monday, sept. 15, 2008phys 3446, fall 2008 andrew brandt 1 phys 3446 – lecture #6 monday, sept....

12
Monday, Sept. 15, 2 008 PHYS 3446, Fall 2008 Andrew Brandt 1 PHYS 3446 – Lecture #6 Monday, Sept. 15, 2008 Dr. Andrew Brandt 1. Relativistic Variables 2. Invariant Scalars 3. Feynman Diagram

Upload: prudence-heath

Post on 21-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Monday, Sept. 15, 2008PHYS 3446, Fall 2008 Andrew Brandt 1 PHYS 3446 – Lecture #6 Monday, Sept. 15, 2008 Dr. Andrew Brandt 1.Relativistic Variables 2.Invariant

Monday, Sept. 15, 2008 PHYS 3446, Fall 2008Andrew Brandt

1

PHYS 3446 – Lecture #6Monday, Sept. 15, 2008

Dr. Andrew Brandt

1. Relativistic Variables

2. Invariant Scalars3. Feynman Diagram

Page 2: Monday, Sept. 15, 2008PHYS 3446, Fall 2008 Andrew Brandt 1 PHYS 3446 – Lecture #6 Monday, Sept. 15, 2008 Dr. Andrew Brandt 1.Relativistic Variables 2.Invariant

Monday, Sept. 15, 2008 PHYS 3446, Fall 2008Andrew Brandt

2

Cross Section of Rutherford Scattering• The impact parameter in Rutherford scattering is

• Thus,

• Differential cross section of Rutherford scattering is

2'cot

2 2

ZZ eb

E

db

d

d

d

224'

cosec4 2

ZZ e

E

22

4

' 1

4 sin2

ZZ e

E

221 '

cosec2 2 2

ZZ e

E

sin

b db

d

sin(2x)=2sin(x) cos(x) gives 4th factor so 1/16 is correct

3 factorsof 2

Page 3: Monday, Sept. 15, 2008PHYS 3446, Fall 2008 Andrew Brandt 1 PHYS 3446 – Lecture #6 Monday, Sept. 15, 2008 Dr. Andrew Brandt 1.Relativistic Variables 2.Invariant

Monday, Sept. 15, 2008 PHYS 3446, Fall 2008Andrew Brandt

3

Rutherford Scattering Cross Section • Let’s plug in the numbers

– ZAu=79

– ZHe=2– For E=10keV

• Differential cross section of Rutherford scattering

d

d

19

4

4.0 10

sin2

barns

22

4

' 1

4 sin2

ZZ e

E

2219

3 194

79 2 1.6 10 1

4 10 10 1.6 10 sin2

432

4

4.0 10

sin2

cm

Page 4: Monday, Sept. 15, 2008PHYS 3446, Fall 2008 Andrew Brandt 1 PHYS 3446 – Lecture #6 Monday, Sept. 15, 2008 Dr. Andrew Brandt 1.Relativistic Variables 2.Invariant

Monday, Sept. 15, 2008 PHYS 3446, Fall 2008Andrew Brandt

4

Relativistic Variables• Velocity of CM in the scattering of two particles

with rest mass m1 and m2 is:

• If m1 is the mass of the projectile and m2 is that of the target, for a fixed target we obtain

CMv

c

CM

12

1 2

Pc

E m c

CM 1 2

1 2

P P c

E E

1

2 2 2 4 21 1 2

Pc

P c m c m c

Page 5: Monday, Sept. 15, 2008PHYS 3446, Fall 2008 Andrew Brandt 1 PHYS 3446 – Lecture #6 Monday, Sept. 15, 2008 Dr. Andrew Brandt 1.Relativistic Variables 2.Invariant

Monday, Sept. 15, 2008 PHYS 3446, Fall 2008Andrew Brandt

5

Relativistic Variables-Special Cases• At very low energies where m1c2>>P1c, the velocity

reduces to:

• At very high energies where m1c2<<P1c and m2c2<<P1c , the velocity can be written as:

CM

CM CM

22 21 2

1 1

1

1m c m c

Pc Pc

2

2 1

1 1

11

2

m c m c

P P

1 12 2

1 2

m v c

m c m c

1 1

1 2

m v

m m c

Expansion

Page 6: Monday, Sept. 15, 2008PHYS 3446, Fall 2008 Andrew Brandt 1 PHYS 3446 – Lecture #6 Monday, Sept. 15, 2008 Dr. Andrew Brandt 1.Relativistic Variables 2.Invariant

Monday, Sept. 15, 2008 PHYS 3446, Fall 2008Andrew Brandt

6

Relativistic Variables• For high energies, if m1~m2,

• CM becomes:

• In general, for fixed target

• Thus CM becomes

2

1

1CM

m c

P

CM

21 CM

21/ 22 1 2

2 4 2 2 41 1 2 2

12

CMCM

E m c

m c E m c m c

Invariant Scalar: s

1/ 221CM

1/ 21 1CM CM

1 2

2

1

2m c

P

1

22

P

m c

2 4 2 2 41 1 2 2

221 2

2m c E m c m c

E m c

CM

12

1 2

Pc

E m c

Page 7: Monday, Sept. 15, 2008PHYS 3446, Fall 2008 Andrew Brandt 1 PHYS 3446 – Lecture #6 Monday, Sept. 15, 2008 Dr. Andrew Brandt 1.Relativistic Variables 2.Invariant

Monday, Sept. 15, 2008 PHYS 3446, Fall 2008Andrew Brandt

7

Relativistic Variables• The invariant scalar, s, is defined as:

• So what is this in the CM frame?

• Thus, represents the total available energy in the CM; At the LHC

21 2s P P 2 4 2 4 21 2 1 22m c m c E m c

2 4 2 4 21 2 1 22s m c m c E m c

22 21 2 1 2CM CM CM CME E P P c

21 2CM CME E 2CMToTE

s

0

22 21 2 1 2E E P P c

see thisby evaluatingin lab frame

14TeVs

Page 8: Monday, Sept. 15, 2008PHYS 3446, Fall 2008 Andrew Brandt 1 PHYS 3446 – Lecture #6 Monday, Sept. 15, 2008 Dr. Andrew Brandt 1.Relativistic Variables 2.Invariant

Monday, Sept. 15, 2008 PHYS 3446, Fall 2008Andrew Brandt

8

Useful Invariant Scalar Variables• Another invariant scalar, t, the momentum transfer

(difference in four momenta), is useful for scattering:

• Since momentum and total energy are conserved in all collisions, t can be expressed in terms of target variables

• In CM frame for an elastic scattering, where PiCM=Pf

CM=PCM and Ei

CM=EfCM:

2f it P P

2 2 22 2 2 2f i f it E E P P c

2 2 22f i f iCM CM CM CMt P P P P c

2 22 1 cos .CM CMP c

2 2 21 1 1 1f i f iE E P P c

Page 9: Monday, Sept. 15, 2008PHYS 3446, Fall 2008 Andrew Brandt 1 PHYS 3446 – Lecture #6 Monday, Sept. 15, 2008 Dr. Andrew Brandt 1.Relativistic Variables 2.Invariant

Monday, Sept. 15, 2008 PHYS 3446, Fall 2008Andrew Brandt

9

Feynman Diagram• The variable t is always negative for elastic scattering• The variable t could be viewed as the square of the invariant

mass of a particle with and exchanged in the scattering

• While the virtual particle cannot be detected in the scattering, the consequence of its exchange can be calculated and observed!!!– A virtual particle is a particle whose mass is less than the rest mass

of an equivalent free particle

2 2f iE E

2 2f iP P

Time

t-channel diagram

Momentum of the carrier is the difference between the two particles.

Page 10: Monday, Sept. 15, 2008PHYS 3446, Fall 2008 Andrew Brandt 1 PHYS 3446 – Lecture #6 Monday, Sept. 15, 2008 Dr. Andrew Brandt 1.Relativistic Variables 2.Invariant

Monday, Sept. 15, 2008 PHYS 3446, Fall 2008Andrew Brandt

10

Useful Invariant Scalar Variables• For convenience we define a variable q2,• In the lab frame, , thus we obtain:

• In the non-relativistic limit:

• q2 represents “hardness of the collision”. Small CM corresponds to small q2.

2 2q c t

2 2q c

2 0iLabP

2 22 2 22 f

Labm c E m c 22 22 f

Labm c T

2fLabT

2 222 2 2f fLab LabE m c P c

22 2

1

2m v

Page 11: Monday, Sept. 15, 2008PHYS 3446, Fall 2008 Andrew Brandt 1 PHYS 3446 – Lecture #6 Monday, Sept. 15, 2008 Dr. Andrew Brandt 1.Relativistic Variables 2.Invariant

Monday, Sept. 15, 2008 PHYS 3446, Fall 2008Andrew Brandt

11

Relativistic Scattering Angles in Lab and CM • For a relativistic scattering, the relationship between the

scattering angles in Lab and CM is:

• For Rutherford scattering (m=m1<<m2, v~v0<<c):

• Divergence at q2~0, a characteristics of a Coulomb field

tan Lab

2dq

2

d

dq

Resulting in a cross section

sin

sinCM

CM CM CM

22 cosP d 2P d

22

2 4

4 ' 1kZZ e

v q

Page 12: Monday, Sept. 15, 2008PHYS 3446, Fall 2008 Andrew Brandt 1 PHYS 3446 – Lecture #6 Monday, Sept. 15, 2008 Dr. Andrew Brandt 1.Relativistic Variables 2.Invariant

Monday, Sept. 15, 2008 PHYS 3446, Fall 2008Andrew Brandt

12

Assignment 31. Derive Eq. 1.55 starting from 1.48 and 1.492. Derive the formulae for the available CM energy for

• Fixed target experiment with masses m1 and m2 with incoming energy E1.

• Collider experiment with masses m1 and m2 with incoming energies E1 and E2.

3. Given m1= m2 =proton, what beam energy would be needed for the fixed target experiment to have the same CM energy ( )as the LHC

4. End of chapter problem 1.7 Due 9/22/08

s