mucool experiment- plansagni.phys.iit.edu/~capp/workshops/muinst2000/raja.pdf · 2000. 12. 4. ·...

14
Nov 10,2000 Rajendran Raja,IIT Instrumentation workshop 1 MUCOOL experiment- Plans Rajendran Raja Fermilab IIT instrumentation Workshop Nov 10,2000

Upload: others

Post on 16-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Nov 10,2000 Rajendran Raja,IIT Instrumentation workshop 1

    MUCOOL experiment- Plans

    Rajendran RajaFermilab

    IIT instrumentation Workshop Nov 10,2000

  • Nov 10,2000 Rajendran Raja,IIT Instrumentation workshop 2

    Charge from Fermilab

    Sep 13, 2000 letter from John Cooper to me states “I am asking you to lead the work at Fermilab on the following tasks:

    1. Design of a muon testbeam that can be used to study the performance of a cooling section.

    2. Simulation of the response of a cooling test section to the test beam. Hence determine what properties of the cooling channel can and cannot be tested in a muon beam.

    I would like a short report on these items to be given to Mike Shaevitz, Steve Holmes and myself by April 1st, 2001”.

    We have had 3 meetings on this topic. I will summarize the ideas generated therein.

  • Nov 10,2000 Rajendran Raja,IIT Instrumentation workshop 3

    Muon Test beam-Targetry

    1 Targetry and Primary Focusing

    (N.Holtkamp, N.Mokhov)

    • 8 GeV proton beam (FNAL Booster)• Active target• Li lens for primary focusing

    Li LensTarget1.6 cm

    15 cm

    8.5 cm

    40 cm

    Shield

    Figure 1: Schematic of the target station.

    Proton Beam: 8 GeV, σx = σy = 6 mm, σz = 30 cm, 750,000 protonsTarget: Copper, L = 15 cm, R = 1.6 cm, G = 4.39 T/cm,

    Bmax = 7.0 T, J = 560 kALi Lens: L = 40 cm, R = 8.5 cm, G = 0.158 T/cm,

    Bmax = 1.34 T, J = 570 kA

    2

  • Nov 10,2000 Rajendran Raja,IIT Instrumentation workshop 4

    Muon Test beam-Decay channel

    2 Beam Characteristics after Li Lens

    Yield: π−/p = 0.119, µ−/p = 0.0022

    0.0 0.2 0.4 0.6 0.8 1.0Total energy (GeV)

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    (π+µ

    )/pro

    ton/

    GeV

    Energy distribution of π−+µ− after Li lens Total π/p=0.119, µ/p=0.0022

    Figure 2:

    −20 −10 0 10 20X (cm)

    −20

    −10

    0

    10

    20

    Y (c

    m)

    X−Y phase space after Li lensCircle − acceptance of Q−channel

    Figure 3:

    −200 −100 0 100 200PX (MeV/c)

    −200

    −100

    0

    100

    200

    PY (M

    eV/c

    )

    PX−PY phase space after Li lensCircle − acceptance of Q−channel

    Figure 4:

    −20 −10 0 10 20X (cm)

    −200

    −100

    0

    100

    200

    PX (M

    eV/c

    )

    X−PX phase space after Li lensEllipse − acceptance of Q−channel

    Figure 5:

    3

  • Nov 10,2000 Rajendran Raja,IIT Instrumentation workshop 5

    Muon test beam – Decay channel

    3 Q-Decay Channel: Lattice and β-functions

    • Quads: L = 36 cm, G = 0.059 T/cm, R = 13.7 sm• Drift 36 cm• No RF

    0 2 4 6 8 10 12 14 16Z (m)

    −0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    β (m

    )

    Lattice and β−functions of Q−channel(P = 375 MeV/c)

    βxβy

    Figure 6:

    4

  • Nov 10,2000 Rajendran Raja,IIT Instrumentation workshop 6

    Muon test beam –Decay channel

    4 Muon Beam Characteristics in Q-Channel

    • Radius of aperture 13.7 cm• E-window 255-355 MeV • T-window ±75 cm

    0 2 4 6 8 10 12 14 16Z (m)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Transmission and emittance in Q−channel(T−window 75 cm, E−window 255−355 MeV)

    π/p (%)µ/p (%)(π+µ/p (%)µ emittance (cm)

    Figure 7:

    0 2 4 6 8 10 12 14 16Distance (m)

    −20

    −15

    −10

    −5

    0

    5

    10

    15

    20X

    (cm

    )Trajectories of muons after π−µ−decay

    (pions are going along the axis)

    Figure 8:

    −200 −100 0 100 200Time x c (cm)

    100

    300

    500

    700

    900

    Tot

    al e

    nerg

    y (M

    eV)

    Longitudinal phase space after decay channelµ/p = 0.5% (total), 0.07% (in the window)

    Figure 9:

    −15 −10 −5 0 5 10 15X (cm)

    −40

    −30

    −20

    −10

    0

    10

    20

    30

    40

    PX (

    MeV

    /c)

    Transverse phase space after decay channelR.m.s. emittance of muon beam 5.9 mm

    Figure 10:

    5

  • Nov 10,2000 Rajendran Raja,IIT Instrumentation workshop 7

    Ring Cooler ideas

    • Initial scheme from V.Balbekov

    Injection Extraction

    Period

    7.5 m

    61.1

    61.1

    316.5 cm

    Period:

    Solenoid coil

    LH absorber

    LiH wedge absorber

    32.2 deg

    - - -

    +

    +

    +

    and field flipCavity

  • Nov 10,2000 Rajendran Raja,IIT Instrumentation workshop 8

    Ring Cooler –New scheme from Balbekov

    5 Ring Cooler

    6.33 m

    1.1 m

    Liquid hydrogen absorber

    201 MHz cavity

    LiH wedge absorber

    Bending magnet45 deg, R = 30 cm

    Direction of magnetic field

    Solenoid coils

    Figure 11: Schematic of ring cooler

  • Nov 10,2000 Rajendran Raja,IIT Instrumentation workshop 9

    Ring Cooler - Parameters

    Ring cooler: list of parameters

    1. Circumference 32.4 m2. Kinetic energy of muons 125-164 MeV3. Revolution frequency 8.4 MHz4. Bending radius 30 cm5. Bending field 2.52 T6. Solenoid field ±3.56 T7. RF frequency 201.25 MHz8. Accelerating gradient 15 MeV/m9. RF harmonic number 2410. Main absorber LH, 120 cm11. Wedge absorber LiH, dE/dy = 0.8 MeV/cm12. β-function 42 cm

    Necessary conditions:

    • Field flip• Ho dispersion at SS

    −1.0 −0.5 0.0 0.5 1.0Z (m)

    −0.5

    −0.4

    −0.3

    −0.2

    −0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    Dis

    pers

    ion

    (m)

    Dispersion function in the ring cooler(instantaneous field flip)

    HorizontalVertical

    Figure 12:

    7

  • Nov 10,2000 Rajendran Raja,IIT Instrumentation workshop 10

    Ring Cooler-Performance

    6 Cooling in the Ring

    Injected beam: σX = σY = 4.87 cmσPx = σPy = 26 MeV/cσZ = 8.5 cm, σE = 18.8 MeVεX = εY = 1.2 cm, εZ = 1.5 cm

    After 15 revolutions: εX = 0.32 cmεY = 0.37 cmεZ = 0.68 cm

    Transmission: 68% with decay49% without decay

    0 10 20 30 40 50 60Period number (1 rev.=4 per.)

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    Em

    ittan

    ce/T

    rans

    mis

    sion

    Beam emittance and transmission in the ring cooler

    Horizontal emittance (cm)Vertical emittance (cm)Longitudinal emittance (cm)6D emittance (cm

    3)

    Transmission

    Figure 13:

    8

  • Nov 10,2000 Rajendran Raja,IIT Instrumentation workshop 11

    Ring Cooler -Performance

    7 Phase Space of the Beam

    −20 −10 0 10 20X (cm)

    −100

    −50

    0

    50

    100

    PX (

    MeV

    /c)

    Transverse phase space in the ring cooler(0 rev., normalized r.m.s. emittance 12 mm)

    Figure 14:

    −20 −10 0 10 20X (cm)

    −100

    −50

    0

    50

    100

    PX (

    MeV

    /c)

    Transverse phase space in the ring cooler(15 rev., normalized r.m.s. emittance 3.2 mm)

    Figure 15:

    −30 −20 −10 0 10 20 30Time x c (cm)

    200

    250

    300

    350

    400

    Tot

    al e

    nerg

    y (M

    eV)

    Longitudinal phase space in the ring cooler(0 rev., normalized r.m.s. emittance 20 mm)

    Figure 16:

    −30 −20 −10 0 10 20 30Time x c (cm)

    200

    250

    300

    350

    400

    Tot

    al e

    nerg

    y (M

    eV)

    Longitudinal phase space in the ring cooler(15 rev., normalized r.m.s. emittance 7.2 mm)

    Figure 17:

    9

  • Nov 10,2000 Rajendran Raja,IIT Instrumentation workshop 12

    Ring Cooler-Performance

    8 Bunching in the Ring (Q-Decay channel)

    Nµ = 6 · 1010 × 6 · 10−4 = 3.6 · 107

    0 10 20 30 40 50 60Period number (1 rev.=4 per.)

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    Em

    ittan

    ce/T

    rans

    mis

    sion

    Beam emittance and transmission in the ring cooler

    εx (cm)εy (cm)εz (cm)ε6 (cm

    3)

    Tr.x1000

    Figure 18:

    −20 −10 0 10 20X (cm)

    −100

    −50

    0

    50

    100

    PX (

    MeV

    /c)

    Transverse phase space in the ring cooler

    After 3 rev.After 15 rev.

    Figure 19:

    −30 −20 −10 0 10 20 30Time x c (cm)

    200

    250

    300

    350

    400

    Tot

    al e

    nerg

    y (M

    eV)

    Longitudinal phase space in the ring cooler

    After 3 rev.After 15 rev.

    Figure 20:

    Q-decay channel is a bottleneck

    10

  • Nov 10,2000 Rajendran Raja,IIT Instrumentation workshop 13

    Ring Cooler-Performance

    Solenoidal channel B = 3.56 T, R = 15 cm, L = 16 m provides 2.5times more muons at the same window. After the bunching:

    Nµ = 6 · 1010 × 1.2 · 10−4 = 7.2 · 107

    0 10 20 30 40 50 60Period number (1 rev.=4 per.)

    0.0

    1.0

    2.0

    3.0

    4.0

    5.0

    Em

    ittan

    ce/T

    rans

    mis

    sion

    Beam emittance and transmission in the ring cooler(solenoidal decay channel)

    Horizontal emittance (cm)Vertical emittance (cm)Longitudinal emittance (cm)6D emittance (cm

    3)

    Transmission x 1000

    Figure 21:

    −20 −10 0 10 20X (cm)

    −100

    −50

    0

    50

    100

    PX (

    MeV

    /c)

    Transverse phase space in the ring cooler(solenoidal decay channel)

    After 3 rev.After 15 rev.

    Figure 22:

    −30 −20 −10 0 10 20 30Time x c (cm)

    200

    250

    300

    350

    400

    Tot

    al e

    nerg

    y (M

    eV)

    Longitudinal phase space in the ring cooler(solenoidal decay channel)

    After 3 rev.After 15 rev.

    Figure 23:

    11

  • Nov 10,2000 Rajendran Raja,IIT Instrumentation workshop 14

    Injection ideas

    • It is difficult to inject beam of either pions or muons into the ring cooler.

    • Try injecting protons (8GeV-1-3ns bunch) and hit one of the wedge targets. Simulation of pion production and capture at 90 degrees is being conducted by N.Mokhov

    • Muon Collider/Neutrino factory fellow –Z.Usubov will help in simulating this setup in Geant4/DPGeant.

    • If we can show that it is possible to capture sufficient number of muons this way, then we need to go into an engineering study that will put the design onto a more realistic basis. This can be followed by cost estimates etc.

    • The beauty of this scheme (if it works) is that it would demonstrate cooling (6D) on modules that are used by the regular cooling channel. Reusing the modules turn by turn (20 turns foreseen) would reduce the cost of a cooling demonstration channel by that factor.