motivations, successes, and problems, with the lagrangian

23
Motivations, successes, and problems, with the Lagrangian - remap dynamical core in MOM6 Alistair Adcroft Princeton University / NOAA-GFDL

Upload: others

Post on 21-Jul-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Motivations, successes, and problems, with the Lagrangian

Motivations, successes, and problems, with the Lagrangian-remap dynamical core in MOM6

AlistairAdcroftPrincetonUniversity/NOAA-GFDL

Page 2: Motivations, successes, and problems, with the Lagrangian

• Wintonetal.,1998:z-coordinatemodelsexcessmixinginoverflows– Numerouscoordinate/mixingstudies:Griffies etal.,2000;Chassignetetal.,2003;Leggetal.,2006;Burchard&Rennau 2008;Megann etal.,2010;…

• Dunneetal.,2012:comparedESM2MandESM2G,both1° resolution– ESM2M:z-coordinate,shallowAMOC– ESM2G:isopycnal layermodel,deepAMOCwithoverflows

2

Z-coordinatesv.isopycnal coordinates

ECMWFAnnualSeminarLagrangian-remapdynamiccoreofMOM6- Adcroft

Dunneetal.,2012

ESM2M

ESM2G

Talley,2003Ganachaud &Wunsch, 2003

Page 3: Motivations, successes, and problems, with the Lagrangian

• Delworth etal.,2012,coupledmodelseries(CM2.1,CM2.5,CM2.6):– 50kmatmosphere– 1°,¼° and0.1° ocean– 1° alonehasSGSeddyparameterization(Gent-McWilliams)

• Griffies etal.,2015,diagnosedhowtransienteddiesina0.1° oceantransportheatupwards– CM2.6leastheatuptakeofCM2.xseries– ArguethatCM2.5hasmostheatuptakeduetoweakeddiesandnoGM

Roleofmesoscaleeddies

Evolutionofhorizontallyaveragedpotential temperature,θ (°C).

ECMWFAnnualSeminarLagrangian-remapdynamiccoreofMOM6- Adcroft 3

CM2.5 CM2.6¼° ocean 1/10° oceanCM2-1deg

1.1°C 1.3°C 0.8°C

1° ocean

Page 4: Motivations, successes, and problems, with the Lagrangian

• Measureworkdonebymixinginspindownexperiments– Turningoffexplicitmixingleavesonlynumericalmixing*

• Ilicak etal.,2012,argued¼° z-coordinatemodelhadnumericalmixingaslargeas“real”mixing

ECMWFAnnualSeminarLagrangian-remapdynamiccoreofMOM6- Adcroft 4

Measuringspuriousmixing

[Wm-2]

Ilicak etal.,2012

Page 5: Motivations, successes, and problems, with the Lagrangian

• ReducingspuriousmixingmotivatedMOM6development– Generalcoordinatetoavoidlimitationsofpotentialdensity(usedbyisopycnal layermodels)

• MOM6broadlyreproducedpriorsolutionsusingz-coordinates

• Adoptionofhybridz-densitycoordinatesreducedheatuptake– success?

ECMWFAnnualSeminarLagrangian-remapdynamiccoreofMOM6- Adcroft 5

MOM6andOM4

OM41/4° z-coordinates

OM41/4° hybrid-coordinates

Adcroftetal.,2019

Page 6: Motivations, successes, and problems, with the Lagrangian

• HydrostaticPrimitiveEquations(forocean)ingeneralcoordinates𝑟 = 𝑟(𝑥, 𝑦, 𝑧, 𝑡) :

Generalcoordinates(Boussinesq)

ECMWFAnnualSeminarLagrangian-remapdynamiccoreofMOM6- Adcroft

𝑧+ =𝜕𝑧𝜕𝑟

Starr,1945;Kasahara,1974;…

6

Page 7: Motivations, successes, and problems, with the Lagrangian

• Integratingbetweensurfacesofconstant𝑟 converts𝑧+ → ℎ = ∫ 𝑧+𝑑𝑟 and𝜕+ → 𝛿+

• Choosing�̇� = 0 followstheverticalmotion→VerticallyLagrangian– removesexplicitverticaltransports→noverticalCFL

7

Layerintegratedgeneralcoordinateequations

ECMWFAnnualSeminarLagrangian-remapdynamiccoreofMOM6- Adcroft

Page 8: Motivations, successes, and problems, with the Lagrangian

Lagrangianremapalgorithm

ECMWFAnnualSeminarLagrangian-remapdynamiccoreofMOM6- Adcroft 8

Reconstruction

𝜃†

𝑧5

𝜃5

Dynamics+“physics”

ℎ†ℎ5

�̇� = 𝟎

Average

𝑧589

𝜃589

Gridgeneration

Page 9: Motivations, successes, and problems, with the Lagrangian

Eulerian,ALEandLRMalgorithmsside-by-side

ECMWFAnnualSeminarLagrangian-remapdynamiccoreofMOM6- Adcroft 9

𝑣;589 = 𝑣;5 + Δ𝑡 − 9?@𝛻B𝑝 +⋯

𝜕E𝑤 = −𝛻 G 𝑣;589

𝜕E𝑝 = −𝑔𝜌 𝑧, 𝑆5, 𝜃5

𝜃589 = 𝜃5 − Δ𝑡 𝛻 G 𝑣;589𝜃5 +𝜕E 𝑤𝜃5 + ⋯

𝑣;589 = 𝑣;5 + Δ𝑡 − 9?@𝛻B𝑝 +⋯

𝛿K(𝑤∗ + 𝑤M) = −𝛻 G ℎ5𝑣;589

𝜕E𝑝 = −𝑔𝜌 𝑧, 𝑆5, 𝜃5

ℎ589𝜃589 = ℎ5𝜃5

−Δ𝑡 𝛻 G ℎ5𝑣;589𝜃5

+𝛿K 𝑤∗𝜃5 + ⋯

ℎ† = ℎ5 − Δ𝑡𝛻 G (ℎ5𝑣;†)

𝜕E𝑝 = −𝑔𝜌 𝑧, 𝑆5, 𝜃5

ℎ†𝜃† = ℎ5𝜃5 − Δ𝑡 𝛻 G ℎ5𝑣;†𝜃5+⋯

ℎ589 ← 𝛿K𝑍 𝑧†

𝜃589 = 𝜃† 𝑍(𝑧†)

𝑣;† = 𝑣;5 + Δ𝑡 − 9?@𝛻B𝑝 +⋯

Eulerian A.L.E. Langrangian-remap

wΔ𝑡Δ𝑧 < 1

𝑤∗Δ𝑡Δ𝑧 < 1

ℎ589 = ℎ5 + Δ𝑡𝛿K(𝑤M)

𝑤∗ = 𝑤− 𝑤M

introduces grid motion 𝑤M

Grid generation

Remap

SeeGriffies etal.,JAMES2020

Assumingexplicit-in-timetransport

Assumingexplicit-in-timetransport

Page 10: Motivations, successes, and problems, with the Lagrangian

Sub-cyclingwithLagrangianverticaldynamics

ECMWFAnnualSeminarLagrangian-remapdynamiccoreofMOM6- Adcroft

𝑣;S89 = 𝑣;S + 9TUV?@−𝛻W𝑝 − 𝜌𝛻WΦ +⋯

ℎS89 = ℎS − 9TΔ𝑡𝛻W G (ℎ

S𝑣;S89)

𝛿K𝑝 = −𝜌 𝑧, 𝑆5, 𝜃5 𝛿KΦ

ℎ∗𝐶∗ = ℎ5𝐶5 −𝑀Δ𝑡 𝛻 G [ ℎS𝑣;S89𝐶5T

S\9

ℎ589 ← 𝛿K𝑍 ℎ∗ ; 𝐶589 = 𝐶∗ 𝑍(ℎ∗) ; …

×𝑀

×𝑁

Internal gravity waves

𝚫𝒕𝒄𝒊𝒈𝚫𝒙 < 𝟏

𝐌𝚫𝒕𝒖𝒉𝚫𝒙 < 𝟏

𝑈l89 = 𝑈l + 9mΔ𝑡 −𝛻𝜂

l + ⋯𝜂l89 = 𝜂S − 9

mΔ𝑡𝛻W G (𝐻𝑈l89)

Barotropic gravity waves

×𝐿 𝚫𝒕√𝒈𝑯𝑳𝚫𝒙 < 𝟏

Tracers

Vertical remap

10

Page 11: Motivations, successes, and problems, with the Lagrangian

Interpolationforgridgeneration• Accurate• Continuous (singlevalued)– resultingprofilesaregenerallynotconservative

Reconstructionforremapping• Accurate• Conservative– profilesoftenbecomediscontinuoustobeconservative

ECMWFAnnualSeminarLagrangian-remapdynamiccoreofMOM6- Adcroft 11

Consistentgrid-generationandremapping

Areas not equal

Discontinuity between layers

Second order interpolation (i.e. linear)

Third order reconstruction

Piecewise Parabolic (PPM)

Discrepancies reduce with higher order

Page 12: Motivations, successes, and problems, with the Lagrangian

Remappingimplementations

𝑧589

𝜃K589

𝜃†

𝑧† 𝑧589

𝜃K589

𝜃†

𝑧†

Remappingvia“advectiveflux” Remappingby“projection”

ℎK589𝜃K589 = ℎKt𝜃K

t + u 𝜃t𝑑𝑧Evwxy

zwx

Evwxy

{−u 𝜃t𝑑𝑧

Ev|xy

zwx

Ev|xy

{ℎK589𝜃K589 = u 𝜃t𝑑𝑧

Ev|xy

zwx

Evwxy

zwx

AccurateconservationbutlocallyinaccurateforCFL>1 Inaccuratetotalconservation butaccuratelocally

ECMWFAnnualSeminarLagrangian-remapdynamiccoreofMOM6- Adcroft 12

Page 13: Motivations, successes, and problems, with the Lagrangian

Remapby“sublayers”• Dividesupersetofold/newgridsintosublayers(2N-1)

• Integrateprofileforeachsub-layer– Bydefinitionusesonlyonesourcelayerprofile

• Replacelargest sub-layerwith

• Sumsub-layerstonewlayer

Accurateconservationwhenremapping

𝑧589

𝜃K589

𝜃†

𝑧†

ℎ}~𝜃}~ = u 𝜃t𝑑𝑧E�|xy

E�wxy

�ℎK589𝜃K589 = [ℎ}~𝜃}~

S

}\l

ℎ}~𝜃}~ = ℎKt𝜃K

t − [ 1− 𝛿}�} ℎ}�~ 𝜃}�~S

}�\l(insight fromHallberg)

ECMWFAnnualSeminarLagrangian-remapdynamiccoreofMOM6- Adcroft 13

Page 14: Motivations, successes, and problems, with the Lagrangian

• PLM:twodegreesoffreedom– Cellmean+slope

• PPM:threedegreesoffreedom– Verywidelyused– Cellmean+twoedgevalues

• PQM:fivedegreesoffreedom– Cellmean+twoedgevalues+twoedgeslopes

ECMWFAnnualSeminarLagrangian-remapdynamiccoreofMOM6- Adcroft 14

Piecewise*Methods (*=C,L,PorQ)PLM

PPM

PQM

InspiredbyDaru &Tenaud, JCP2004– introduced OSi i=1..7

Successiveschemesprovidemoreflexibilitytorepresentstructures→moreaccurate

(White&Adcroft, JCP2008)

Page 15: Motivations, successes, and problems, with the Lagrangian

IllustratingmethodsandspuriousdiffusionLayeredIsopycnal

PCM

PPMih4

PQMih6

zPLM-PCM

PPMih4-PPMih4

PQMih4-PQMih4

ρ

Inappropriate interpolator leads to collapse of stratification

Diffusive behavior reduces with increasing order of remapping but

does not vanishMinimal smoothing

of interface

ECMWFAnnualSeminarLagrangian-remapdynamiccoreofMOM6- Adcroft 15

Page 16: Motivations, successes, and problems, with the Lagrangian

• Denseflowdownaslope– Hydrostaticandadiabatic

• Layeredisopycnal solutionistrulyadiabatic

• z*andterrain-followingbothhavemodifiedwatermasses

• LRM+densitycoordinates(foundbyinterpolation)behavesverysimilarlytolayeredmodel

ECMWFAnnualSeminarLagrangian-remapdynamiccoreofMOM6- Adcroft 16

Overflows

Page 17: Motivations, successes, and problems, with the Lagrangian

• Lateralprocesses(incl.transport)actingoninclinedisopycnals

• Alongisopycnal processesinnon-isopycnal coordinates

• Dia-surfacetransportinvertical– Minimizingdia-surfacemotionreducesnumericaldiffusion

• Choosingacoordinateclosetoisopycnal isdesirabletominimizespuriousdiffusion

ECMWFAnnualSeminarLagrangian-remapdynamiccoreofMOM6- Adcroft 17

Sourcesofspuriousmixing

Page 18: Motivations, successes, and problems, with the Lagrangian

• Alreadyknowthatpureisopycnal coordinateshavelimitations

• Bleck,2002,introducedhybridz-rhocoordinateinHYCOM

• z-tilde:Leclair &Madec,2011;Petersenetal.,2015

• adaptive:Hofmeisteretal.,2010;Gräwe etal.,2015;Gibson(thesis)2019

• OM4used“HYCOM1”whichisasimpleinterpretationofactualHYCOMhybridcoordinate– OngoingworkwithWallcraft andChassignet toimprovegridgeneration(c.f.AMOCresults)

ECMWFAnnualSeminarLagrangian-remapdynamiccoreofMOM6- Adcroft 18

Hybridandothercoordinates

Page 19: Motivations, successes, and problems, with the Lagrangian

• Comparingz*tohybridcoordinateprovidesmagnitudeofspuriousnumericalmixing

• Reducingresolutionfrom¼° to½° (eddyingtonon-eddying)inhibitsresolvedre-stratification– ½° requireseddyparameterization

• Refiningresolutionfrom¼° to⅛°reducesheatuptake:– moreefficienteddies– and/orlessnumericalmixing?

• Thisreallytellsuswe(inadvertently)managedtoperfectlycompensateforweakeddiesat¼° resolution

ECMWFAnnualSeminarLagrangian-remapdynamiccoreofMOM6- Adcroft 19

Balancingheattransferbyeddiesandmixing

More efficient eddies?

Parameterized eddies

Spurious mixing

Zanna et al. 2019

Page 20: Motivations, successes, and problems, with the Lagrangian

• MainconcernisOM4withhybridcoordinatestillhasashallowAMOC– Isthismixinginoverflows?

– ItturnsoutwedidhavetoomuchparameterizedmixingbutreducingthathashadnoaffectondepthofAMOC.Infactnothingwe’vetriedsofarseemsto!

20

OM4AMOC

ECMWFAnnualSeminarLagrangian-remapdynamiccoreofMOM6- Adcroft

Page 21: Motivations, successes, and problems, with the Lagrangian

• Motivatedbyresultswithisopycnal layeredmodelswebuiltMOM6,capableofusingarbitrarilygeneralcoordinatesfollowingHYCOM’spioneeringhybridcoordinate

• LagrangianRemapAlgorithmhassignificantadvantagesforEarthSystemModelswithmanyconstituents

• High-ordernumericalmethods+LRMdeliverlowlevelsofspuriousmixing

• InOM4,puttingeverythingtogether,amysteryremainsastowhyAMOCisshallowerthaninESM2G

21

Wrapup

ECMWFAnnualSeminarLagrangian-remapdynamiccoreofMOM6- Adcroft

Page 22: Motivations, successes, and problems, with the Lagrangian

• Potentialenergy

• Availablepotentialenergy(APE)

• ρ*istheadiabaticallyre-arrangedstatewithminimalpotentialenergy

• RPEcanonlybechangedbydiapycnalmixing– Mixingraisescenterofmass

Quantifyingspuriousmixingusingenergetics

Wintersetal.,JFM1995Ilicak etal.,OM2012

ρ+

ρ-

ρ+

ρ-

½(ρ- +ρ+)

APE

½(ρ- +ρ+)ρ+

ρ-½(ρ- +ρ+)

APE=PE−RPE

RPE=g�ρ∗zdV

PE=g�ρzdV

ECMWFAnnualSeminarLagrangian-remapdynamiccoreofMOM6- Adcroft

Page 23: Motivations, successes, and problems, with the Lagrangian

• OM4istheice-oceancomponentofGFDL’slatestcoupledmodelCM4(Heldetal.,2019)

• OM4configuration– Identicalsetup/parameterstoCM4– Developedalmostexclusivelyincoupledmode• UncoupledOM4

– Nominallyeddy-permitting¼°horizontalresolution• Non-eddying½° witheddyparameterization(GM+EKEscheme)

Ingredients:• MOM6

– usinghybridz-ρ verticalcoordinates• ePBL

– Reichl andHallberg,2019• Scale-awareMLErestratification

– Fox-Kemperetal.,2011• Shear-dependentmixing

– Jacksonetal.,2008• Internal-wavedrivenmixing

– Melet etal.,2012• BBL

– Leggetal.,2006

Adcroftetal.,JAMES 2019

ECMWFAnnualSeminarLagrangian-remapdynamiccoreofMOM6- Adcroft 23

OM4

c.f.HYCOM,Bleck 2002