monitoring global change in sierra nevada lter platform (spain): preliminary results

1
Monitoring global change in Sierra Nevada LTER platform (Spain): Preliminary results Pérez-Luque, A. J. 1 ; Bonet, F. 2 ; Pérez-Pérez, R. 3 ; Zamora, R. This poster shows the most relevant results that we have obtained in the Sierra Nevada LTER site during its first 5 years of life. All these results are very preliminar, because we do not have yet long temporal series. Each box shows results regarding a specific thematic area. All of them have been located over a picture that represents the landscape diversity of the Sierra Nevada’s socioecological system. We have detected an asynchronous pattern between water flow and brown trout density. Heavy and torrential rainfall decreases brown trout populations due to a physical effects on their habitat. Freshwater ecosystems 2002 2004 2006 2008 2010 0 0.05 0.1 0.15 0.2 0.25 200 400 600 800 0.3 0.35 2012 1000 1200 200 400 600 800 0 500 1000 2000 Annual rainfall (mm) 1500 Flow (l/s) p-value < 0.001 r = 0.945 Density Salmo trutta (fishes/m 2 ) Annual rainfall (mm) Brown trout density ( Salmo trutta) Annual rainfall There are more than 40.000 has covered by pine plantations in Sierra Nevada. They have been successful avoiding soil loss, but they also promote the abundance of pests that feed over their leaves. Processionary moth (Thaumetopoea pityocampa) is the most important forest pest. Our results show that climate change is promoting its altitudinal shift, where could affect endemic pine species (Pinus sylvestris nevadensis ) . Forest pests Land use changes are a very important driver of global change in Mediterranean mountains. In the 1950s, overgrazing and charcoal extraction resulted in degradation of soil and vegetation cover. After abandonment of these rural activities, oak forests began a resprouting process up to the current situation. Actually, this driver is still affecting ecological dynamics and the structure of natural forests in Sierra Nevada. Land use change 0 500 1000 1500 - 500 - 1000 - 1500 Natural oak forest (Quercus spp.) Pine plantations Mixed forests Closed shrubs with Quercus species Opened shrubs with Quercus species Closed shrublands Open shrubs with pastures Crops mosaics Surface (Has.) The results shown by GLORIA project in Sierra Nevada reveals a 8% decrease in the number of flora species in four summits. In addition, the species distribution models that we have created show a progressive reduction in the potential distribution area of most plant species. Biodiversity in the summits 0 25 50 75 100 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 % Potential area Artemisia granatensis Festuca pseudoeskia Arenaria tetraquetra subsp. amabilis Crepis oporinoides Arenaria pungens We have run a time series analysis with MODIS snow products over Sierra Nevada. Results show that there is a negative trend in snow duration. This trend is more important at higher altitudes. Changes in snow cover 0.0011 – 0.0150 0.0150 – 0.0475 0.0475 – 0.0800 0.0800 – 0.1172 0.1172 – 0.1590 0.1590 – 0.2008 0.2008 – 0.2426 0.2426 – 0.2844 0.2844 – 0.3541 0.3541 – 0.4656 -0.7188 – -0.6166 -0.6166 – -0.5562 -0.5562 – -0.4959 -0.4959 – -0.4262 -0.4262 – -0.3472 -0.3472 – -0.2729 -0.2729 – -0.2032 -0.2032 – -0.1335 -0.1335 – -0.0592 -0.0592 – -0.0188 Positive trend Negative trend Pixels where the trend is statistically significative Isolines showing snowpack duration (weeks) 10 km [1]: http://sl.ugr.es/obsnev_simClima [2]: Bonet García, F.J. (2009). Caracterización de la cubierta de nieve de Sierra Nevada y tendencias temporales mediante el uso de imágenes MODIS (2000-2008). http://refbase.iecolab.es/show.php?record=1032 [3]: Pérez-Pérez et al. (2012) ModeleR: An enviromental model repository as knowledge base for experts. Expert Systems with Applications, 39 (9): 8396–8411 [4]: http://obsnev.es/noticia.html?id=175 [5]: Pauli et al. (2012). Recent Plant Diversity Changes on Europe’s Mountain Summits. Science 336: 353-355. [6]: Gottfried, M. et al. (2012) Continent-wide response of mountain vegetation to climate change. Nature Climate Change, 2: 111-115. [7]: Molero-Mesa et al. (2009). Escenarios Fitocenológicos de observación para el seguimiento del cambio climático en Sierra Nevada. En: Ramírez Sanz, L. & Asensio Nistal, B. (eds.). (2009) Proyectos de investigación en parques nacionales: 2005-2008. OAPN. Madrid. 262 pp. [8]: Benito, B. et al. (2011). Simulating potential effects of climatic warming on altitudinal patterns of key species in Mediterranean-alpine ecosystems. Climatic Change, 108 (3): 471–483. [9]: Benito, B. (2009). Ecoinforática aplicada a la conservación: simulación de efectos del cambio global en la distribución de la fora de Andalucía. Doctoral Thesis. Departamento de Botánica. University of Granada. http://ide.ugr.es/blasbenito/tesis/ [10]: Hódar, J.A. et al. (2003). Pine processionary caterpillar Thaumetopoea pityocampa as a new threat for relict Mediterranean Scots pine forests under climatic warming. Biological Conservation 110: 123-129 [11]: Hódar & Zamora (2004). Herbivory and climatic warming: a Mediterranean outbreaking caterpillar attacks a relict, boreal pine species. Biodiversity and Conservation 13: 493-500 [12]: Cayuela L. et al. (2011). Improving forest management practices through science: pest control in Mediterranean pine woodlands. Forest Ecology and Management 261: 1732-1737. [13]: Cayuela L. et al. (2012). Control Biológico de la procesionaria. Investigación y Ciencia, febrero 2012:14-15 [14]: Galiana et al. (2012). Seguimiento de las poblaciones de trucha común. Pp: 44-45. En Aspizua et al. (eds). Observatorio de Cambio Global Sierra Nevada: metodologías de seguimiento. http://sl.ugr.es/dossier_metodologias. [15] Moreno, R. et al. (2011). Estado y tendencias de los ecosistemas de montaña mediterránea de España. En: Evaluación de Ecosistemas del Milenio de España. Universidad Autónoma Madrid-Fundacion Biodiversidad. http://www.ecomilenio.es/informe-de-resultados- eme/1760 [16]: Evaluación de los Ecosistemas del Milenio de España (2011). La Evaluación de los Ecosistemas del Milenio de España. Síntesis de resultados. Fundación Biodiversidad. Ministerio de Medio Ambiente, y Medio Rural y Marino. [17]: Navarro-Gónzalez, I. et al. The weight of the past: Land-use legacies and recolonization of pine plantations by oak trees. (subbmited to Ecological Applications). [18]: Navarro-González, I. et al. (2011). Current Mediterranean forest regeneration depends on land use in the recent past. In 12 European Ecologial Federation Congres. Responding to rapid environmental change. Ávila, 25-29 Sep [2 - 4] [5-9] [10-13] [14] [17-18] - Laboratorio de Ecología. Centro Andaluz de Medio Ambiente. Universidad de Granada. Granada (SPAIN). 1 : [email protected] 2 :[email protected] 3 : [email protected] According to Millenium Ecosystem Assessment in Spain, 27% of ecosystem services in Sierra Nevada are not being used sustainably. Some regulation services such as climate and hydrological are suffering important impacts. On the other hand, support services and some cultural ones are increasing (ecoturism, environmental education). Ecosystem services Provisioning Regulation Cultural Increase Decrease [15-16] Future climate scenarios show that there will be an increase of minimum average temperature of 4.8ºC at the end of the XXIth Century in Sierra Nevada. The rainfall will suffer a slight decrease. Climate change 5 1960 1980 2000 2020 2040 2060 2080 2100 4 6 7 8 9 10 Average minimum temperature (ºC) CGCM A2 CGCM B2 ECHAM A2 ECHAM B2 Past 50 years [1] Water Biotic raw materials Geological raw materials Renewable energy Genetic resources Traditional food Maintenance of soil fertiliy Erosion prevention Regulation of water flows Air quality regulation Climate regulation Polliation Biological control Moderation of extreme events Recreation and tourism Aesthetic values Ethical (spiritual and religious) Traditional Knowledge Cultural heritage values Educational values Research

Upload: observatoriosnevada

Post on 28-Apr-2015

63 views

Category:

Documents


0 download

DESCRIPTION

Poster presentation shown at 2012 Long Term Ecological Research (LTER) All Scientist Meeting: The Unique Role of the LTER Network in the Antropocene: Collaborative Science Across Scales, held in Estes Park (Colorado, EEUU). More info at http://asm2012.lternet.edu/content/monitoring-global-change-sierra-nevada-lter-platform-spain-preliminary-results

TRANSCRIPT

Page 1: Monitoring global change in Sierra Nevada LTER platform (Spain): Preliminary results

Monitoring global change in Sierra Nevada LTER platform (Spain): Preliminary results Pérez-Luque, A. J.1; Bonet, F.2; Pérez-Pérez, R.3; Zamora, R.

This poster shows the most relevant results that we have obtained in the Sierra Nevada LTER site during its first 5 years of life. All these results are very preliminar, because we do not have yet long temporal series. Each box shows results regarding a specific thematic area. All of them have been located over a picture that represents the landscape diversity of the Sierra Nevada’s socioecological system.

We have detected an asynchronous pattern between water flow and brown trout density. Heavy and torrential rainfall decreases brown trout populations due to a physical effects on their habitat.

Freshwater ecosystems

2002 2004 2006 2008 2010 0

0.05

0.1

0.15

0.2

0.25

200

400

600

800

0.3

0.35

2012

1000

1200

200 400 600 800 0

500

1000

2000

Annual rainfall (mm)

1500

Flow (l/s)

p-value < 0.001

r = 0.945

Den

sity

Sal

mo

trut

ta

(fis

hes/

m2 )

Annual rainfall (m

m)

Brown trout density (Salmo trutta)

Annual rainfall

There are more than 40.000 has covered by pine plantations in Sierra Nevada. They have been successful avoiding soil loss, but they also promote the abundance of pests that feed over their leaves. Processionary moth (Thaumetopoea pityocampa) is the most important forest pest. Our results show that climate change is promoting its altitudinal shift, where could affect endemic pine species (Pinus sylvestris nevadensis) .

Forest pests

Land use changes are a very important driver of global change in Mediterranean mountains. In the 1950s, overgrazing and charcoal extraction resulted in degradation of soil and vegetation cover. After abandonment of these rural activities, oak forests began a resprouting process up to the current situation. Actually, this driver is still affecting ecological dynamics and the structure of natural forests in Sierra Nevada.

Land use change

0

500

1000

1500

- 500

- 1000

- 1500

Natural oak forest

(Quercus spp.)

Pine plantations

Mixed forests

Closed shrubs with Quercus

species

Opened shrubs with

Quercus species

Closed shrublands

Open shrubs with pastures

Crops mosaics

Surface (Has.)

The results shown by GLORIA project in Sierra Nevada reveals a 8% decrease in the number of flora species in four summits. In addition, the species distribution models that we have created show a progressive reduction in the potential distribution area of most plant species.

Biodiversity in the summits

0

25

50

75

100

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

% P

oten

tial

are

a

Artemisia granatensis

Festuca pseudoeskia

Arenaria tetraquetra subsp. amabilis Crepis oporinoides Arenaria pungens

We have run a time series analysis with MODIS snow products over Sierra Nevada. Results show that there is a negative trend in snow duration. This trend is more important at higher altitudes.

Changes in snow cover

0.0011 – 0.0150 0.0150 – 0.0475 0.0475 – 0.0800 0.0800 – 0.1172 0.1172 – 0.1590 0.1590 – 0.2008 0.2008 – 0.2426 0.2426 – 0.2844 0.2844 – 0.3541 0.3541 – 0.4656

-0.7188 – -0.6166 -0.6166 – -0.5562 -0.5562 – -0.4959 -0.4959 – -0.4262 -0.4262 – -0.3472 -0.3472 – -0.2729 -0.2729 – -0.2032 -0.2032 – -0.1335 -0.1335 – -0.0592 -0.0592 – -0.0188

Positive trend Negative trend

Pixels where the trend is statistically significative

Isolines showing snowpack duration (weeks)

10 km

[1]: http://sl.ugr.es/obsnev_simClima [2]: Bonet García, F.J. (2009). Caracterización de la cubierta de nieve de Sierra Nevada y tendencias temporales mediante el uso de imágenes MODIS (2000-2008). http://refbase.iecolab.es/show.php?record=1032 [3]: Pérez-Pérez et al. (2012) ModeleR: An enviromental model repository as knowledge base for experts. Expert Systems with Applications, 39 (9): 8396–8411 [4]: http://obsnev.es/noticia.html?id=175 [5]: Pauli et al. (2012). Recent Plant Diversity Changes on Europe’s Mountain Summits. Science 336: 353-355. [6]: Gottfried, M. et al. (2012) Continent-wide response of mountain vegetation to climate change. Nature Climate Change, 2: 111-115. [7]: Molero-Mesa et al. (2009). Escenarios Fitocenológicos de observación para el seguimiento del cambio climático en Sierra Nevada. En: Ramírez Sanz, L. & Asensio Nistal, B. (eds.). (2009) Proyectos de investigación en parques nacionales: 2005-2008. OAPN. Madrid. 262 pp. [8]: Benito, B. et al. (2011). Simulating potential effects of climatic warming on altitudinal patterns of key species in Mediterranean-alpine ecosystems. Climatic Change, 108 (3): 471–483. [9]: Benito, B. (2009). Ecoinforática aplicada a la conservación: simulación de efectos del cambio global en la distribución de la fora de Andalucía. Doctoral Thesis. Departamento de Botánica. University of Granada. http://ide.ugr.es/blasbenito/tesis/ [10]: Hódar, J.A. et al. (2003). Pine processionary caterpillar Thaumetopoea pityocampa as a new threat for relict Mediterranean Scots pine forests under climatic warming. Biological Conservation 110: 123-129 [11]: Hódar & Zamora (2004). Herbivory and climatic warming: a Mediterranean outbreaking caterpillar attacks a relict, boreal pine species. Biodiversity and Conservation 13: 493-500 [12]: Cayuela L. et al. (2011). Improving forest management practices through science: pest control in Mediterranean pine woodlands. Forest Ecology and Management 261: 1732-1737. [13]: Cayuela L. et al. (2012). Control Biológico de la procesionaria. Investigación y Ciencia, febrero 2012:14-15 [14]: Galiana et al. (2012). Seguimiento de las poblaciones de trucha común. Pp: 44-45. En Aspizua et al. (eds). Observatorio de Cambio Global Sierra Nevada: metodologías de seguimiento. http://sl.ugr.es/dossier_metodologias. [15] Moreno, R. et al. (2011). Estado y tendencias de los ecosistemas de montaña mediterránea de España. En: Evaluación de Ecosistemas del Milenio de España. Universidad Autónoma Madrid-Fundacion Biodiversidad. http://www.ecomilenio.es/informe-de-resultados-eme/1760 [16]: Evaluación de los Ecosistemas del Milenio de España (2011). La Evaluación de los Ecosistemas del Milenio de España. Síntesis de resultados. Fundación Biodiversidad. Ministerio de Medio Ambiente, y Medio Rural y Marino. [17]: Navarro-Gónzalez, I. et al. The weight of the past: Land-use legacies and recolonization of pine plantations by oak trees. (subbmited to Ecological Applications). [18]: Navarro-González, I. et al. (2011). Current Mediterranean forest regeneration depends on land use in the recent past. In 12 European Ecologial Federation Congres. Responding to rapid environmental change. Ávila, 25-29 Sep

[2 - 4]

[5-9]

[10-13] [14]

[17-18]

- Laboratorio de Ecología. Centro Andaluz de Medio Ambiente. Universidad de Granada. Granada (SPAIN). 1: [email protected] 2:[email protected] 3: [email protected]

According to Millenium Ecosystem Assessment in Spain, 27% of ecosystem services in Sierra Nevada are not being used sustainably. Some regulation services such as climate and hydrological are suffering important impacts. On the other hand, support services and some cultural ones are increasing (ecoturism, environmental education).

Ecosystem services

Provisioning Regulation Cultural Increase

Decrease

[15-16]

Future climate scenarios show that there will be an increase of minimum average temperature of 4.8ºC at the end of the XXIth Century in Sierra Nevada. The rainfall will suffer a slight decrease.

Climate change

5

1960 1980 2000 2020 2040 2060 2080 2100

4

6

7

8

9

10

Ave

rage

min

imum

tem

pera

ture

(ºC

)

CGCM A2 CGCM B2 ECHAM A2 ECHAM B2

Past 50 years

[1]

Water

Biotic raw materials

Geological raw materials

Renewable energy

Genetic resources

Traditional food

Maintenance of soil fertiliy

Erosion prevention

Regulation of water flows

Air quality regulation

Climate regulation

Polliation

Biological control

Moderation of extreme events

Recreation and tourism

Aesthetic values

Ethical (spiritual and religious)

Traditional Knowledge

Cultural heritage values

Educational values

Research