module6a

Upload: ravinandan-puri

Post on 07-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Module6a

    1/35

     

    CHEE 321: Chemical Reaction EngineeringCHEE 321: Chemical Reaction Engineering

    Module 6: Non-Isothermal Reactors (Chapter ! "ogler#

    http://www.queensu.ca/

  • 8/18/2019 Module6a

    2/35

     

    Topics to be covered in this ModuleTopics to be covered in this Module

    Module 6a ($ections %2! %3! %&! %6%1 ' "ogler! &th

     Edition# )e*elop Energy Balance e+uations ,or ,lo reactors%

    Enthalp.! Heat Capacit.! and Heat o, Reaction and relationship /eteen them

    Heat trans,er rates ,or C$0R and "RR 

    4lgorithms ,or Non-isothermal C$0R and "R 

    Module 6/ ($ections %5 and %#

    E+uili/rium Con*ersion (Re*ersi/le Reactions# in Reactors

     '  Con*ersion attaina/le during adia/atic operation o, endothermic ande7othermic reactors

     '  Increasing Con*ersion /. inter-stage cooling and heating

  • 8/18/2019 Module6a

    3/35

     

    8h. )o 8e Need Energ. alance 98h. )o 8e Need Energ. alance 9

    E*er. reaction proceeds ith release or a/sorption o,heat%

    0he amount o, heat released  or absorbed  depends on

     ' the nature o, reacting s.stem

     '  the amount o, material reacting

     '  temperature and pressure o, reacting s.stem

    and can /e calculated ,rom heat o, reaction (∆HR7n#

    Most industrial reactors ill re+uire heat input or heat

    remo*al! hence! e need energ. /alance%

  • 8/18/2019 Module6a

    4/35

     

    Energ. alance ,or $ingle ReactionEnerg. alance ,or $ingle Reaction

    4n e7othermic reaction is carried out

    in an adia/atic plug ,lo reactor%

    Ho ould .ou calculate the reactor

    *olume re+uired to achie*e a certain

    amount o, con*ersion! 9

    8e need to relate X and T ----; Energ. alance E+uation

  • 8/18/2019 Module6a

    5/35

     

  • 8/18/2019 Module6a

    6/35

     

  • 8/18/2019 Module6a

    7/35

     

    =eneral "orm o, Energ. alance=eneral "orm o, Energ. alance

    Rate o,accumulation

    o, the energ.

    ithin the

    s.stem

     '  > ' ?

    dt 

     E d  E  F  E  F W Q out out inin

    @=−+−  

    Rate o, orAdone by the

    s.stem on

    the

    surroundings

     sW 

    Q

    Rate o, ,loo, heat to the

    s.stem ,rom

    the

    surrounding

    Rate o, energ.added to the

    s.stem /.

    mass ,lo into

    the s.stem

    inin E  F 

    Rate o, energ.leaving  the

    s.stem /.

    mass ,lo out

    o, the s.stem

    out out  E  F Control Bolume

  • 8/18/2019 Module6a

    8/35

     

    =eneral "orm o, Energ. alance(,or multi component s.stem#

    dt 

     E d 

     E  F  E  F W Q out i

    n

    i

    iini

    n

    i

    i

    @

    11 =−+−   ∑∑ ==

     sW 

    Qnn   E  F 

     E  F 

     E  F 

    !

    %%%

    !

    !

    22

    11

    nn   E  F 

     E  F 

     E  F 

    !

    %%%

    !

    !

    22

    11

     Ne7t! e ill e*aluate the 8D and ED terms

  • 8/18/2019 Module6a

    9/35

     

  • 8/18/2019 Module6a

    10/35

     

     sW 

    Qnn   E  F 

     E  F 

     E  F 

    !

    %%%

    !

    !

    22

    11

    nn   E  F 

     E  F 

     E  F 

    !

    %%%!

    !

    22

    11

    Work   Flowof  RateW W   s   += 

    out i

    n

    i

    iini

    n

    i

    i   V  P  F V  P  F   @@  8orA "lo-o, Rate

    11

    ∑∑==

    +−=

    Rate o, ,lo orA is rate o, orA to

    get mass into and out o, the s.stem

    In a chemically reacting systems, there are usually two types of work that

    need to be accounted for – i! "haft Work e#g# work done by impellers in a

    $"T% and batch reactor! and ii! &low Work 

    E*aluation o, the 8orA (8# term

  • 8/18/2019 Module6a

    11/35

     

     sW 

    Qnn   E  F 

     E  F 

     E  F 

    !

    %%%

    !

    !

    22

    11

    nn   E  F 

     E  F 

     E  F 

    !

    %%%!

    !

    22

    11

    %%%2

    2

    +++=   z  g u

    U  E   i

    ii

    Energ. E i is the sum o, internal! Ainetic! potential

    and an. other t.pe o, energies%

     For a maority of reactors! only internal energy is im"ortant 

    ii   U  E   ≅∴

    E*aluation o, the E term

  • 8/18/2019 Module6a

    12/35

     

    =eneral "orm o, Energ. alance(,or multi component s.stem#

    dt 

     E d 

     E  F  E  F W Q out i

    n

    i

    iini

    n

    i

    i

    @

    11 =−+−   ∑∑ ==

     sW 

    Qnn   E  F 

     E  F 

     E  F 

    !

    %%%

    !

    !

    22

    11

    nn   E  F 

     E  F 

     E  F 

    !

    %%%

    !

    !

    22

    11

  • 8/18/2019 Module6a

    13/35

     

    Energ. alance E+uation in terms o, Enthalp.Energ. alance E+uation in terms o, Enthalp.

    dt 

     E d  E  F  E  F W Q

    out i

    n

    i

    iini

    n

    i

    i

    @

    11

    =−+−   ∑∑==

    dt 

     E d U  F U  F  PV  F  PV  F W Q

    out i

    n

    i

    iini

    n

    i

    iout i

    n

    i

    iini

    n

    i

    i s

    @

    1111

    =−+−+−   ∑∑∑∑====

    dt 

     E d  #  F  #  F W Q

    out i

    n

    i

    iini

    n

    i

    i s

    @

    11

    =−+−   ∑∑==

     PV U  #    += $ow!

     8e no ha*e! Energy Balance E%uation in terms of Ent&al"y

    'ubstituting a""ro"riate values of E i and Rate of Work 

     Ne7t! e ill ,ocus on the ent&al"y terms

  • 8/18/2019 Module6a

    14/35

     

    Heres hat ell do ith Enthalp. terms

    E7press # i in terms o, Enthalp. o, "ormation ( # io #

    and Heat Capacit. (("i#

    E7press F i in terms o, con*ersion (,or singlereaction# or rates o, reaction

    )e,ine Heat o, Reaction (∆HR7n#

    )e,ine ∆ Cp

  • 8/18/2019 Module6a

    15/35

     

    Enthalp. Relationships: 'ingle Reaction 'ystem

    FF

    FF

    FF

    FF

    FF

    1

    FF

     )  ) 

     * *

    ( ( 

     B B

     + +

    n

    i

    ii

     F  # 

     F  # 

     F  # 

     F  # 

     F  # 

     F  #  )n ∑=

    =

    FF

    FF

    FF

    !

    %%%

    !

    !

     )  ) 

     B B

     + +

     #  F 

     #  F 

     #  F 

     )  ) 

     B B

     + +

     #  F 

     #  F 

     #  F 

    !

    %%%

    !

    !

     )  ) 

     * *

    ( ( 

     B B

     + +

    n

    i

    ii

     F  # 

     F  # 

     F  # 

     F  # 

     F  # 

     F  # ,ut  ∑=

    =1

    - .- 

     *ad ( 

    ac B

    ab +   +→+

    FF

    F

    F

    F

    F

    #(

    #(

    #(

    #(

    #1(

     )  )  + ) 

     * +d 

    (  +( 

     B + B

     + +

     F  F  F 

     /  a

    d  F  F 

     /  

    a

    c F  F 

     /  a

    b F  F 

     /   F  F 

    ==

    +=

    +=

    −=

    −=

    θ  

    θ  

    θ  

    θ  

     F i in terms o, F  +. and / 

    ,rom stoichiometr.

    I, 4 is the limiting reactant

  • 8/18/2019 Module6a

    16/35

     

     /  F -  # -  # a

    b-  # 

    a

    c-  # 

    a

    -  # -  # -  # -  # -  # -  # 

    -  # -  # -  # -  #  F 

    -  #  F -  #  F 

     + + B(  *

     )  )  )  * * *( ( ( 

     B B B + + +

    i

    n

    i

    ii

    n

    i

    i

    ⋅−−+−

    −+−+−+

    −+−=

     ∑∑ ==

    F

    FFFFFF

    FFFFF

    1

    FF

    1

    F

    #G(#(#(#(H

    I#G(#(H#G(#(H#G(#(H

    #G(#(H#G(#(JH

    #(#(

    θ θ θ 

    θ 

    [ ]GH#G(#(H#(#( FFF1

    F

    1

    FF

    1

    F   R0n +ii

    n

    i

    i +i

    n

    i

    ii

    n

    i

    i   #  /  F -  # -  #  F -  #  F -  #  F    ∆⋅⋅−

    −=−   ∑∑∑

    ===

    θ 

    Enthalp. Relationships: 'ingle Reaction 'ystem

    ∆HR7n

     Ne7t! e ill e*aluate the di,,erent terms o, RH$

  • 8/18/2019 Module6a

    17/35

     

    ∫ =+=- 

    - - 

     "iref 

    o

    ii

    ref 

    d- ( -  # -  #    #(#(

    E7pressing Hi(0# in terms o, Hio and Cpi

    [ ] ∫ =−F

    #(#( FF

    iii   d- ("-  # -  # 0here,ore!

    [ ]GH#G(#(H#(#( FFF1

    F

    1

    FF

    1

    F   R0n +ii

    n

    i

    i +i

    n

    i

    ii

    n

    i

    i   #  /  F -  # -  #  F -  #  F -  #  F    ∆⋅⋅−

    −=−

      ∑∑∑ ===θ 

    ref ref oi   - at i1 1  s"eciesof  formationof  #eat -  #    =#(

     # i is available from

    (&emical Engg &andbook 

     For no "&ase c&ange

    Enthalp. at an. gi*en temperature is related to enthalp. at a re,erence

    temperature and heat capacit.

    [ ] ∫ ∑   ⋅=−⋅=F

    1FF

    ii

    n

    iiii   d- ("-  # -  #    θ θ  !!4nd!

  • 8/18/2019 Module6a

    18/35

     

    Heat o, Reaction (∆HR7n#

    #G(#(#(#(H#(   -  # -  # a

    b-  # 

    a

    c-  # 

    a

    d -  #   + B(  * R0n   −−+=∆

    d- ("-  # -  # - 

    - - ref 

    o

     R0n R0nref 

    ∫   =   ∆+∆=∆   #(#(∴

     + B(  *   ("("a

    b("

    a

    c("

    a

    d ("   −−+=∆here!

    [ ]GH#G(#(H#(#( FFF1

    F

    1

    FF

    1

    F   R0n +ii

    n

    i

    i +i

    n

    i

    ii

    n

    i

    i   #  /  F -  # -  #  F -  #  F -  #  F    ∆⋅⋅−

    −=−   ∑∑∑===

    θ 

    Heat o, reaction is de,ined as:

    ∫ =

    +=- 

    - - 

     "iref 

    o

    ii

    ref 

    d- ( -  # -  #    #(#(

    Enthalp. at an. gi*en temperature is:

  • 8/18/2019 Module6a

    19/35

     

    =eneral "orm o, Energ. alance

    dt 

     E d  E  F  E  F W Qout i

    n

    i

    iini

    n

    i

    i

    @

    11

    =−+−   ∑∑==

     sW 

    Qnn   E  F 

     E  F 

     E  F 

    !

    %%%

    !

    !

    22

    11

    nn   E  F 

     E  F 

     E  F 

    !

    %%%

    !

    !

    22

    11

    dt 

     E d  #  F  #  F W Q out i

    n

    i

    iini

    n

    i

    i s

    @

    11=−+−   ∑∑ ==

      Energy Balance E%uation in terms of Ent&al"y

    [ ]dt 

     E d -  #  /  F d- (" F W Q  R0n +

    ii

    n

    i

     + s

    @#(G F

    1

    F

    F

    =∆⋅⋅−

    −−

    ∫ ∑=θ 

      Energy Balance E%uation in terms of (onversion

  • 8/18/2019 Module6a

    20/35

     

    Heat 0rans,er (K# to,rom

    Reactors

  • 8/18/2019 Module6a

    21/35

     

    Heat 0rans,er (K# to a C$0R Heat 0rans,er (K# to a C$0R 

    4ssuming C$0R temperature!T ! is spatiall. uni,orm

    "or high coolant ,lo rates (0a1 ≅ 0a2?0a#:

    Heat trans,erred /eteen coolant and reactor 

    (,rom energ. /alance on the coolant#

    #( 21   aacc   - - ("mQ   −=   #G(#(#(

    21

    21

    aa

    aa

    - - - - ln2 

    - - U+

    −−−=

      

     

     

     

     −−=

    !e'p!

    cc

    acc("m

    U+- - ("mQ

      11

    #(   - - U+Q a −=

  • 8/18/2019 Module6a

    22/35

     

    Heat 0rans,er (K# to a "R Heat 0rans,er (K# to a "R 

    0otal heat trans,erred to the reactor 

    Heat trans,er rate at a gi*en location in a "R 

    Remem/er! in "RR the concentration and reaction rates *ar.

    along the reactor length% K ill liAel. *ar. too%

    ∫ ∫    −=−=  V 

    a

     +

    a   dV - - aU d+- - U Q   #(#(

    #(   - - UadV 

    Qd a −=

    Qd  

    0

    0a

    a ? heat e7change area*olume

  • 8/18/2019 Module6a

    23/35

     

     Non-Isothermal Reactors

  • 8/18/2019 Module6a

    24/35

     

     Non-isothermal "lo Reactor  Non-isothermal "lo Reactor 

    [ ]  

    −=⋅⋅−∆+∆−−   ∑

    =

    #(L

    #(@#( F1

    FF   - -  "(  F  /  F - -  "( -  # W Q i

    n

    i

    i + +ref  ref   R0n s   θ 

    (pplication)* "pecial $ase+ (diabatic %eactor with o "haft Work 

    [ ]!-!

    !. 

    ref ref  R0n

    i

    n

    i

    i

     EB- -  "( -  # 

    - -  "( 

     / −∆+∆

    −=∑

    =F

    1

    θ 

     /  EB

      F

    F

    =

    =

    Q

       I  ,   C  p

       t  e  r  m  M  M

      ∆   H   R 

      7  n

    4ppl.ing K ? F and 8s?F in the a/o*e e+uation! e get

    i h l lN i h l "l R

  • 8/18/2019 Module6a

    25/35

     

     Non-isothermal "lo Reactor  Non-isothermal "lo Reactor 

    (pplication)/+ $"T% with 0eat 1'change2 no shaft work 

    [ ]  

    −=⋅⋅−∆+∆−−   ∑

    =

    #(L

    #(@#( F1

    FF   - -  "(  F  /  F - -  "( -  # W Q i

    n

    i

    i + +ref  ref   R0n s   θ 

    [ ]   #(L#(@#(#( F1F

    - -  "(  / - -  "( -  # 

     F 

    - - U+i

    n

    i

    iref ref  R0n

     +

    a −=⋅−∆+∆−− ∑

    =

    θ 

    et us see i, e can appl. these concepts to sol*e a C$0R pro/lem%

    4ppl.ing 8s?F in the a/o*e e+uation! e get

  • 8/18/2019 Module6a

    26/35

     

    Class ro/lem O6

    0he ,olloing li+uid-phase reaction is carried out in a C$0R ith heat

    e7change:

    0he ,eed stream contains 4 and in e+uimolar ratio% 0he total molar

    ,lo rate is 2F mols% 0he inlet temperature is 325 P! the inlet

    concentration o, 4 is 1%5 molar! and the am/ient temperature in theheat e7changer is 3FF P%

    Calculate the reactor *olume necessar. to achie*e FQ con*ersion%

    4dditional in,ormation

  • 8/18/2019 Module6a

    27/35

     

     Non-isothermal "lo Reactor  Non-isothermal "lo Reactor 

    (pplication)3+ 4&% with 0eat 1'change

    )i,,erentiating the Energ. alance e+uation ith respect to B! e get

    dV 

    Qd  

    B B>∆B

    T "4F

    0F

    "4e

    0e

    ∑∑==

    =−−+−n

    i

    ii

    n

    i

    ii s

    dV 

    d#  F  # 

    dV 

    dF 

    dV 

    W d 

    dV 

    Qd 

    11

    FF

    F1

    F

    1

    F   =−+−   ∑∑ == in

    i

    ii

    n

    i

    i s  #  F  #  F W Q  

    N i h l "l RN i th l "l R t

  • 8/18/2019 Module6a

    28/35

     

     Non-isothermal "lo Reactor  Non-isothermal "lo Reactor 

    dV 

    Qd  

    B B>∆B

    T a

    a ? speci,ic sur,ace area ,or heat trans,er ? area*olume

    < ? o*erall heat trans,er coe,,icient

    0a ? 0emperature o, heat trans,er ,luid (outside o, the reactor#

    #( - - UadV 

    Qd a −=

    -&e first term on 3#' can be written as

    (pplication)3+ 4&% with 0eat 1'change cont#!

    ∑∑==

    =−−+−n

    i

    ii

    n

    i

    ii s

    dV 

    d#  F  # 

    dV 

    dF 

    dV 

    W d 

    dV 

    Qd 

    11

    FF

    et us e*aluate the di,,erential terms o, the E e+uation

    N i h l "l RN i th l "l R t

  • 8/18/2019 Module6a

    29/35

     

     Non-isothermal "lo Reactor  Non-isothermal "lo Reactor 

    #( ii r 

    dV 

    dF =

    c

    b

    a

    r   *(  B +

    +=

    +=

    −=

    #(#(#(#(

    #(  +i   r −=ν 

    (pplication)3+ 4&% with 0eat 1'change cont#!

    ∑∑==

    =−−+−n

    i

    ii

    n

    i

    ii s

    dV 

    d#  F  # 

    dV 

    dF 

    dV 

    W d 

    dV 

    Qd 

    11

    FF

    et us e*aluate the di,,erential terms o, the E e+uation

    -&e derivative in t&e t&ird term on 3#' can be written as

     Recall! t&at for a reaction4 a+ 5 bB 6 c( 5 d*! t&e reaction rates

    are related by t&e stoic&iometric coefficients

    N i th l "l R tN i th l "l R t

  • 8/18/2019 Module6a

    30/35

     

     Non-isothermal "lo Reactor  Non-isothermal "lo Reactor 

    dV 

    d- ("

    dV 

    d# i

    i =

    += ∫ 

    =

    - - 

     "iref 

    o

    ii

    ref 

    d- ( -  # -  #    #(#(

    (pplication)3+ 4&% with 0eat 1'change cont#!

    ∑∑==

    =−−+−n

    i

    ii

    n

    i

    ii s

    dV 

    d#  F  # 

    dV 

    dF 

    dV 

    W d 

    dV 

    Qd 

    11

    FF

    et us e*aluate the di,,erential terms o, the E e+uation

    -&e derivative in t&e fift& term on 3#' can be written as

    ∑ ∑= =

    =

    n

    i

    n

    i

    iii

    idV 

    d- (" F 

    dV 

    d#  F 

    1 1

    -&e fift& term on 3#' can be written as

    N i th l "l R tN i th l "l R t

  • 8/18/2019 Module6a

    31/35

     

     Non-isothermal "lo Reactor  Non-isothermal "lo Reactor 

    ∑∑==

    =−−−+−−n

    i

    ii

    n

    i

    i +iadV 

    d- (" F  # r - - Ua

    11

    F#(FF#(   ν 

    #(

    #(#(#(

    1

    1

    - (" F 

    -  # r - - aU 

    dV 

    d- n

    i

    ii

    n

    ii +ia

    ∑∑

    =

    =

    ⋅−⋅−−⋅⋅=ν 

     Rearranging t&e above e%uation in terms of d-7dV! we get 

    'ubstituting! t&e derivative terms into t&e Energy Balance E%uationwe get 

    (pplication)3+ 4&% with 0eat 1'change cont#!

    N i th l "l R tN i th l "l R t

  • 8/18/2019 Module6a

    32/35

     

     Non-isothermal "lo Reactor  Non-isothermal "lo Reactor 

    #(

    #(#(#(

    1

    1

    - (" F 

    -  # r - - aU 

    dV 

    d- n

    iii

    n

    i

    i +ia

    =

    =

    ⋅−⋅−−⋅⋅

    =

    ν 

    Ho do e sol*e non-isothermal "R pro/lems9

    #(  +ii r 

    dV 

    dF −=ν    #(F   + +   r 

    dV 

    d/  F    =−or    #!(   -  /  f =

    #!(   -  /  g =

    8e M

  • 8/18/2019 Module6a

    33/35

     

    Tther ,orms o, E e+uation ,or "Rs

    #(

    #(#(#(

    1

    1

    - (" F 

    -  # r - - aU 

    dV d- 

    n

    i

    ii

    n

    i

    i +ia

    =

    =

    ⋅−⋅−−⋅⋅

    =

    ν 

    8ou may note

    t&at for

    e0ot&ermic

    reaction! t&is

    term will

    result in an

    increase in - G#(H

    #G(H#(#(

    1

    F   (" / - (" F 

    -  # r - - aU 

    dV 

    d- n

    i

    ii +

     R0n +a

    ∆⋅+⋅⋅

    ∆−⋅−+−⋅⋅=

    ∑=

    θ 

     For single reaction systems in term of conversion

    #(

    #G(H#(#(

    1

    - (" F 

    -  # r - - aU 

    dV 

    d- n

    i

    ii

     R0n +a

    ∑=

    ∆−⋅−+−⋅⋅=

     For single reaction systems

  • 8/18/2019 Module6a

    34/35

     

    Class ro/lem O

    It is proposed to design pilot plant ,or the production o, +llyl

    (&loride% 0he ,eed stream comprises & moles prop.lenemolechlorine% 0he reactor ill /e *ertical tu/e o, 2 inc& I)% 0he

    com/ined ,eed molar ,lo rate is F%6 g-molh% 0he inlet pressure is

    2 atmospheres% 0he ,eed stream temperature is 25 C% Calculate

    4ll.l Chloride production as a ,unction o, tu/e length ,or the

    ,olloing 2 cases:

    Case-1: "R UacAeted ith heat e7change ,luid circulated at 25 C

    Case-2: 4dia/atic operation o, "R 

  • 8/18/2019 Module6a

    35/35

    Class ro/lem O (cont%#

    0 is in Pel*in and " is in atm

    < ? 2 8m2-P 

    )∆HR7n1(2S#?11F!FFF mol

    )∆HR7n2(2S#?11!5FF mol

    M(I %1($TI5: Cl2 > C3H6 V CH2?CH-CH2Cl > HCl

    "I61 %1($TI5: Cl2 > C3H6 V CH2Cl-CHCl-CH3

    236

    1 molesminGWG6331Fe7p1F3%3#(

    6322atm&r  " "

     R- r   # ( (l (l    ⋅⋅⋅⋅−×=−

    23

    2   molesminWGHG15SF

    e7pH1#(6322

    atm&r  " " R- 

    r   # ( (l (l    ⋅⋅⋅⋅−

    =−

    9l:

     9 mol  : c

     9 mol  : c

     9 mol  : c

     9 mol  : c

     #(l  P 

    ide +llyl(&lor  P 

     # (  P 

    (l  P 

    ⋅=

    ⋅=

    ⋅=

    ⋅=

    12#(

    3F#(

    11#(

    1F#(

    36#(

    63

    2