mse 3300-lecture note 05-chapter 03 the structure of crystalline solids 2

51
MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - Lecture 5. The Structure of Crystalline Solids (2) Learning Objectives After this lecture, you should be able to do the following: 1. Given point coordinates within a unit cell, locate the point; given the location of a point, specify its point coordinates. 2. Given index integers for a direction within a unit cell, draw the direction; given a direction, specify its direction indices. 3. Given the indices for a plane within a unit cell, draw the plane; given a plane, specify its indices. Reading Chapter 3: The Structure of Crystalline Solids (3.8–3.17) Multimedia Virtual Materials Science & Engineering (VMSE): http://www.wiley.com/college/callister/CL_EWSTU01031_S/vmse/ 1

Upload: chuong

Post on 12-Jul-2016

10 views

Category:

Documents


0 download

DESCRIPTION

MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

TRANSCRIPT

Page 1: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

Lecture 5. The Structure of Crystalline Solids (2)

Learning Objectives After this lecture, you should be able to do the following:

1. Given point coordinates within a unit cell, locate the point; given the location of a point, specify its point coordinates. 2. Given index integers for a direction within a unit cell, draw the direction; given a direction, specify its direction indices. 3. Given the indices for a plane within a unit cell, draw the plane; given a plane, specify its indices.

Reading • Chapter 3: The Structure of Crystalline Solids (3.8–3.17)

Multimedia • Virtual Materials Science & Engineering (VMSE):

http://www.wiley.com/college/callister/CL_EWSTU01031_S/vmse/

1

Page 2: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

Crystallographic Points, Directions, and Planes

• How to specify a particular point within a unit cell, a crystallographic

direction, or some crystallographic plane of atoms? • Use indices (e.g., three number) • Right-handed coordinate system

1. Points 2. Directions 3. Planes

2

Page 3: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

1. Points: Point Coordinates

• Specify a point (lattice position) within a unit cell

• Use three point coordinate indices: q, r, and s

• These indices are fractional multiples of a, b, and c unit cell edge lengths

3

Page 4: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 4

Point Coordinates Point coordinates for unit cell

center are

a/2, b/2, c/2 ½ ½ ½

Point coordinates for unit cell

corner are 111 Translation: integer multiple of

lattice constants identical position in another unit cell

z

x

y a b

c

000

111

y

z 2c

b

b

Page 5: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 5

Crystallographic Directions

1. Determine coordinates of vector tail, pt. 1: x1, y1, & z1; and vector head, pt. 2: x2, y2, & z2. 2. Tail point coordinates subtracted from head point coordinates. 3. Normalize coordinate differences in terms of lattice parameters a, b, and c:

4. Adjust to smallest integer values 5. Enclose in square brackets, no commas

[uvw] ex: pt. 1 x1 = 0, y1 = 0, z1 = 0

=> 1, 0, 1/2

=> [ 201 ]

z

x

Algorithm

y

=> 2, 0, 1

pt. 2 head pt. 1:

tail

pt. 2 x2 = a, y2 = 0, z2 = c/2

Page 6: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

Example Problem: Specification of Point Coordinate Indices

6

Page 7: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

Example Problem: Specification of Point Coordinate Indices

7

Page 8: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

2. Crystallographic Directions • Crystallographic direction is defined as a line directed between two points,

or a vector. 1. Construct a right-handed x-y-z coordinate system 2. Determine the coordinates of two points that lie on the direction vector (referenced to

the coordinate system)—Point 1 (vector tail): x1, y1, z1; Point 2 (vector head): x2, y2, z2 for the vector head

3. Subtract tail point coordinates from head point coordinates: x2-x1, y2-y1, and z2-z1. 4. Normalize (i.e., divide) the coordinate differences by using their respective lattice

parameters (a, b, and c): (x2-x1)/a, (y2-y1)/b, (z2-z1)/c. 5. If necessary, multiply or divide these three numbers by a common factor to reduce

them to the smallest integer values. 6. Enclose the three resulting indices in square brackets without comma: [uvw]. The u,

v, and w integers are the normalized coordinate differences referenced to the x, y, and z axes, respectively.

8

Page 9: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 9

Crystallographic Directions

-4, 1, 2

families of directions <uvw>

z

x

where the overbar represents a negative index

[ 412 ] =>

y

Example 2: pt. 1 x1 = a, y1 = b/2, z1 = 0 pt. 2 x2 = -a, y2 = b, z2 = c

=> -2, 1/2, 1

pt. 2 head

pt. 1: tail

Multiplying by 2 to eliminate the fraction

Page 10: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

Crystallographic Directions: [100], [110], and [111] directions

10

Page 11: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

Determine the Indices for the Direction

11

Page 12: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

Determine the Indices for the Direction

12

Page 13: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

Construct a Specified Crystallographic Direction

13

]011[Draw a direction with its tail located at the origin of the coordinate system.

Page 14: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

Construct a Specified Crystallographic Direction

14

]011[Draw a direction with its tail located at the origin of the coordinate system.

Page 15: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

VMSE Screenshot – [101] Direction

15

Page 16: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

Directions in Hexagonal Crystals

16

Page 17: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

Directions in Hexagonal Crystals

17

)2(31 VUu −=

)2(31 UVv −=

)( vut +−=

Ww =

Page 18: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

Directions in Hexagonal Crystals

18

Page 19: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 19

Drawing HCP Crystallographic Directions (i)

1. Remove brackets 2. Divide by largest integer so all values are ≤ 1 3. Multiply terms by appropriate unit cell dimension a (for a1, a2, and a3 axes) or c (for z-axis) to produce projections 4. Construct vector by placing tail at origin and stepping off these projections to locate the head

Algorithm (Miller-Bravais coordinates)

Adapted from Figure 3.10, Callister & Rethwisch 9e.

Page 20: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 20

Drawing HCP Crystallographic Directions (ii) • Draw the direction in a hexagonal unit cell.

[1213]

4. Construct Vector

1. Remove brackets -1 -2 1 3

Algorithm a1 a2 a3 z

2. Divide by 3

3. Projections

proceed –a/3 units along a1 axis to point p –2a/3 units parallel to a2 axis to point q a/3 units parallel to a3 axis to point r c units parallel to z axis to point s

p

q r

s

start at point o

Adapted from p. 72, Callister & Rethwisch 9e.

[1213] direction represented by vector from point o to point s

Page 21: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

Determine Directions in Hexagonal Crystals

21

)2(31 VUu −=

)2(31 UVv −=

)( vut +−=

Ww =

Page 22: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 22

1. Determine coordinates of vector tail, pt. 1: x1, y1, & z1; and vector head, pt. 2: x2, y2, & z2. in terms of three axis (a1, a2, and z) 2. Tail point coordinates subtracted from head point coordinates and normalized by unit cell dimensions a and c 3. Adjust to smallest integer values 4. Enclose in square brackets, no commas, for three-axis coordinates [UVW] 5. Convert to four-axis Miller-Bravais lattice coordinates using equations below: 6. Adjust to smallest integer values and enclose in brackets [uvtw]

Adapted from p. 72, Callister & Rethwisch 9e.

Algorithm

)2(31 VUu −= )2(

31 UVv −=

)( vut +−= Ww =

Determination of HCP Crystallographic Directions (ii)

Page 23: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 23

4. Brackets [110]

1. Tail location 0 0 0 Head location a a 0c

1 1 0 3. Reduction 1 1 0

Example a1 a2 z

5. Convert to 4-axis parameters

1/3, 1/3, -2/3, 0 => 1, 1, -2, 0 => [ 1120 ]

6. Reduction & Brackets

Adapted from p. 72, Callister & Rethwisch 9e.

Determination of HCP Crystallographic Directions (ii)

Determine indices for green vector

2. Normalized

Page 24: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

Determine the indices (four-index system) for the direction

24

Page 25: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 25

3. Crystallographic Planes

Adapted from Fig. 3.11, Callister & Rethwisch 9e.

Page 26: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 26

Crystallographic Planes • Miller Indices: Reciprocals of the (three) axial

intercepts for a plane, cleared of fractions & common multiples. All parallel planes have same Miller indices.

• Algorithm 1. Read off intercepts of plane with axes in terms of A, B, C 2. Take reciprocals of intercepts 3. Reduce to smallest integer values 4. Enclose in parentheses, no commas i.e., (hkl)

Page 27: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 27

Crystallographic Planes z

x

y a b

c

4. Miller Indices (110)

example a b c z

x

y a b

c

4. Miller Indices (100)

1. Intercepts 1 1 ∞ 2. Reciprocals 1/1 1/1 1/∞

1 1 0 3. Reduction 1 1 0

1. Intercepts 1/2 ∞ ∞ 2. Reciprocals 1/½ 1/∞ 1/∞

2 0 0 3. Reduction 2 0 0

example a b c

Page 28: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 28

Crystallographic Planes z

x

y a b

c

4. Miller Indices (634)

example 1. Intercepts 1/2 1 3/4

a b c

2. Reciprocals 1/½ 1/1 1/¾ 2 1 4/3

3. Reduction 6 3 4

“Family” of Planes: Crystallographically equivalent {hkl}

(001) (010), (100), (010), (001), Ex: {100} = (100),

Page 29: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

VMSE Screenshot – Crystallographic Planes

29

Additional practice on indexing crystallographic planes

Page 30: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 30

Crystallographic Planes (HCP) • In hexagonal unit cells the same idea is used

Page 31: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 31

Crystallographic Planes (HCP) • In hexagonal unit cells the same idea is used

example a1 a2 a3 c

4. Miller-Bravais Indices (1011)

1. Intercepts 1 ∞ -1 1 2. Reciprocals 1 1/∞

1 0 -1 -1

1 1

3. Reduction 1 0 -1 1

a2

a3

a1

z

Adapted from Fig. 3.14, Callister & Rethwisch 9e.

Page 32: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

Determine the Miller-Bravais indices for the plane

32

Page 33: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

Summary of Equations

33

Page 34: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

Linear Density

34

Linear Density (LD): Number of atoms per unit length whose centers lie on the direction vector for a specific crystallographic direction

Page 35: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 35

ex: linear density of Al in [110] direction a = 0.405 nm

Linear Density

• Linear Density of Atoms ≡ LD =

a

[110]

Adapted from Fig. 3.1(a), Callister & Rethwisch 9e.

Unit length of direction vector Number of atoms

# atoms

length

1 3.5 nm a 2

2 LD − = =

Page 36: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

Planar Density

36

Planar Density (PD): Number of atoms per unit area that are centered on a particular crystallographic plane

Page 37: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

Planar Density

37

Planar Density (PD): Number of atoms per unit area that are centered on a particular crystallographic plane

Page 38: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 38

Crystallographic Planes

• We want to examine the atomic packing of crystallographic planes

• Iron foil can be used as a catalyst. The atomic packing of the exposed planes is important.

a) Draw (100) and (111) crystallographic planes for Fe. b) Calculate the planar density for each of these

planes.

Page 39: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 39

Planar Density of (100) Iron Solution: At T < 912°C iron has the BCC structure.

(100)

Radius of iron R = 0.1241 nm

R 3

3 4 a =

2D repeat unit

= Planar Density = a 2

1

atoms 2D repeat unit

= nm2

atoms 12.1 m2

atoms = 1.2 x 1019 1

2

R 3

3 4 area 2D repeat unit

Fig. 3.2(c), Callister & Rethwisch 9e [from W. G. Moffatt, G. W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. I, Structure, p. 51. Copyright © 1964 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.]

Page 40: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 40

Planar Density of (111) Iron Solution (cont): (111) plane 1 atom in plane/ unit surface cell

atoms in plane

atoms above plane

atoms below plane

a h 2 3 =

a 2

1 = =

nm2 atoms 7.0

m2 atoms 0.70 x 1019

3 2 R 3

16 Planar Density =

atoms 2D repeat unit

area 2D repeat unit

3 3 3 2

2

R 3

16 R 3

4 2 a 3 ah 2 area = = = =

Page 41: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

VMSE Screenshot – Atomic Packing – (111) Plane for BCC

41

Page 42: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 42

• Single Crystals: The periodic arrangement of atoms extends throughout the entire specimen -Properties may vary with direction: anisotropic. -Example: the modulus of elasticity (E) in BCC iron:

Data from Table 3.4, Callister & Rethwisch 9e. (Source of data is R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed., John Wiley and Sons, 1989.)

• Polycrystals: Composed of a collection of many small crystals or grains; grain boundary -Properties may/may not vary with direction. -If grains are randomly oriented: isotropic. (Epoly iron = 210 GPa) -If grains are textured (have a preferential crystallographic orientation), anisotropic.

200 μm Adapted from Fig. 4.15(b), Callister & Rethwisch 9e. [Fig. 4.15(b) is courtesy of L.C. Smith and C. Brady, the National Bureau of Standards, Washington, DC (now the National Institute of Standards and Technology, Gaithersburg, MD).]

Single Crystals and Polycrystals E (diagonal) = 273 GPa

E (edge) = 125 GPa

Page 43: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

Summary 1. Crystallographic points, directions, and planes 2. Point coordinates 3. Crystallographic directions 4. Crystallographic planes

43

Page 44: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 -

Homework 2 • 3.3, 3.8, 3.12, 3.19 • 3.26, 3.35, 3.41, 3.42, 3.48, 3.53, 3.56, 3.60 * Problems from Callister, 9th Edition

44

Page 45: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 45

Densities of Material Classes ρ metals > ρ ceramics > ρ polymers

Why?

Data from Table B.1, Callister & Rethwisch, 9e.

ρ (g

/cm

)

3

Graphite/ Ceramics/ Semicond

Metals/ Alloys

Composites/ fibers Polymers

1

2

2 0

30 B ased on data in Table B1, Callister

*GFRE, CFRE, & AFRE are Glass, Carbon, & Aramid Fiber-Reinforced Epoxy composites (values based on 60% volume fraction of aligned fibers

in an epoxy matrix). 10

3 4 5

0.3 0.4 0.5

Magnesium

Aluminum

Steels

Titanium

Cu,Ni Tin, Zinc

Silver, Mo

Tantalum Gold, W Platinum

G raphite Silicon Glass - soda Concrete

Si nitride Diamond Al oxide

Zirconia

H DPE, PS PP, LDPE PC

PTFE

PET PVC Silicone

Wood

AFRE * CFRE * GFRE* Glass fibers

Carbon fibers A ramid fibers

Metals have... • close-packing (metallic bonding) • often large atomic masses Ceramics have... • less dense packing • often lighter elements Polymers have... • low packing density (often amorphous) • lighter elements (C,H,O) Composites have... • intermediate values

In general

Page 46: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 46

• Some engineering applications require single crystals:

• Properties of crystalline materials often related to crystal structure.

(Courtesy P.M. Anderson)

-- Ex: Quartz fractures more easily along some crystal planes than others.

-- diamond single crystals for abrasives

-- turbine blades Fig. 8.34(c), Callister & Rethwisch 9e. (courtesy of Pratt and Whitney)

(Courtesy Martin Deakins, GE Superabrasives, Worthington, OH. Used with permission.)

Crystals as Building Blocks

Page 47: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 47

• Most engineering materials are polycrystals.

• Nb-Hf-W plate with an electron beam weld. • Each "grain" is a single crystal. • If grains are randomly oriented, overall component properties are not directional. • Grain sizes typically range from 1 nm to 2 cm (i.e., from a few to millions of atomic layers).

Fig. K, color inset pages of Callister 5e. (Courtesy of Paul E. Danielson, Teledyne Wah Chang Albany)

1 mm

Polycrystals

Isotropic

Anisotropic

Page 48: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 48

X-Ray Diffraction

• Diffraction gratings must have spacings comparable to the wavelength of diffracted radiation.

• Can’t resolve spacings < λ • Spacing is the distance between parallel planes of

atoms.

Page 49: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 49

X-Rays to Determine Crystal Structure

X-ray intensity (from detector)

θ θ c

d = n λ 2 sin θ c

Measurement of critical angle, c, allows computation of planar spacing, d.

• Incoming X-rays diffract from crystal planes.

Adapted from Fig. 3.22, Callister & Rethwisch 9e.

reflections must be in phase for a detectable signal

spacing between planes

d

θ λ

θ extra distance travelled by wave “2”

Page 50: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 50

X-Ray Diffraction Pattern

Adapted from Fig. 3.22, Callister 8e.

(110)

(200)

(211)

z

x

y a b

c

Diffraction angle 2θ

Diffraction pattern for polycrystalline α-iron (BCC)

Inte

nsity

(rel

ativ

e)

z

x

y a b

c z

x

y a b

c

Page 51: MSE 3300-Lecture Note 05-Chapter 03 the Structure of Crystalline Solids 2

MSE 3300 / 5300 UTA Fall 2014 Lecture 5 - 51