a(u, v) =

∫Ω

(∇u · ∇v + uv) dx , 〈f , v〉 =

∫Ωfv dx .

Or as a linear system:Au = f .

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 4: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Model problemElliptic model problem: Find u ∈ H1(Ω):

−∆u + u = f in Ω,∂u∂n = 0 on ∂Ω

Variational formulation: Find u ∈ V :a(u, v) = 〈f , v〉 ∀v ∈ V

where

a(u, v) =

∫Ω

(∇u · ∇v + uv) dx , 〈f , v〉 =

∫Ωfv dx .

Or as a linear system:Au = f .

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 5: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Model problemElliptic model problem: Find u ∈ H1(Ω):

−∆u + u = f in Ω,∂u∂n = 0 on ∂Ω

Variational formulation: Find u ∈ V :a(u, v) = 〈f , v〉 ∀v ∈ V

where

a(u, v) =

∫Ω

(∇u · ∇v + uv) dx , 〈f , v〉 =

∫Ωfv dx .

Or as a linear system:Au = f .

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 6: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Isogeometric AnalysisWhat is Isogeometric Analysis?

Idea: One method that can be used for design (CAD) andnumerical simulationTechnical: B-spline (NURBS) based FEM

T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs.Isogeometric analysis: CAD, finite elements, NURBS, exact geometryand mesh refinement.CMAME, 194, p. 4135 - 4195, 2004.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 7: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Isogeometric AnalysisWhat is Isogeometric Analysis?

Idea: One method that can be used for design (CAD) andnumerical simulationTechnical: B-spline (NURBS) based FEM

T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs.Isogeometric analysis: CAD, finite elements, NURBS, exact geometryand mesh refinement.CMAME, 194, p. 4135 - 4195, 2004.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 8: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Isogeometric AnalysisWhat is Isogeometric Analysis?

Idea: One method that can be used for design (CAD) andnumerical simulationTechnical: B-spline (NURBS) based FEM

T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs.Isogeometric analysis: CAD, finite elements, NURBS, exact geometryand mesh refinement.CMAME, 194, p. 4135 - 4195, 2004.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 9: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Isogeometric AnalysisWhat is Isogeometric Analysis?

Idea: One method that can be used for design (CAD) andnumerical simulationTechnical: B-spline (NURBS) based FEM

T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs.Isogeometric analysis: CAD, finite elements, NURBS, exact geometryand mesh refinement.CMAME, 194, p. 4135 - 4195, 2004.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 10: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

B-spline basis functionsLet m ∈ N, h = 1/m and let

Sp,h := u ∈ Cp−1(0, 1) : u|((j−1)h,jh) ∈ Pp ∀j = 1, . . . ,m,denote the spline space over [0, 1] with degree p, maximumcontinuity Cp−1, and mesh size h.

We denote the standard B-spline basis functions bySp,h = span(B), B = φ1, . . . , φn,

where n = dimSp,h = m + p.

0.0

0.2

0.4

0.6

0.8

1.0

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 11: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

B-spline basis functionsLet m ∈ N, h = 1/m and let

Sp,h := u ∈ Cp−1(0, 1) : u|((j−1)h,jh) ∈ Pp ∀j = 1, . . . ,m,denote the spline space over [0, 1] with degree p, maximumcontinuity Cp−1, and mesh size h.

We denote the standard B-spline basis functions bySp,h = span(B), B = φ1, . . . , φn,

where n = dimSp,h = m + p.

In higher dimensions, we form tensor product spline spaces:

S2p,h = Sp,h ⊗ Sp,h, φj1,j2(x , y) := φj1(x)φj2(y).

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 12: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Isogeometric Analysis

Global geometry transformation

G

More complicated domains:Multi-patch discretization with tensor-product patches

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 13: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Isogeometric Analysis

Global geometry transformation

G

More complicated domains:Multi-patch discretization with tensor-product patches

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 14: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Finite element method

Courant element

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 15: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Finite element method

Courant element

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 16: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Properties of the B-spline basis

Non-negativity: φi (x) ≥ 0Partition of unity:

∑i φi (x) = 1

Approximation power:

‖u − uh‖L2 ≤ Cphp|u|Hp

dim Sp,h = n + p, unlike dim Sp,0,h = n p + 1Condition number (of the basis):

κ(Mp,h) = O(2pd ) κ(Kp,h) = O(h−22pd ),

where Mp,h is the mass matrix and Kp,h is the stiffness matrix.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 17: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Properties of the B-spline basis

Non-negativity: φi (x) ≥ 0Partition of unity:

∑i φi (x) = 1

Approximation power:

‖u − uh‖L2 ≤ Cphp|u|Hp

dim Sp,h = n + p, unlike dim Sp,0,h = n p + 1Condition number (of the basis):

κ(Mp,h) = O(2pd ) κ(Kp,h) = O(h−22pd ),

where Mp,h is the mass matrix and Kp,h is the stiffness matrix.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 18: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Properties of the B-spline basis

Non-negativity: φi (x) ≥ 0Partition of unity:

∑i φi (x) = 1

Approximation power:

‖u − uh‖L2 ≤ Cphp|u|Hp

dim Sp,h = n + p, unlike dim Sp,0,h = n p + 1Condition number (of the basis):

κ(Mp,h) = O(2pd ) κ(Kp,h) = O(h−22pd ),

where Mp,h is the mass matrix and Kp,h is the stiffness matrix.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 19: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Properties of the B-spline basis

Non-negativity: φi (x) ≥ 0Partition of unity:

∑i φi (x) = 1

Approximation power:

‖u − uh‖L2 ≤ Cphp|u|Hp

dim Sp,h = n + p, unlike dim Sp,0,h = n p + 1Condition number (of the basis):

κ(Mp,h) = O(2pd ) κ(Kp,h) = O(h−22pd ),

where Mp,h is the mass matrix and Kp,h is the stiffness matrix.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 20: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Properties of the B-spline basis

Non-negativity: φi (x) ≥ 0Partition of unity:

∑i φi (x) = 1

Approximation power:

‖u − uh‖L2 ≤ Cphp|u|Hp

dim Sp,h = n + p, unlike dim Sp,0,h = n p + 1Condition number (of the basis):

κ(Mp,h) = O(2pd ) κ(Kp,h) = O(h−22pd ),

where Mp,h is the mass matrix and Kp,h is the stiffness matrix.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 21: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Fast solver for Au = f

Requirements:

Fast solver must be robust in h

Should behave well in p

We know from finite element world:

Multigrid converges robustly in h.

Use Sp,H ⊂ Sp,h for H = 2h, setup a h-multigrid with fixed p

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 22: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Fast solver for Au = f

Requirements:

Fast solver must be robust in h

Should behave well in p

We know from finite element world:

Multigrid converges robustly in h.

Use Sp,H ⊂ Sp,h for H = 2h, setup a h-multigrid with fixed p

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 23: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Multigrid with Gauss-Seidel smoother

` p 1 2 3 4 5 6 7 8 ≥ 9

8 10 12 37 127 462 1762 6531 21657 >50k7 10 12 37 127 488 1856 7247 23077 >50k6 10 12 39 131 485 1883 6723 23897 >50k

V-cycle multigrid, νpre + νpost = 1 + 1, stopping criterion: `2 normof the initial residual is reduced by a factor of ε = 10−8

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 24: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Observations and problems

Obtain h-robustness of the methodκ(A) = O(h−2), κ(M) = O(1)

In p: bad condition number of the mass matrix:κ(A) and κ(M) grow exponentially in p

Idea:Basis-independent method (mass-smoother)

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 25: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Observations and problems

Obtain h-robustness of the methodκ(A) = O(h−2), κ(M) = O(1)

In p: bad condition number of the mass matrix:κ(A) and κ(M) grow exponentially in p

Idea:Basis-independent method (mass-smoother)

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 26: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Observations and problems

Obtain h-robustness of the methodκ(A) = O(h−2), κ(M) = O(1)

In p: bad condition number of the mass matrix:κ(A) and κ(M) grow exponentially in p

Idea:Basis-independent method (mass-smoother)

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 27: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Outline

1 Introduction

2 Abstract multigrid theory

3 Approximation error and inverse estimates

4 A robust multigrid solver

5 Numerical results

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 28: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Multigrid frameworkOne step of the multigrid method applied to iterate u(0,0) = u(0)

and right-hand-side f to obtain u(1) is given by:Apply ν smoothing steps

u(0,m) = u(0,m−1) + τL−1(f − Au(0,m−1))

for m = 1, . . . , ν.Apply coarse-grid correction

Compute defect and restrict to coarser gridSolve problem on coarser gridProlongate and add result

If realized exactly (two-grid method):

u(1) = u(0,ν) + IhHA−1H IHh (f − Au(0,ν))

Two-grid convergence ⇒ multigrid (W-cycle) convergenceIntroduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 29: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Multigrid frameworkOne step of the multigrid method applied to iterate u(0,0) = u(0)

and right-hand-side f to obtain u(1) is given by:Apply ν smoothing steps

u(0,m) = u(0,m−1) + τL−1(f − Au(0,m−1))

for m = 1, . . . , ν.Apply coarse-grid correction

Compute defect and restrict to coarser gridSolve problem on coarser gridProlongate and add result

If realized exactly (two-grid method):

u(1) = u(0,ν) + IhHA−1H IHh (f − Au(0,ν))

Two-grid convergence ⇒ multigrid (W-cycle) convergenceIntroduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 30: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Multigrid frameworkOne step of the multigrid method applied to iterate u(0,0) = u(0)

and right-hand-side f to obtain u(1) is given by:Apply ν smoothing steps

u(0,m) = u(0,m−1) + τL−1(f − Au(0,m−1))

for m = 1, . . . , ν.Apply coarse-grid correction

Compute defect and restrict to coarser gridSolve problem on coarser gridProlongate and add result

If realized exactly (two-grid method):

u(1) = u(0,ν) + IhHA−1H IHh (f − Au(0,ν))

Two-grid convergence ⇒ multigrid (W-cycle) convergenceIntroduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 31: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Multigrid setup

Nested spaces: Sp,H(Ω) ⊂ Sp,h(Ω)

The prolongation IhH is the canonical embedding

The restriction is its transpose: IHh = (IhH)T

Hackbusch-like analysis: smoothing property andapproximation propertyBased on: inverse inequality, approximation error estimate

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 32: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Multigrid setup

Nested spaces: Sp,H(Ω) ⊂ Sp,h(Ω)

The prolongation IhH is the canonical embedding

The restriction is its transpose: IHh = (IhH)T

Hackbusch-like analysis: smoothing property andapproximation propertyBased on: inverse inequality, approximation error estimate

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 33: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Multigrid setup

Nested spaces: Sp,H(Ω) ⊂ Sp,h(Ω)

The prolongation IhH is the canonical embedding

The restriction is its transpose: IHh = (IhH)T

Hackbusch-like analysis: smoothing property andapproximation propertyBased on: inverse inequality, approximation error estimate

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 34: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Multigrid setup

Nested spaces: Sp,H(Ω) ⊂ Sp,h(Ω)

The prolongation IhH is the canonical embedding

The restriction is its transpose: IHh = (IhH)T

Hackbusch-like analysis: smoothing property andapproximation propertyBased on: inverse inequality, approximation error estimate

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 35: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Outline

1 Introduction

2 Abstract multigrid theory

3 Approximation error and inverse estimates

4 A robust multigrid solver

5 Numerical results

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 36: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

A p-robust estimate for high smoothness

Sp,h(0, 1) :=

u ∈ Sp,h(0, 1) :

∂2i+1

∂x2i+1 u(0) = 0∂2i+1

∂x2i+1 u(1) = 0∀i∈Z with 1≤2i+1<p

Theorem (T., Takacs 2016)

For each u ∈ H1(Ω), each p ∈ N and each h,

‖(I − Π)u‖L2(Ω) ≤√2 h|u|H1(Ω)

is satisfied for Π being the H1-orthogonal projection into Sp,h(Ω).

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 37: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Idea behind Sp,h(0, 1)

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 38: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Inverse inequality

A p-robust inverse inequality does not exist for Sp,h(Ω):|u|H1(Ω) ≤ C h−1‖u‖L2(Ω) → not true for allu ∈ Sp,h(Ω)

Choose u∗(x) := max0, h − xpWhat about the space Sp,h(Ω)?

Theorem (T., Takacs 2016)

For each p ∈ N and each h,

|u|H1 ≤ 2√3h−1‖u‖L2

is satisfied for all u ∈ Sp,h(Ω).

→ number of outliers is bounded by 2bp/2cIntroduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 39: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Inverse inequality

A p-robust inverse inequality does not exist for Sp,h(Ω):|u|H1(Ω) ≤ C h−1‖u‖L2(Ω) → not true for allu ∈ Sp,h(Ω)

Choose u∗(x) := max0, h − xpWhat about the space Sp,h(Ω)?

Theorem (T., Takacs 2016)

For each p ∈ N and each h,

|u|H1 ≤ 2√3h−1‖u‖L2

is satisfied for all u ∈ Sp,h(Ω).

→ number of outliers is bounded by 2bp/2cIntroduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 40: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Inverse inequality

A p-robust inverse inequality does not exist for Sp,h(Ω):|u|H1(Ω) ≤ C h−1‖u‖L2(Ω) → not true for allu ∈ Sp,h(Ω)

Choose u∗(x) := max0, h − xpWhat about the space Sp,h(Ω)?

Theorem (T., Takacs 2016)

For each p ∈ N and each h,

|u|H1 ≤ 2√3h−1‖u‖L2

is satisfied for all u ∈ Sp,h(Ω).

→ number of outliers is bounded by 2bp/2cIntroduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 41: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Inverse inequality

A p-robust inverse inequality does not exist for Sp,h(Ω):|u|H1(Ω) ≤ C h−1‖u‖L2(Ω) → not true for allu ∈ Sp,h(Ω)

Choose u∗(x) := max0, h − xpWhat about the space Sp,h(Ω)?

Theorem (T., Takacs 2016)

For each p ∈ N and each h,

|u|H1 ≤ 2√3h−1‖u‖L2

is satisfied for all u ∈ Sp,h(Ω).

→ number of outliers is bounded by 2bp/2cIntroduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 42: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Inverse inequality

A p-robust inverse inequality does not exist for Sp,h(Ω):|u|H1(Ω) ≤ C h−1‖u‖L2(Ω) → not true for allu ∈ Sp,h(Ω)

Choose u∗(x) := max0, h − xpWhat about the space Sp,h(Ω)?

Theorem (T., Takacs 2016)

For each p ∈ N and each h,

|u|H1 ≤ 2√3h−1‖u‖L2

is satisfied for all u ∈ Sp,h(Ω).

→ number of outliers is bounded by 2bp/2cIntroduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 43: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Outline

1 Introduction

2 Abstract multigrid theory

3 Approximation error and inverse estimates

4 A robust multigrid solver

5 Numerical results

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 44: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Robust multigrid for IgA

How to choose the smoother L such that the two-grid/multigridmethod converges robustly in h and p?

Standard smoothers (e.g., Gauss-Seidel) achieveh-robustness but scale poorly with p.Our previous concept: mass smoother with low-rankboundary correction is robust in h and p, but only efficientup to 2D. (Hofreither, T., Zulehner, CMAME 2016)New idea: stable splitting of the spline space – subspacecorrection. Robust and efficient in arbitrary dimension.→ This talk.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 45: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Robust multigrid for IgA

How to choose the smoother L such that the two-grid/multigridmethod converges robustly in h and p?

Standard smoothers (e.g., Gauss-Seidel) achieveh-robustness but scale poorly with p.Our previous concept: mass smoother with low-rankboundary correction is robust in h and p, but only efficientup to 2D. (Hofreither, T., Zulehner, CMAME 2016)New idea: stable splitting of the spline space – subspacecorrection. Robust and efficient in arbitrary dimension.→ This talk.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 46: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Robust multigrid for IgA

How to choose the smoother L such that the two-grid/multigridmethod converges robustly in h and p?

Standard smoothers (e.g., Gauss-Seidel) achieveh-robustness but scale poorly with p.Our previous concept: mass smoother with low-rankboundary correction is robust in h and p, but only efficientup to 2D. (Hofreither, T., Zulehner, CMAME 2016)New idea: stable splitting of the spline space – subspacecorrection. Robust and efficient in arbitrary dimension.→ This talk.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 47: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Robust multigrid for IgA

How to choose the smoother L such that the two-grid/multigridmethod converges robustly in h and p?

Standard smoothers (e.g., Gauss-Seidel) achieveh-robustness but scale poorly with p.Our previous concept: mass smoother with low-rankboundary correction is robust in h and p, but only efficientup to 2D. (Hofreither, T., Zulehner, CMAME 2016)New idea: stable splitting of the spline space – subspacecorrection. Robust and efficient in arbitrary dimension.→ This talk.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 48: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Splittings of spline spacesAny spline u ∈ Sp,h(0, 1) can be split into uI ∈ S I

p,h(0, 1) anduΓ ∈ SΓ

p,h(0, 1):u = uI + uΓ

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Have: Inverse inequality: ‖v‖1 ≤ ch−1‖v‖0 ∀v ∈ S Ip,h(0, 1).

Problem: Splitting is not stable.

c−1‖u‖1 ≤ ‖uI‖1 + ‖uΓ‖1 ≤ c‖u‖1 ∀u ∈ Sp,h(0, 1)→ wrong!

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 49: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

The subspace Sp,h(0, 1)

We have seen that for Sp,h(0, 1),

an approximation error estimate and

an inverse inequality holds.

Define:V := Sp,h(0, 1)

V0 := Sp,h(0, 1)V1 is the L2-orthogonal complement of V0 in V

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 50: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

The subspace Sp,h(0, 1)

We have seen that for Sp,h(0, 1),

an approximation error estimate and

an inverse inequality holds.

Define:V := Sp,h(0, 1)

V0 := Sp,h(0, 1)V1 is the L2-orthogonal complement of V0 in V

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 51: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Stability of the splitting based on V0

Any spline u ∈ V can be split into u0 ∈ V0, u1 ∈ V1: u = u0 + u1

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Due to orthogonality, we have: ‖u‖20 = ‖u0‖20 + ‖u1‖20 ∀u ∈ V .

Theorem (Hofreither, T. 2016)

Stability of the splitting

c−1‖u‖21 ≤ ‖u0‖21 + ‖u1‖21 ≤ c‖u‖21 ∀u ∈ V

holds, where c does not depend on h or p.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 52: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Stability of the splitting based on V0

Any spline u ∈ V can be split into u0 ∈ V0, u1 ∈ V1: u = u0 + u1

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Due to orthogonality, we have: ‖u‖20 = ‖u0‖20 + ‖u1‖20 ∀u ∈ V .

Theorem (Hofreither, T. 2016)

Stability of the splitting

c−1‖u‖21 ≤ ‖u0‖21 + ‖u1‖21 ≤ c‖u‖21 ∀u ∈ V

holds, where c does not depend on h or p.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 53: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Stability of the splitting based on V0

Any spline u ∈ V can be split into u0 ∈ V0, u1 ∈ V1: u = u0 + u1

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Due to orthogonality, we have: ‖u‖20 = ‖u0‖20 + ‖u1‖20 ∀u ∈ V .

Theorem (Hofreither, T. 2016)

Stability of the splitting

c−1‖u‖21 ≤ ‖u0‖21 + ‖u1‖21 ≤ c‖u‖21 ∀u ∈ V

holds, where c does not depend on h or p.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 54: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Setting up the splitting in 1D

Construction of V0 and V1 is local process on the boundary

Basis functions away from the boundary are directly taken asbasis functions in V0

For the first and last p basis functions, we can use a SVD (fortwo p × p matrices) to set up the `2-orthogonal splittingrepresenting the basis functions for for V0 and V1 as linearcombination of the φi

The vectors representing the basis functions on V1 arepre-multiplied with M−1 to obtain L2-orthogonality

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 55: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Setting up the splitting in 1D

Construction of V0 and V1 is local process on the boundary

Basis functions away from the boundary are directly taken asbasis functions in V0

For the first and last p basis functions, we can use a SVD (fortwo p × p matrices) to set up the `2-orthogonal splittingrepresenting the basis functions for for V0 and V1 as linearcombination of the φi

The vectors representing the basis functions on V1 arepre-multiplied with M−1 to obtain L2-orthogonality

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 56: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Setting up the splitting in 1D

Construction of V0 and V1 is local process on the boundary

Basis functions away from the boundary are directly taken asbasis functions in V0

For the first and last p basis functions, we can use a SVD (fortwo p × p matrices) to set up the `2-orthogonal splittingrepresenting the basis functions for for V0 and V1 as linearcombination of the φi

The vectors representing the basis functions on V1 arepre-multiplied with M−1 to obtain L2-orthogonality

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 57: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Setting up the splitting in 1D

Construction of V0 and V1 is local process on the boundary

Basis functions away from the boundary are directly taken asbasis functions in V0

For the first and last p basis functions, we can use a SVD (fortwo p × p matrices) to set up the `2-orthogonal splittingrepresenting the basis functions for for V0 and V1 as linearcombination of the φi

The vectors representing the basis functions on V1 arepre-multiplied with M−1 to obtain L2-orthogonality

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 58: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Stability of the splitting based on V0 (once more)Any spline u ∈ V can be split into u0 ∈ V0, u1 ∈ V1: u = u0 + u1

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Due to orthogonality, we have: ‖u‖20 = ‖u0‖20 + ‖u1‖20 ∀u ∈ V .

Theorem (Hofreither, T. 2016)

Stability of the splitting

c−1‖u‖21 ≤ ‖u0‖21 + ‖u1‖21 ≤ c‖u‖21 ∀u ∈ V

holds, where c does not depend on h or p.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 59: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

A stable splitting in 2DThe 2D tensor product spline space is given by

V 2 = V ⊗ V= (V0 ⊕ V1)⊗ (V0 ⊕ V1)

= (V0 ⊗ V0)⊕ (V0 ⊗ V1)⊕ (V1 ⊗ V0)⊕ (V1 ⊗ V1)

= V00 ⊕ V01 ⊕ V10 ⊕ V11.

V00

V01

V10

V11

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 60: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

A stable splitting in 2DLet

Q0 : V → V0, Q1 : V → V1

denote the L2-orthogonal projectors into V0 and V1. ThenQα1,α2 := Qα1 ⊗ Qα2 : V 2 → Vα1,α2

is the L2-orthogonal projector into Vα1,α2 .

Theorem (Hofreither, T. 2016)

For any tensor product spline u ∈ V 2, we have

c−1‖u‖21 ≤(1,1)∑

(α1,α2)=(0,0)

‖Qα1,α2u‖21. ≤ c‖u‖21

with a constant c which does not depend on h or p.Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 61: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Stable splitting in arbitrary dimensions

For a multiindex α ∈ 0, 1d , we define projectors

Qα := Qα1 ⊗ . . .⊗ Qαd : V d → Vα1 ⊗ . . .⊗ Vαd =: Vα

into the 2d subspaces Vα.

Theorem (Hofreither, T. 2016)

For any d-dimensional tensor product spline u ∈ V d , we have

c−1‖u‖21 ≤(1,...,1)∑

α=(0,...,0)

‖Qαu‖21 ≤ c‖u‖21

with a constant c which does not depend on h or p.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 62: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

A smoother based on subspace correctionIn each subspace Vα, we apply a local smoothing operatorLα : Vα → V ′α. The overall operator is

L =∑α

Q′αLαQα.

Theorem (a variant of Hackbusch’s analysis)

Assume that we have an appropriate approxiamtion error estimateand

〈Av , v〉 ≤ c〈Lv , v〉 ∀v ∈ Vand

〈Lv , v〉 ≤ c〈(A + h−2Md )v , v〉 ∀v ∈ V .

Then the two-grid method with smoother based on L convergeswith a rate which depends only on c.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 63: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

A smoother based on subspace correctionIn each subspace Vα, we apply a local smoothing operatorLα : Vα → V ′α. The overall operator is

L =∑α

Q′αLαQα.

Theorem (Hofreither, T. 2016)

Assume that we have an appropriate approxiamtion error estimateand for every α ∈ 0, 1d we have

〈Aαvα, vα〉 ≤ c〈Lαvα, vα〉 ∀vα ∈ Vαand

〈Lαvα, vα〉 ≤ c〈(Aα + h−2Mdα)vα, vα〉 ∀vα ∈ Vα.

Then the two-grid method with smoother based on L convergeswith a rate which depends only on c.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 64: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Construction of the subspace smoothers (2D)Let M and K denote the 1D mass and stiffness operators. Then

A = K ⊗M + M ⊗ K + M ⊗M.

The restriction to the subspace Vα1,α2 is

Aα = Kα1 ⊗Mα2 + Mα1 ⊗ Kα2 + Mα1 ⊗Mα2 .

The robust inverse inequality in V0 states that

K0 ≤ ch−2M0.

We wantc−1Aα ≤ Lα ≤ c(Aα + h−2Md

α).

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 65: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Construction of the subspace smoothers (2D)Using K0 ≤ ch−2M0, we estimate:

A00 = K0 ⊗M0 + M0 ⊗ K0 + M0 ⊗M0 . h−2M0 ⊗M0

A01 = K0 ⊗M1 + M0 ⊗ K1 + M0 ⊗M1 .M0 ⊗ (h−2M1 + K1)

A10 = K1 ⊗M0 + M1 ⊗ K0 + M1 ⊗M0 .(h−2M1 + K1)⊗M0

So we choose

L00 := h−2M0 ⊗M0 L01 := M0 ⊗ (h−2M1 + K1)

L10 := (h−2M1 + K1)⊗M0 L11 := A11

L00, L01, L10 have tensor product structure. Invert using

(A⊗ B)−1 = A−1 ⊗ B−1.

L11 lives in the small space V11 (O(p2) dofs) – invert directly.Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 66: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Construction of the subspace smoothers (2D)Using K0 ≤ ch−2M0, we estimate:

A00 = K0 ⊗M0 + M0 ⊗ K0 + M0 ⊗M0 . h−2M0 ⊗M0

A01 = K0 ⊗M1 + M0 ⊗ K1 + M0 ⊗M1 .M0 ⊗ (h−2M1 + K1)

A10 = K1 ⊗M0 + M1 ⊗ K0 + M1 ⊗M0 .(h−2M1 + K1)⊗M0

So we choose

L00 := h−2M0 ⊗M0 L01 := M0 ⊗ (h−2M1 + K1)

L10 := (h−2M1 + K1)⊗M0 L11 := A11

L00, L01, L10 have tensor product structure. Invert using

(A⊗ B)−1 = A−1 ⊗ B−1.

L11 lives in the small space V11 (O(p2) dofs) – invert directly.Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 67: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Construction of the subspace smoothers (2D)Using K0 ≤ ch−2M0, we estimate:

A00 = K0 ⊗M0 + M0 ⊗ K0 + M0 ⊗M0 . h−2M0 ⊗M0

A01 = K0 ⊗M1 + M0 ⊗ K1 + M0 ⊗M1 .M0 ⊗ (h−2M1 + K1)

A10 = K1 ⊗M0 + M1 ⊗ K0 + M1 ⊗M0 .(h−2M1 + K1)⊗M0

So we choose

L00 := h−2M0 ⊗M0 L01 := M0 ⊗ (h−2M1 + K1)

L10 := (h−2M1 + K1)⊗M0 L11 := A11

L00, L01, L10 have tensor product structure. Invert using

(A⊗ B)−1 = A−1 ⊗ B−1.

L11 lives in the small space V11 (O(p2) dofs) – invert directly.Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 68: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Construction of the subspace smoothers (2D)Using K0 ≤ ch−2M0, we estimate:

A00 = K0 ⊗M0 + M0 ⊗ K0 + M0 ⊗M0 . h−2M0 ⊗M0

A01 = K0 ⊗M1 + M0 ⊗ K1 + M0 ⊗M1 .M0 ⊗ (h−2M1 + K1)

A10 = K1 ⊗M0 + M1 ⊗ K0 + M1 ⊗M0 .(h−2M1 + K1)⊗M0

So we choose

L00 := h−2M0 ⊗M0 L01 := M0 ⊗ (h−2M1 + K1)

L10 := (h−2M1 + K1)⊗M0 L11 := A11

L00, L01, L10 have tensor product structure. Invert using

(A⊗ B)−1 = A−1 ⊗ B−1.

L11 lives in the small space V11 (O(p2) dofs) – invert directly.Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 69: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Construction of the subspace smoothers (2D)Using K0 ≤ ch−2M0, we estimate:

A00 = K0 ⊗M0 + M0 ⊗ K0 + M0 ⊗M0 . h−2M0 ⊗M0

A01 = K0 ⊗M1 + M0 ⊗ K1 + M0 ⊗M1 .M0 ⊗ (h−2M1 + K1)

A10 = K1 ⊗M0 + M1 ⊗ K0 + M1 ⊗M0 .(h−2M1 + K1)⊗M0

So we choose

L00 := h−2M0 ⊗M0 L01 := M0 ⊗ (h−2M1 + K1)

L10 := (h−2M1 + K1)⊗M0 L11 := A11

L00, L01, L10 have tensor product structure. Invert using

(A⊗ B)−1 = A−1 ⊗ B−1.

L11 lives in the small space V11 (O(p2) dofs) – invert directly.Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 70: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Robust convergenceBy construction, the subspace smoothers satisfy

〈Aαvα, vα〉 ≤ c〈Lαvα, vα〉 ∀vα ∈ Vα

and

〈Lαvα, vα〉 ≤ c〈(Aα + h−2Mdα)vα, vα〉 ∀vα ∈ Vα.

In both cases, c does not depend on h or p.

Theorem (Hofreither, T. 2016)

The two-grid method with the subspace correction smoother Lconverges with a rate which does not depend on h or p.

The extension to W-cycle multigrid is standard.Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 71: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Computational costs

Construction is easily extended to d dimensions.

Complexity analysis:

Setup costs O(np2 + p3d )Application costs O

(ndp + maxk=0,...,d nkp2(d−k)

)= O

(ndp + p2d)

Stiffness matrix costs O(ndpd)

For d ≥ 2 and p2 . n, both setup and application of the smootherare not more expensive than applying the stiffness matrix.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 72: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Outline

1 Introduction

2 Abstract multigrid theory

3 Approximation error and inverse estimates

4 A robust multigrid solver

5 Numerical results

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 73: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Iteration numbers: d = 1

` p 1 2 3 4 5 6 7 8 9 10

9 27 33 34 34 33 33 33 32 31 318 27 33 34 34 32 33 33 31 30 307 27 33 34 34 32 33 33 31 28 30

V-cycle multigrid, νpre + νpost = 1 + 1, stopping criterion: `2 normof the initial residual is reduced by a factor of ε = 10−8

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 74: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Iteration numbers: d = 2

` p 1 2 3 4 5 6 7 8 9 10

8 34 38 39 39 39 38 38 37 37 367 34 38 39 39 38 38 37 36 36 346 34 38 38 38 37 37 35 34 34 325 34 36 37 34 34 32 30 28 26 244 34 33 32 28 25 21 19 16 13 113 38 25 21 15 11 9 7 - - -

Iteration numbers using standard Gauss-Seidel smoother:` p 1 2 3 4 5 6 ≥ 7

8 10 12 37 127 462 1762 >5k

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 75: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Iteration numbers: d = 3

` p 2 3 4 5

5 44 43 42 394 39 36 32 293 30 42 18 232 16 23 - -1 - - - -

Iteration numbers using standard Gauss-Seidel smoother:

` p 2 3 4 ≥5

5 38 240 1682 >5k

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 76: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Multigrid solver

Single-patch solver (some DD approach might be used formulti-patch domains)

Robust convergence rates, robust number of smoothingsteps

Optimal computational complexity in the sense: “samecomplexity as the multiplication with the stiffness matrix A”

Mild dependence of the rates on d (not fully analyzed)

Rigorous analysis

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 77: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Multigrid solver

Single-patch solver (some DD approach might be used formulti-patch domains)

Robust convergence rates, robust number of smoothingsteps

Optimal computational complexity in the sense: “samecomplexity as the multiplication with the stiffness matrix A”

Mild dependence of the rates on d (not fully analyzed)

Rigorous analysis

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 78: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Multigrid solver

Single-patch solver (some DD approach might be used formulti-patch domains)

Robust convergence rates, robust number of smoothingsteps

Optimal computational complexity in the sense: “samecomplexity as the multiplication with the stiffness matrix A”

Mild dependence of the rates on d (not fully analyzed)

Rigorous analysis

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 79: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Multigrid solver

Single-patch solver (some DD approach might be used formulti-patch domains)

Robust convergence rates, robust number of smoothingsteps

Optimal computational complexity in the sense: “samecomplexity as the multiplication with the stiffness matrix A”

Mild dependence of the rates on d (not fully analyzed)

Rigorous analysis

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 80: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Multigrid solver

Single-patch solver (some DD approach might be used formulti-patch domains)

Robust convergence rates, robust number of smoothingsteps

Optimal computational complexity in the sense: “samecomplexity as the multiplication with the stiffness matrix A”

Mild dependence of the rates on d (not fully analyzed)

Rigorous analysis

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 81: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Literature

S. Takacs and T. Takacs.Approximation error estimates and inverse inequalities for B-splinesof maximum smoothness.M3AS, 26 (7), p. 1411 - 1445, 2016.

C. Hofreither, S. Takacs and W. Zulehner.A Robust Multigrid Method for Isogeometric Analysis usingBoundary Correction.CMAME, available online, 2016.C. Hofreither and S. Takacs.Robust Multigrid for Isogeometric Analysis using Subspace Correction.In preparation, 2016.

Thanks for your attention!Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis

Page 82: Multigrid methods for Isogeometric analysis · Stefan Takacs, Multigrid methods for Isogeometric analysis Johann Radon Institute for Computational and Applied Mathematics B-spline

Johann Radon Institute for Computational and Applied Mathematics

Construction of the subspace smoothers (3D)

Using K0 ≤ ch−2M0, we estimate:

A000 = K0 ⊗M0 ⊗M0 + M0 ⊗ K0 ⊗M0 + M0 ⊗M0 ⊗ K0 + M0 ⊗M0 ⊗M0

. h−2M0 ⊗M0 ⊗M0 =: L000

A100 = K1 ⊗M0 ⊗M0 + M1 ⊗ K0 ⊗M0 + M1 ⊗M0 ⊗ K0 + M1 ⊗M0 ⊗M0

. (K1 + h−2M1)⊗M0 ⊗M0 =: L100

A110 = K1 ⊗M1 ⊗M0 + M1 ⊗ K1 ⊗M0 + M1 ⊗M1 ⊗ K0 + M1 ⊗M1 ⊗M0

. (K1 ⊗M1 + M1 ⊗ K1 + h−2M1 ⊗M1)⊗M0 =: L110

A111 = K1 ⊗M1 ⊗M1 + M1 ⊗ K1 ⊗M1 + M1 ⊗M1 ⊗ K1 + M1 ⊗M1 ⊗M1

=: L111

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Appendix

www.ricam.oeaw.ac.at Stefan Takacs, Multigrid methods for Isogeometric analysis