geometric (classical) multigrid

15
Geometric (Classical) MultiGrid

Upload: althea

Post on 06-Jan-2016

57 views

Category:

Documents


0 download

DESCRIPTION

Geometric (Classical) MultiGrid. Grid:. x=0. x=1. x 0. x 1. x 2. x i. x N-1. x N. local averaging. Let. Linear scalar elliptic PDE (Brandt ~1971). 1 dimension Poisson equation Discretize the continuum. Linear scalar elliptic PDE. 1 dimension Laplace equation - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Geometric (Classical) MultiGrid

Geometric (Classical) MultiGrid

Page 2: Geometric (Classical) MultiGrid

Linear scalar elliptic PDE (Brandt ~1971)

1 dimension Poisson equation

Discretize the continuum

LU )(xx F)(U 10 x

0)U()U( 10

x0 x1 x2 xi xN-1 xN

x=0 x=1h

Grid: ihxN

h i ,1

Ni 0

h

Let ihi FF local

averaging),( ixU )( ixFi

hi UU

Page 3: Geometric (Classical) MultiGrid

Linear scalar elliptic PDE 1 dimension Laplace equation

Second order finite difference approximation

=> Solve a linear system of equationsNot directly, but iteratively=> Use Gauss Seidel pointwise relaxation

LU 0 )(U x 10 x

0)U()U( 10

hi

hUL 0UUU

211 2

hiii 11 Ni

00 NUU

Page 4: Geometric (Classical) MultiGrid

Influence of (pointwise) Gauss-Seidelrelaxation on the error

Poisson equation, uniform grid

Error of initial guess Error after 5 relaxation

Error after 10 relaxations Error after 15 relaxations

Page 5: Geometric (Classical) MultiGrid

The basic observations of ML Just a few relaxation sweeps are needed to

converge the highly oscillatory components of the error

=> the error is smooth Can be well expressed by less variables Use a coarser level (by choosing every other

line) for the residual equation Smooth component on a finer level becomes

more oscillatory on a coarser level=> solve recursively The solution is interpolated and added

Page 6: Geometric (Classical) MultiGrid

TWO GRID CYCLE

Approximate solution:hu~

hhh u~UV hhh RVL

hhhh u~LFR

Fine grid equation: hhh FUL

2. Coarse grid equation: hhh RVL 22

hh2

h2v~~~ hold

hnew uu h

h2

Residual equation:Smooth error:

1. Relaxation

residual:

h2v~Approximate solution:

3. Coarse grid correction:

4. Relaxation

Page 7: Geometric (Classical) MultiGrid
Page 8: Geometric (Classical) MultiGrid

TWO GRID CYCLE

Approximate solution:hu~

hhh u~UV hhh RVL

hhhh u~LFR

Fine grid equation: hhh FUL

2. Coarse grid equation: hhh RVL 22

hh2

hold

hnew uu h2v~~~ h

h2

Residual equation:Smooth error:

1. Relaxation

residual:

h2v~Approximate solution:

3. Coarse grid correction:

4. Relaxation

1

2

34

5

6

by recursion

MULTI-GRID CYCLE

Correction Scheme

Page 9: Geometric (Classical) MultiGrid

interpolation (order m)of corrections relaxation sweeps

residual transfer

ν ν enough sweepsor direct solver*

.. .

*

Vcyclemultigrid

h0

h0/2

h0/4

2h

h

V-cycle: V

Page 10: Geometric (Classical) MultiGrid

Hierarchy of

graphs

Apply grids in all scales: 2x2, 4x4, … , n1/2xn1/2

Coarsening Interpolate and relax

Solve the large systems of equations by multigrid!

G1

G2

G3

Gl

G1

G2

G3

Gl

Page 11: Geometric (Classical) MultiGrid

Linear (2nd order) interpolation in 1D

x1 x2x

F(x)

)()()( 212

11

12

2 xFxx

xxxF

xx

xxxF

Page 12: Geometric (Classical) MultiGrid

i

S(i)

(Ulb,Vlb)

(Urt,Vrt)(Ult,Vlt)

(Urb,Vrb)

(x2,y2)(x1,y2)

(x2,y1)(x1,y1)

(x0,y0)

Bilinear interpolation

C(S(i))={rb,rt,lb,lt}

Page 13: Geometric (Classical) MultiGrid

i

S(i)

(Ulb,Vlb)

(Urt,Vrt)(Ult,Vlt)

(Urb,Vrb)

(x2,y2)(x1,y2)

(x2,y1)(x1,y1)

(x0,y0)

lbltlrbrtr UUUUyy

yyU

yy

yyU ......;

12

02

12

10

(Ul,Vl) (Ur,Vr)

lr Uxx

xxU

xx

xxyxU

12

02

12

1000 ),(

Page 14: Geometric (Classical) MultiGrid

From (x,y) to (U,V) by bilinear intepolation

])~~(

)~~[(),(

])()[(),(

))((

2

))((

2

))(())((,

22

,

jscpjpjpj

iscpipipi

jscpjpjpj

iscpipipi

jiij

jijiji

ij

VyVy

UxUxaVUE

yyxxayxE

hi

ii

hj

hi

jiij

hhh uluuquEVUu ,

)(]|[

Page 15: Geometric (Classical) MultiGrid

The fine and coarse LagrangiansFor each square k add an equi-density constraint

eqd(k) = current area + fluxes of in/out areas –

allowed area = 0

is the bilinear interpolation from grid 2h to grid h

At the end of the V-cycle interpolate back to (x,y)

)()( kii

ki buakeqd )()(),( keqduEuL

k

hk

hhhhh hhI2

)()()( 22

hhh

oldhnewh uIuu

)(),( 2222222 KeqduLuuQuLK

hK

I

hII

IJ

hJ

hIIJ

hhh