mse 3300-lecture note 12-chapter 07 dislocation and strengthening mechanisms

Upload: chuong

Post on 06-Jul-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    1/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 -

    Lecture 12. Dislocations andStrengthening Mechanisms (2)Learning Objectives

     After this lecture, you should be able to do the following:

    1. Explain how grain boundaries impede dislocation motion and why a

    metal having small grains is stronger (grain size reduction).

    2. Describe solid-solution strengthening for substitutional impurity atoms

    (solid-solution alloying).

    3. Explain the phenomenon of strain hardening (or cold working) in terms

    of dislocations and strain field interactions.

    Reading

    • Chapter 7: Dislocations and Strengthening Mechanisms (7.8–7.13)

    Multimedia

    • Virtual Materials Science & Engineering (VMSE):

    http://www.wiley.com/college/callister/CL_EWSTU01031_S/vmse/

    1

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    2/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 -

    Mechanisms of Strengthening in

    Metals

    2

    • Early materials studies: the theoretical strengths of perfect crystals are many

    times greater than those actually measured.

    • The discrepancy could be explained by a type of linear crystalline defect:

    dislocation (1930s).

    • Design materials to have high strength yet some ductility and toughness

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    3/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 -

    1. Elastic Deformation• Elastic deformation is nonpermanent: when the applied load is released, the

    piece returns to its original shape (not breaking atomic bonds).

    • Hooke’s Law

    E [Pa]: Modulus of elasticity, or Young’s modulus

    3

    Linear elastic deformation  Nonlinear elastic deformation

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    4/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 -

    Yield Strength,σ 

    y

    4

    • Yield strength: The stress level at which plastic deformation begins, or

    yielding occurs.

    P: Proportional limit

    (onset of plastic

    deformation at the

    microscopic level

    Strain offset of 0.002

    Yield Strength, σ y

    Yield point phenomenon

    * Yield stress for nonlinear elastic deformation

    (Figurer 6.6): stress required to produce some

    amount of strain (e.g., =0.005)

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    5/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 - 5

    Tensile Strength, TS

    • Metals: occurs when noticeable necking starts.

    • Polymers: occurs when polymer backbone chains are aligned and about to break.

    • Tensile strength: Maximum

    stress on engineering

    stress-strain curve;

    maximum stress that can besustained by the structure in

    tension

    • If this stress is applied,

    fracture will result.Necking

    TS

    F = Fracture or ul timate

    strength

    Neck acts as stress

    concentrator; fracture

    occurs at the neck.

    M = Tensile strength (TS)

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    6/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 -

    Ductility

    6

           S      t     r     e     s     s

    Strain

    • Ductility: Measure of the degree

    of plastic deformation that has

    been sustained at fracture

    • Brittle: little or not plastic

    deformation (approximately, afracture strain < 5%)

    • Ductility usually increases with

    temperature.

    • Percent elongation

    • Percent reduction in area

    1. It indicates the degree to which a structure will deform plastically before fracture

    2. It specifies the degree of allowable deformation during fabrication operations

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    7/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 - 7

    • Tensile toughness: Measure of the ability of the material to absorb energy

    without fracture

    • The area under the entire stress-strain curve up to fracture (Unit: J/m3)

    • Fracture toughness: Material’s resistance to fracture when a crack (or otherdefect) is present

    Measures of Energy Capacity 2:

    Toughness

    Brittle fracture: elastic energy

    Ductile fracture: elastic + plastic energy

    very small toughness(unreinforced polymers)

    Engineering tensile strain, e

    Engineering

    tensile

    stress, σ 

    small toughness (ceramics)

    large toughness (metals):strength + ductili ty

      f 

    d U  f  

       0

     

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    8/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 -

    Measures of Energy Capacity 1:

    Resilience

    8

           S      t     r     e

         s     s

    Strain

    • Resilience: Capacity of a material to absorb

    energy when it is deformed elastically and

    then, upon, unloading, to have the energy

    recovered.

    • Modulus of resilience [J/m3] Measure of

    the ability of material to store elastic energy;

    Strain energy per unit volume required to

    stress a material from an unloaded state upto the point of yielding

      y

    d U r  

       

    0

     

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    9/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 -

    Mechanisms of Strengthening in

    Metals

    9

    • Early materials studies: the theoretical strengths of perfect crystals are many

    times greater than those actually measured.

    • The discrepancy could be explained by a type of linear crystalline defect:

    dislocation (1930s).

    • Design materials to have high strength yet some ductility and toughness

    • Strengthening mechanisms: Relation between dislocation motion and

    mechanical behavior of metals

    • Macroscopic plastic deformation: motion of large numbers of dislocations; theability of a metal to deform plastically depends on the ability of dislocations to

    move.

    - Reduce the mobility of dislocations enhance mechanical strength

    • Principles: Restricting or hindering dislocation motion renders a material

    harder and stronger (1) Grain size reduction

    (2) Solid-solution alloying

    (3) Strain hardening

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    10/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 -

    1. Mechanism of Strengthening:

    Grain Size Reduction

    10

    • The size of the grains, or average grain diameter, in a polycrystalline metal

    influence the mechanical properties. Why?

    • Grain boundary: Barrier to dislocation motion(1) When crossing a grain boundary, a dislocation’s direction of motion must change.

    (2) There is a discontinuity of slip planes within the vicinity of a grain boundary.

    Slip planes are discontinuous andchange directions across the

    boundary

    For high angle grain boundaries,

    dislocations tend to “pile up” at

    the boundaries, which introduce

    stress concentration and

    generate new dislocations in

    adjacent grains.

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    11/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 -

    Hall-Petch equation

    The yield strength varies withgrain size:

    where d is the average grain

    diameter.

    * A metal that has small grains is

    stronger than one with largegrains because the former has

    more grain boundary area (more

    barriers to dislocation motion).

    Mechanism of Strengthening:

    Grain Size Reduction

    11

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    12/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 - 12

    Strategies for Strengthening:

    1: Reduce Grain Size

    • Grain boundaries are

    barriers to slip.• Barrier "strength"

    increases with

    Increasing angle of

    misorientation.

    • Smaller grain size:

    more barriers to slip.

    • Hall-Petch Equation:

    Fig. 7.14, Callister & Rethwisch 9e.(From L. H. Van Vlack, A Textbook of Materials

    Technology , Addison-Wesley Publishing Co., 1973.

    Reproduced with the permission of the Estate of 

    Lawrence H. Van Vlack.)

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    13/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 -

    Grain Size Influences Properties

    • Metals having small grains  – relatively strong

    and tough at low temperatures

    • Metals having large grains – good creep

    resistance at relatively high temperatures

    13

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    14/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 -

    2. Mechanism of Strengthening:

    Solid-Solution Strengthening

    14

    • Solid-solution strengthening: Alloying with impurity atoms that go into either

    substitutional or interstitial solid solution.

    • Solid-solution strengthening results from lattice strain interactions between

    impurity atoms and dislocations; these interactions decrease dislocationmobility.

    (a) Tensile lattice strains imposed on

    host atoms. (b) Partial cancellation of

    impurity-dislocation lattice strains.

    (a) Compressive strains imposed on

    host atoms. (b) Partial cancellation of

    impurity-dislocation lattice strains.

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    15/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 - 15

    Dislocation Motion: Edge Dislocation

    Dislocation motion and plastic deformation

    • Metals - plastic deformation occurs by slip: an edge dislocation (extra

    half-plane of atoms) slides over adjacent plane half-planes of atoms.

    • If dislocations can't move, plastic deformation doesn't occur!

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    16/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 -

    Mechanism of Strengthening:

    Solid-Solution Strengthening

    16

    • Solid-solution strengthening: Alloying with impurity atoms that go into either

    substitutional or interstitial solid solution

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    17/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 - 17

    Lattice Strains Around Dislocations

    Fig. 7.4, Callister & Rethwisch 9e.(Adapted from W.G. Moffatt, G.W. Pearsall, and J. Wulff,

    The Structure and Properties of Materials, Vol. I, Structure,

    p. 140, John Wiley and Sons, New York, 1964.)

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    18/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 - 18

    Strengthening by Solid

    Solution Alloying• Small impurities tend to concentrate at dislocations

    (regions of compressive strains) - partial cancellation ofdislocation compressive strains and impurity atom tensile strains

    • Reduce mobility of dislocations and increase strength

    Fig. 7.17, Callister &

    Rethwisch 9e.

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    19/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 - 19

    Strengthening by Solid

    Solution Alloying• Large impurities tend to concentrate at

    dislocations (regions of tensile strains)

    Fig. 7.18, Callister &

    Rethwisch 9e.

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    20/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 -

    VMSE Solid-Solution Strengthening Tutorial

    20

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    21/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 - 21

    Ex: Solid Solution

    Strengthening in Copper • Tensile strength & yield strength increase with wt% Ni.

    • Empirical relation:

    • Alloying increases σ y and TS.

     Adapted from Fig.

    7.16 (a) and (b),

    Callister &

    Rethwisch 9e.

       T  e  n  s   i   l  e

      s   t  r  e  n  g   t   h   (   M   P

      a   )

    wt.% Ni, (Concentration C )

    200

    300

    400

    0 10 20 30 40 50    Y   i  e   l   d

      s   t  r  e  n  g   t   h   (   M   P  a

       )

    wt.%Ni, (Concentration C )

    60

    120

    180

    0 10 20 30 40 50

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    22/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 -

    3. Mechanism of Strengthening:

    Strain Hardening

    22

    • Strain hardening: The enhancement of strength (and decrease of ductility) of

    a metal as it is deformed plastically deformed (cold working or work

    hardening)

    >

    • Percent cold work (%CW):

    Degree of plastic deformation

    Fig. 6.17, Callister &

    Rethwisch 9e.

           S      t     r     e     s

         s

    Strain

    3. Reapplyload

    2. Unload

    D

    Elastic strain

    recovery

    1. Load

    σ y o

    σ y i 

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    23/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 -

    Mechanism of Strengthening:

    Strain Hardening

    23

    • Strain hardening: A ductile metal becomes harder and stronger as it is

    plastically deformed (cold working or work hardening)

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    24/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 - 24

    Strategies for Strengthening:

    Cold Work (Strain Hardening)

    • Deformation at room temperature (for most metals).

    • Common forming operations reduce the cross-sectional

    area:

     Adapted from Fig.11.9, Callister &

    Rethwisch 9e.

    -Forging

     Ao  Ad 

    force

    die

    blank

    force-Drawing

    tensileforce Ao

     Ad die

    die

    -Extrusion

    ram billet

    container 

    container 

    force

    die holder 

    die

     Ao

     Ad extrusion

    -Rolling

    roll

     Ao

     Ad roll

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    25/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 - 25

    • Dislocation structure in Ti after cold working.

    • Dislocations entangle with one another

    during cold work.

    • Dislocation motion becomes more

    difficult.

    • During plastic deformation, dislocation

    density increases, the average

    distance between dislocationsdecreases, and, because dislocation-

    dislocation strain field interactions are

    on average repulsive, dislocation

    mobility becomes more restricted; thus

    the metal becomes harder andstronger.

    Dislocation Structures Change

    During Cold Working

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    26/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 - 26

    Dislocation Density Increases

    During Cold Working

    Dislocation density =

     – Carefully grown single crystals

    ca. 103 mm-2

     – Deforming sample increases density 109-1010 mm-2

     – Heat treatment reduces density

    105

    -106

    mm-2

    • Yield stress increases as  ρd increases:

    total dislocation length

    unit volume

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    27/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 - 27

    Impact of Cold Work

     Adapted from Fig. 7.20,

    Callister & Rethwisch 9e.

    • Yield strength (σ y) increases.

    • Tensile strength (TS) increases.

    • Ductility (%EL or % AR ) decreases.

     As cold work is increased

    low carbon steel

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    28/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 -

    • What are the values of yield strength, tensile strength &

    ductility after cold working Cu?

    Mechanical Property Alterations

    Due to Cold Working

    Do = 15.2 mm

    Cold

    Work

    Dd = 12.2 mm

    Copper 

    28

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    29/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 -

    Mechanical Property Alterations

    Due to Cold Working

    % Cold Work

    100

    300

    500

    700

    Cu

    200 40 60

    σ y = 300 MPa

    300 MPa

    % Cold Work

    200

    Cu

    0

    400

    600

    800

    20 40 60

    % Cold Work

    20

    40

    60

    20 40 6000

    Cu340 MPa

    TS = 340 MPa

    7%

    %EL = 7%

    • What are the values of yield strength, tensile strength &

    ductility for Cu for %CW = 35.6%?

      y   i  e   l   d  s   t  r  e

      n  g   t   h   (   M   P  a   )

       t  e  n  s   i   l  e  s   t  r  e

      n  g   t   h   (   M   P  a   )

       d  u  c   t   i   l   i   t

      y   (   %      E      L   )

    Fig. 7.19, Callister & Rethwisch 9e. [Adapted from Metals Handbook: Properties and Selection: Ironsand Steels, Vol. 1, 9th edition, B. Bardes (Editor), 1978; and Metals Handbook: Properties and Selection: Nonferrous

     Alloys and Pure Metals, Vol. 2, 9th edition, H. Baker (Managing Editor), 1979. Reproduced by permission of ASM

    International, Materials Park, OH.]29

  • 8/18/2019 MSE 3300-Lecture Note 12-Chapter 07 Dislocation and Strengthening Mechanisms

    30/30

    MSE 3300 / 5300 UTA Fall 2014 Lecture 12 -

    Summary

    1. Plastic deformation and dislocation mobility:

    Restricting dislocation motion leads to increased

    hardness and strength

    2. Mechanisms of Strengthening in Metals:

    (1) Grain size reduction

    (2) Solid-solution alloying

    (3) Strain hardening

    30