modÉlisation, conception et optimisation des machines … › jspui › bitstream › 20.500... ·...

293
AHMED CHEBAK MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES SANS ENCOCHES À AIMANTS PERMANENTS À HAUTE VITESSE Thèse présentée à la Faculté des études supérieures et postdoctorales de l’Université Laval dans le cadre du programme de doctorat en génie électrique pour l’obtention du grade de Philosophiae Doctor (Ph.D.) DÉPARTEMENT DE GÉNIE ÉLECTRIQUE ET DE GÉNIE INFORMATIQUE FACULTÉ DES SCIENCES ET DE GÉNIE UNIVERSITÉ LAVAL QUÉBEC 2013 © Ahmed Chebak, 2013

Upload: others

Post on 25-Jun-2020

19 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

AHMED CHEBAK

MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES SANS ENCOCHES

À AIMANTS PERMANENTS À HAUTE VITESSE

Thèse présentée à la Faculté des études supérieures et postdoctorales de l’Université Laval

dans le cadre du programme de doctorat en génie électrique pour l’obtention du grade de Philosophiae Doctor (Ph.D.)

DÉPARTEMENT DE GÉNIE ÉLECTRIQUE ET DE GÉNIE INFORMATIQUE FACULTÉ DES SCIENCES ET DE GÉNIE

UNIVERSITÉ LAVAL QUÉBEC

2013 © Ahmed Chebak, 2013

Page 2: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Résumé

Ce travail de recherche présente la mise au point d’une méthodologie de conception par

optimisation globale des machines synchrones sans encoches à aimants permanents à haute

vitesse utilisant des matériaux magnétiques composites doux (SMC) au stator et des frettes

au rotor éventuellement conductrices. Cette méthodologie tient compte des différentes

contraintes imposées par la haute vitesse, notamment les courants de Foucault induits dans

les pièces massives, les pertes, l’alimentation en commutation électronique et les efforts

mécaniques sur le rotor.

Un outil de dimensionnement générique est développé pour différentes structures de

machines sans encoches fonctionnant en moteur ou en générateur et alimentées par divers

types de convertisseurs statiques à commutation de tension ou de courant. Il utilise un

modèle de dimensionnement analytique basé sur la prédiction du champ magnétique 2D par

une résolution harmonique des équations de Maxwell en magnétodynamique en tenant

compte des courants de Foucault induits dans les parties conductrices. Ce modèle intègre

un modèle électrique équivalent global de l’ensemble convertisseur-machine et un modèle

détaillé de calcul des pertes validés par un calcul numérique du champ en 2D. Une

validation expérimentale des pertes magnétiques dans le stator en SMC est effectuée.

Le modèle de dimensionnement est associé à une procédure d’optimisation et à un

mécanisme de correction itératif, basé sur le calcul numérique du champ en 3D, pour tenir

compte des effets de bord sur les pertes par courants de Foucault dans le stator. Lorsque la

machine est couplée à un convertisseur à commutation de courant, un autre mécanisme de

correction, permettant la résolution du couplage fort entre la machine et son convertisseur,

est utilisé. Les différents outils de modélisation et de conception réalisés sont utilisés pour

dimensionner et comparer plusieurs topologies de machines sans encoches pour des cahiers

des charges spécifiques. Différentes études de faisabilité et de sensibilité sont aussi

effectuées.

Page 3: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

iii

Abstract

This research work presents the development of a design methodology with global

optimization of high-speed permanent-magnet slotless synchronous machines using soft

magnetic composite materials (SMC) in the stator and retaining sleeves in the rotor that can

be conductive. This methodology takes into account the different constraints imposed by

the high speed such as the eddy currents induced in the massive parts, the losses, the

converter-machine interactions and the mechanical stress in rotor.

A generic design tool is developed for different slotless machines structures used as motors

or generators and coupled to different kind of static power converters with voltage or

current commutation. It uses a design model based on analytical prediction of the two-

dimensional magnetic field by a harmonic resolution of Maxwell equations taking into

account the eddy currents induced in the conductive parts. This model includes an

equivalent electric model of the converter-machine system and a detailed losses calculation

model validated by 2D finite element analysis. Experimental validation of magnetic losses

in the SMC stator is also performed.

The design model is associated to an optimization procedure and an iterative correction

mechanism performed by 3D finite element simulations to take into account the influence

of end-effects on the SMC stator eddy current losses. When the machine is coupled to a

current static converter, another correction mechanism is used in order to resolve the strong

coupling between the machine and its converter. The developed modeling and design tools

are used to design and compare different slotless machines topologies for specific

requirements. Various feasibility and sensitivity studies are also performed.

Page 4: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Avant-propos

La présente thèse de doctorat a été effectuée au laboratoire d’électrotechnique,

d’électronique de puissance et de commande industrielle (LEEPCI) à la faculté des

Sciences et de Génie de l’Université Laval.

Je tiens tout d’abord à exprimer ma sincère gratitude envers le professeur Philippe

Viarouge, directeur de cette thèse, pour sa disponibilité pour ce projet, la confiance qu’il

m’a accordée, ainsi que ses idées et conseils judicieux apportés tout au long de ces années

d’études. Sa grande humanité, sa bienveillance à mon égard, ainsi que ses hautes

compétences scientifiques font de lui un chercheur exceptionnel et un modèle à suivre. M.

Viarouge m’a inspiré la passion pour la recherche en génie électrique et le souci de la

rigueur dans le travail et je lui en suis infiniment reconnaissant.

Mes remerciements chaleureux vont aussi à l’égard du professeur Jérôme Cros pour son

support, ses conseils constructifs et son aide inestimable pour la réalisation de cette thèse.

Je tiens aussi à remercier Marion Couvreur et Marco Béland pour leur implication dans la

réalisation du banc d’essai expérimental.

L’expression de mes remerciements va aussi vers mes collègues d’études du LEEPCI avec

qui j’ai eu le plaisir de partager de moments conviviaux et des échanges fructueux.

J’adresse également des remerciements à mes amis pour le support et l’encouragement

qu’ils m’ont fournis durant mes années d’études.

J’exprime enfin ma profonde gratitude envers les membres de ma famille, en particulier

mes parents ainsi que mes frères et sœurs. Ce projet n’aurait été possible sans leur amour,

leur encouragement et leur soutien inconditionnels.

Page 5: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

À mes parents, ma famille et mes amis

Page 6: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Table des matières

Résumé .................................................................................................................................. ii

Abstract ................................................................................................................................ iii Avant-propos ........................................................................................................................ iv

Table des matières ............................................................................................................... vi

Liste des figures .................................................................................................................... xi

Liste des tableaux ............................................................................................................... xvi

Liste des symboles et des abréviations .......................................................................... xviii

INTRODUCTION GÉNÉRALE ......................................................................................... 1

CHAPITRE I ......................................................................................................................... 6

1. MACHINES SANS ENCOCHES À HAUTE VITESSE : CONCEPTS DE BASE ET PROBLÉMATIQUE DE CONCEPTION .......................................................................... 6

1.1 Introduction .............................................................................................................. 6 1.2 Intérêt et applications des machines à haute vitesse ................................................ 7

1.2.1 Intérêt de la haute vitesse .................................................................................. 7 1.2.2 Domaine d’applications des machines à haute vitesse ..................................... 7

1.3 Machines électriques adaptées à la haute vitesse ..................................................... 9 1.4 Caractéristiques des matériaux utilisés dans les machines à aimants permanents à haute vitesse ...................................................................................................................... 15

1.4.1 Matériaux magnétiques doux .......................................................................... 15 1.4.1.1 Matériaux magnétiques laminés .............................................................. 16 1.4.1.2 Matériaux magnétiques composites doux ............................................... 18

1.4.2 Aimants permanents ....................................................................................... 22 1.4.3 Conducteurs utilisés dans les bobinages des machines électriques à haute vitesse ........................................................................................................................ 24

1.5 Structures et alimentations des machines sans encoches à aimants permanents à haute vitesse considérées dans la thèse ............................................................................. 25

1.5.1 Intérêt des machines sans encoches à haute vitesse ........................................ 26 1.5.2 Structures des machines sans encoches considérées dans la thèse ................. 26 1.5.3 Types de convertisseurs statiques utilisés ....................................................... 29

1.6 Problématique de modélisation et de conception des machines sans encoches à aimants permanents à haute vitesse avec des pièces conductrices ................................... 32 1.7 Méthodologie proposée .......................................................................................... 37 1.8 Conclusion.............................................................................................................. 40

CHAPITRE II ..................................................................................................................... 41

Page 7: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Table des matières vii

2. MODÉLISATION ÉLECTROMAGNÉTIQUE ANALYTIQUE GÉNÉRALISÉE DES MACHINES SANS ENCOCHES À AIMANTS PERMANENTS ........................ 41

2.1 Introduction ............................................................................................................ 41 2.2 Bases de la modélisation électromagnétique.......................................................... 42

2.2.1 Principe de l’approche de modélisation .......................................................... 42 2.2.2 Hypothèses simplificatrices ............................................................................ 45 2.2.3 Considérations prises en compte lors de la modélisation ............................... 46 2.2.4 Définition de la machine et de son domaine d’étude ...................................... 47

2.3 Équation générale du champ électromagnétique en magnétodynamique .............. 50 2.3.1 Équations de Maxwell .................................................................................... 51 2.3.2 Considération du mouvement ......................................................................... 52 2.3.3 Équation générale en termes de potentiel vecteur .......................................... 52 2.3.4 Conditions aux limites .................................................................................... 55

2.4 Modélisation des sources du champ électromagnétique ........................................ 56 2.4.1 Modélisation du terme source dû aux aimants ................................................ 56

2.4.1.1 Formes des aimants considérés ............................................................... 56 2.4.1.2 Modélisation de la distribution du vecteur d’aimantation ....................... 57

2.4.2 Modélisation du terme source dû aux courants au stator ................................ 59 2.4.2.1 Densité de la répartition spatiale des conducteurs ................................... 59 2.4.2.2 Formes d’ondes des courants statoriques ................................................ 63 2.4.2.3 Densité des courants du bobinage au stator ............................................. 64

2.5 Calcul analytique du champ électromagnétique produit par les aimants ............... 67 2.5.1 Équations du champ appliquées pour le calcul du champ à vide .................... 67 2.5.2 Résolution des équations du champ ................................................................ 69 2.5.3 Résultats du problème électromagnétique ...................................................... 73

2.6 Calcul analytique du champ électromagnétique produit par les courants .............. 76 2.6.1 Équations du champ appliquées pour le calcul du champ de réaction d’induit .. ........................................................................................................................ 76 2.6.2 Résolution des équations du champ ................................................................ 77 2.6.3 Résultats du problème électromagnétique ...................................................... 81

2.7 Calcul analytique du champ électromagnétique en charge .................................... 83 2.8 Détermination des grandeurs électromagnétiques caractéristiques ........................ 85

2.8.1 Calcul du flux à vide et de la force électromotrice ......................................... 85 2.8.2 Calcul de l’inductance synchrone du stator .................................................... 88

2.8.2.1 Inductance cyclique d’entrefer ................................................................ 89 2.8.2.2 Inductance de fuite .................................................................................. 91

2.8.3 Calcul de la résistance du stator ...................................................................... 94 2.8.4 Calcul du couple électromagnétique ............................................................... 95

2.9 Validation par calcul numérique du champ en 2D ............................................... 100 2.9.1 Induction magnétique ................................................................................... 101 2.9.2 Inductance ..................................................................................................... 102 2.9.3 Couple électromagnétique ............................................................................ 103

2.10 Conclusion ........................................................................................................ 104

CHAPITRE III .................................................................................................................. 106

3. CALCUL DES PERTES .............................................................................................. 106 3.1 Introduction .......................................................................................................... 106

Page 8: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Table des matières viii

3.2 Pertes Joule au stator ............................................................................................ 107 3.2.1 Pertes Joule correspondant à la résistance continue ..................................... 108 3.2.2 Pertes supplémentaires dues à l’effet de peau et de proximité ..................... 108

3.3 Pertes magnétiques au stator ................................................................................ 110 3.3.1 Pertes magnétiques dans un stator en fer laminé .......................................... 111 3.3.2 Pertes magnétiques dans un stator en SMC .................................................. 112

3.3.2.1 Pertes par courants de Foucault ............................................................. 112 3.3.2.2 Pertes d’hystérésis ................................................................................. 115

3.4 Pertes au rotor ...................................................................................................... 116 3.4.1 Pertes par courants de Foucault dans les aimants ......................................... 116 3.4.2 Pertes par courants de Foucault dans la frette ............................................... 118 3.4.3 Analyse de l’influence de la frette conductrice sur les pertes au rotor ......... 121 3.4.4 Analyse de l’influence de la segmentation des aimants sur les pertes au rotor .. ...................................................................................................................... 123

3.5 Pertes mécaniques ................................................................................................ 124 3.5.1 Pertes aérodynamiques ................................................................................. 124 3.5.2 Pertes par frottement dans les roulements .................................................... 129

3.6 Validation des pertes magnétiques dans le stator en SMC par calcul numérique du champ en 2D ................................................................................................................... 129 3.7 Validation des pertes par courants de Foucault dans le stator en SMC par calcul numérique du champ en 3D ............................................................................................ 132

3.7.1 Étude de l’influence des effets 3D sur les pertes par courants de Foucault .. 132 3.7.2 Correction des pertes par courants de Foucault par calcul du champ en 3D 134

3.7.2.1 Correction des pertes par calcul du champ en 3D en magnétodynamique .. ............................................................................................................... 134 3.7.2.2 Correction des pertes par calcul du champ en 3D en complexe ............ 136

3.8 Validation expérimentale des pertes magnétiques dans le stator en SMC ........... 141 3.8.1 Structure de la machine sans encoches considérée ....................................... 142 3.8.2 Identification des paramètres des matériaux SMC utilisés ........................... 143 3.8.3 Description du banc d’essai .......................................................................... 146 3.8.4 Résultats de mesure des pertes magnétiques ................................................ 146

3.9 Étude de l’influence de quelques paramètres sur les pertes magnétiques dans le stator en SMC ................................................................................................................. 147

3.9.1 Influence de la conductivité du matériau SMC ............................................ 147 3.9.2 Influence de l’épaisseur de la culasse du stator en SMC .............................. 149 3.9.3 Influence de l’angle de commande ψ ............................................................ 150

3.10 Conclusion ........................................................................................................ 151

CHAPITRE IV .................................................................................................................. 154

4. MODÈLE ÉLECTRIQUE ÉQUIVALENT DE L’ENSEMBLE CONVERTISSEUR-MACHINE ..................................................................................... 154

4.1 Introduction .......................................................................................................... 154 4.2 Détermination du modèle électrique équivalent de la machine ........................... 155 4.3 Modèle électrique équivalent de l’ensemble convertisseur-machine pour le cas d’une alimentation par convertisseur à commutation de tension .................................... 157

4.3.1 Cas d’une machine alimentée par onduleur de tension de type 120o ............ 158 4.3.1.1 Description du système .......................................................................... 158

Page 9: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Table des matières ix

4.3.1.2 Développement du modèle électrique équivalent .................................. 162 4.3.2 Cas d’une machine alimentée par onduleur de tension à MLI à courant sinusoïdal .................................................................................................................... 165

4.3.2.1 Description du système .......................................................................... 165 4.3.2.2 Développement du modèle électrique équivalent .................................. 166

4.3.3 Cas d’une machine alimentée par onduleur de tension de type 180o à onde pleine ...................................................................................................................... 166

4.3.3.1 Description du système .......................................................................... 166 4.3.3.2 Développement du modèle électrique équivalent .................................. 167

4.4 Modèle électrique équivalent de l’ensemble convertisseur-machine pour le cas d’une alimentation par convertisseur à commutation de courant ................................... 169

4.4.1 Description du système ................................................................................. 170 4.4.2 Développement du modèle électrique équivalent ......................................... 171

4.5 Conclusion............................................................................................................ 174

CHAPITRE V ................................................................................................................... 176

5. DÉVELOPPEMENT DES PROCÉDURES DE CONCEPTION ET D’OPTIMISATION GLOBALE DES MACHINES SANS ENCOCHES À HAUTE VITESSE ............................................................................................................................ 176

5.1 Introduction .......................................................................................................... 176 5.2 Processus de conception général .......................................................................... 177 5.3 Environnement de CAO avec l’optimisation globale .......................................... 180 5.4 Modèle de dimensionnement de la machine ........................................................ 185

5.4.1 Dimensionnement électromagnétique ........................................................... 185 5.4.1.1 Dimensionnement du stator et du rotor ................................................. 186 5.4.1.2 Prise en compte de la saturation ............................................................ 187 5.4.1.3 Prise en compte du problème de démagnétisation des aimants ............. 189 5.4.1.4 Adaptation du nombre de spires ............................................................ 191 5.4.1.5 Prise en compte du problème du courant de court-circuit ..................... 192

5.4.2 Dimensionnement thermique ........................................................................ 192 5.4.3 Dimensionnement mécanique ....................................................................... 194

5.4.3.1 Dimensionnement mécanique du rotor .................................................. 194 5.4.3.2 Dimensionnement mécanique de la frette ............................................. 197

5.5 Procédures détaillées de conception et d’optimisation ........................................ 199 5.5.1 Cas d’une alimentation par convertisseur de tension .................................... 199 5.5.2 Cas d’une alimentation par convertisseur de courant ................................... 203

5.6 Exemple d’application de la procédure de conception et d’optimisation ............ 209 5.6.1 Cahier des charges et paramètres de dimensionnement ................................ 209 5.6.2 Validation et analyse des résultats ................................................................ 211

5.7 Conclusion............................................................................................................ 215

CHAPITRE VI .................................................................................................................. 217

6. APPLICATIONS DE LA MÉTHODOLOGIE ET DE L’ENVIRONNEMENT DE CONCEPTION ................................................................................................................. 217

6.1 Introduction .......................................................................................................... 217 6.2 Analyse comparative des dimensionnements de différentes topologies de moteurs sans encoches alimentés par onduleur de tension de type 120o ...................................... 218

Page 10: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Table des matières x

6.2.1 Machines avec stator en SMC ...................................................................... 220 6.2.2 Machines avec stator en fer laminé ............................................................... 222

6.3 Études de sensibilité au niveau du dimensionnement des machines sans encoches à haute vitesse .................................................................................................................... 225

6.3.1 Étude de l’effet de l’utilisation du fil de Litz ................................................ 225 6.3.2 Étude de sensibilité en fonction du matériau SMC utilisé ............................ 229

6.4 Dimensionnement des moteurs sans encoches alimentés par onduleur de tension de type 180o à onde pleine .............................................................................................. 231 6.5 Dimensionnement d’un alternateur sans encoches à haute vitesse avec stator en SMC débitant sur un redresseur ...................................................................................... 234

6.5.1 Cahier des charges et paramètres de dimensionnement ................................ 234 6.5.2 Dimensionnement et analyse des résultats .................................................... 236

6.5.2.1 Dimensionnement sans correction 3D des pertes par courants de Foucault ............................................................................................................... 236 6.5.2.2 Dimensionnement avec correction 3D des pertes par courants de Foucault ............................................................................................................... 241

6.6 Conclusion............................................................................................................ 245

CONCLUSION GÉNÉRALE .......................................................................................... 247

Bibliographie ..................................................................................................................... 253

ANNEXE A ........................................................................................................................ 264

A. ÉLÉMENTS DE CALCUL ANALYTIQUE DU CHAMP ...................................... 264 A.1 Coefficients de Fourier des composantes du vecteur d’aimantation .................... 264 A.2 Calcul des facteurs de bobinage ........................................................................... 265

ANNEXE B ........................................................................................................................ 268

B. STRUCTURES ET PARAMÈTRES DES MACHINES MSE-1 ET MSE-2 .......... 268 B.1 Structures et paramètres de la machine MSE-1 .................................................... 268 B.2 Structures et paramètres de la machine MSE-2 .................................................... 269

Page 11: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Liste des figures

Figure 1.1 : Points de fonctionnement dans le plan puissance-vitesse de quelques machines à haute vitesse existantes dans la littérature .................................................... 10

Figure 1.2 : Structures de rotors (a) à aimants montés en surface, (b) à aimants insérés, (c) à aimants enterrés à aimantation radiale, (d) à aimants enterrés à concentration de flux, (e) à aimants chapeautés par des pièces polaires et (f) à aimants enterrés à distribution asymétrique .................................................................. 13

Figure 1.3 : Structure microscopique d’un matériau magnétique composite doux [74] ..... 19 Figure 1.4 : Caractéristiques d’aimantation d’un matériau composite doux et d’une tôle de

fer ..................................................................................................................... 20 Figure 1.5 : Courbes de démagnétisation d’un aimant permanent de type NdFeB pour

différentes températures [84] ........................................................................... 24 Figure 1.6 : Structures des machines sans encoches à aimants permanents considérées (a) à

rotor interne et (b) à rotor externe ................................................................... 27 Figure 1.7 : Schéma bloc de principe simplifié des ensembles convertisseurs-machines

considérés ........................................................................................................ 30 Figure 2.1 : (a) Structure de la machine considérée et (b) définition des différentes zones

de son domaine d’étude ................................................................................... 48 Figure 2.2 : Représentation des deux référentiels de la machine ........................................ 49 Figure 2.3 : (a) Structure générale d’un pôle de la machine et (b) distribution spatiale des

composantes radiale et tangentielle du vecteur d’aimantation ........................ 57 Figure 2.4 : (a) Répartition généralisée des conducteurs de l’enroulement de la phase a et

(b) densité de conducteurs correspondante ...................................................... 61 Figure 2.5 : Formes d’ondes (a) des densités de courant des trois phases, (b) de la densité

totale de la FMM et de son fondamental en fonction de l’angle statorique pour Ia=1 A et Ib=Ic=-0.5 A ...................................................................................... 66

Figure 2.6 : Composantes (a) radiales et (b) tangentielles de l’induction à vide au milieu de chaque zone de la machine à une vitesse de 20000 rpm ................................. 74

Figure 2.7 : Densités des courants de Foucault dues aux aimants dans la culasse du stator à différents rayons pour deux types de matériaux SMC : (a) moins conducteur (Mat-1) et (b) plus conducteur (Mat-2) à une vitesse de 20000 rpm ............... 75

Figure 2.8 : Composantes (a) radiales et (b) tangentielles de l’induction de réaction d’induit au milieu de chaque zone de la machine pour une vitesse de 20000 rpm ................................................................................................................... 82

Figure 2.9 : Densités des courants de Foucault dues aux courants statoriques dans la culasse du stator à différents rayons pour deux types de matériaux SMC : (a) moins conducteur (Mat-1) et (b) plus conducteur (Mat-2) à une vitesse de 20000 rpm ........................................................................................................ 82

Page 12: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Liste des figures xii

Figure 2.10 : Composantes (a) radiales et (b) tangentielles de l’induction en charge au milieu de chaque zone de la machine pour une vitesse de 20000 rpm et un angle ψ= 0 ........................................................................................................ 84

Figure 2.11 : Densités des courants de Foucault dues aux aimants et aux courants statoriques dans la culasse du stator à différents rayons pour deux types de matériaux SMC : (a) moins conducteur (Mat-1) et (b) plus conducteur (Mat-2) à une vitesse de 20000 rpm et un angle ψ = 0 ................................................. 85

Figure 2.12 : (a) Force électromotrice de la machine MSE-1 pour une vitesse de 20000 rpm et (b) sa décomposition harmonique ................................................................ 88

Figure 2.13 : (a) Têtes de bobine d’un enroulement de la machine à pas diamétral et (b) représentation cylindrique d’une tête de bobine .............................................. 92

Figure 2.14 : Couple électromagnétique instantané Tem(t), couple moyen Tem0 et ondulations du couple ∆Tem(t) de la machine MSE-1 pour une vitesse de 20000 rpm ..... 100

Figure 2.15 : Distribution spatiale (a) des lignes de champ magnétique dans la structure de la machine MSE-1 et (b) de la densité des courants induits dans la culasse du stator pour une vitesse de 20000 rpm ............................................................ 101

Figure 2.16 : Comparaison de composantes radiales et tangentielles des inductions dues (a) aux aimants permanents et (b) aux courants d’alimentation du bobinage, obtenues au milieu de l’entrefer par les calculs analytique et numérique du champ ............................................................................................................ 102

Figure 2.17 : Comparaison des réponses fréquentielles de l’inductance cyclique de la machine obtenues par les calculs analytique et numérique du champ pour les deux types de matériaux SMC : Mat-1 et Mat-2 ........................................... 103

Figure 2.18 : Comparaison des formes d’onde du couple électromagnétique instantané obtenues par les calculs analytique et numérique du champ pour une vitesse de 20000 rpm ...................................................................................................... 104

Figure 3.1 : Induction des courants de Foucault dans un conducteur exposé à un champ magnétique alternatif externe ........................................................................ 110

Figure 3.2 : Variation des pertes au rotor en fonction de la vitesse de rotation pour les cas où la frette est conductrice et non conductrice .............................................. 121

Figure 3.3 : Variation (a) des pertes au rotor et (b) de l’inductance cyclique vue par le 5ème harmonique du courant en fonction de l’épaisseur de la frette ...................... 123

Figure 3.4 : Variation des pertes par courants de Foucault dans les aimants en fonction du nombre de segments d’aimants par pôle ....................................................... 124

Figure 3.5 : Types d’écoulements d’air dans l’entrefer d’une machine électrique [27], [132] .............................................................................................................. 125

Figure 3.6 : Évolution des pertes aérodynamiques en fonction du diamètre du rotor et de la vitesse de rotation pour la machine MSE-1 ................................................... 129

Figure 3.7 : Distribution spatiale (a) de l’induction maximale dans la structure de la machine MSE-1 et (b) des pertes d’hystérésis dans la culasse du stator pour une vitesse de 20000 rpm .............................................................................. 131

Figure 3.8 : Variation des pertes magnétiques dans la culasse du stator de la machine MSE-1 en fonction de la vitesse de rotation (calcul analytique vs calcul numérique du champ) .................................................................................... 131

Figure 3.9 : Distribution spatiale 3D de la densité des courants de Foucault à vide dans la culasse du stator de la machine MSE-1 pour une vitesse de 20000 rpm ....... 133

Page 13: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Liste des figures xiii

Figure 3.10 : Variation du coefficient de pertes Kp=Pcf,m-3D/Pcf,m-2D en fonction du rapport entre la longueur et le pas polaire de la machine MSE-1 pour une vitesse de 20000 rpm ...................................................................................................... 133

Figure 3.11 : Processus de correction des pertes par courants de Foucault dans la culasse statorique en SMC d’une machine sans encoches basé sur le calcul numérique du champ en 3D en magnétodynamique ....................................................... 135

Figure 3.12 : Modèles équivalents des aimants permanents avec aimantation (a) radiale, (b) parallèle et (c) diamétrale .............................................................................. 139

Figure 3.13 : Processus de correction des pertes par courants de Foucault dans la culasse statorique en SMC d’une machine sans encoches basé sur le calcul numérique du champ en 3D en complexe ....................................................................... 140

Figure 3.14 : Variation des coefficients de correction des pertes Kc et Kp en fonction du rapport entre la longueur et le pas polaire de la machine MSE-1 pour une vitesse de 20000 rpm ..................................................................................... 141

Figure 3.15 : Structure du prototype de la machine sans encoches considérée ....................................................................................................................... 143

Figure 3.16 : Montage expérimental de mesure de la courbe d’aimantation et des pertes magnétiques dans les matériaux SMC ........................................................... 145

Figure 3.17 : Banc d’essai de mesure du couple de pertes magnétiques dans la culasse du stator .............................................................................................................. 146

Figure 3.18 : Variation des couples de pertes magnétiques mesurés expérimentalement et de ceux calculés analytiquement en fonction de la vitesse pour 4 types de matériaux SMC .............................................................................................. 147

Figure 3.19 : Variation (a) des pertes magnétiques en charge dans la culasse du stator de la machine MSE-2 et (b) des différentes composantes du couple en fonction de la conductivité du matériau SMC ...................................................................... 148

Figure 3.20 : Variation (a) des pertes magnétiques en charge dans le stator de la machine MSE-2 et (b) des différentes composantes du couple en fonction de l’épaisseur de la culasse du stator .................................................................................... 149

Figure 3.21 : Variation des pertes magnétiques à vide et en charge dans la culasse du stator en SMC de la machine MSE-1 en fonction de l’angle de commande ψ ........ 151

Figure 4.1 : Modèle électrique monophasé équivalent de la machine pour l’harmonique de rang h ............................................................................................................. 157

Figure 4.2 : (a) Formes d’ondes idéales de la fem (trapézoïdale) et du courant de phase d’un moteur à aimants alimenté par onduleur de type 120o et (b) forme d’onde du couple ....................................................................................................... 159

Figure 4.3 : Schéma bloc simplifié de l’ensemble convertisseur-machine avec onduleur de tension ............................................................................................................ 160

Figure 4.4 : (a) Séquence de commande et (a) formes d’ondes d’un onduleur de type 120o à onde pleine de tension (avec fem supposée sinusoïdale) [131] .................. 161

Figure 4.5 : Formes d’ondes réelles des tensions et du courant de la machine MSE-1 alimentée par un onduleur de tension de type 120o à onde pleine de tension (courant Ia × 2) ............................................................................................... 161

Figure 4.6 : Forme d’onde du courant obtenu par un régulateur à hystérésis ................... 162 Figure 4.7 : Diagramme vectoriel de la machine pour l’harmonique de rang 1

(fondamental)................................................................................................. 164

Page 14: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Liste des figures xiv

Figure 4.8 : (a) Séquence de commande et (a) formes d’ondes d’un onduleur de type 180o à onde pleine de tension (avec fem supposée sinusoïdale) [131] .................. 167

Figure 4.9 : Formes d’ondes des tensions et du courant de la machine MSE-1 alimentée par un onduleur de tension de type 180o à onde pleine de tension pour θ =0o et θ=20o ............................................................................................................. 168

Figure 4.10 : Diagrammes vectoriels de la machine pour l’harmonique de rang 1 pour (a) ψ≠ 0 et (b) ψ= 0 ............................................................................................. 169

Figure 4.11 : Système de génération DC à haute vitesse avec redresseur à thyristors ....................................................................................................................... 171

Figure 4.12 : Entrées et sorties du modèle analytique de dimensionnement de la machine dans le cas d’une alimentation en courant ..................................................... 173

Figure 4.13 : Entrées et sorties du modèle électrique équivalent du système de génération ....................................................................................................................... 174

Figure 5.1 : Processus de conception général des machines sans encoches ..................... 179 Figure 5.2 : Structure de l’environnement de CAO des machines sans encoches à haute

vitesse ............................................................................................................ 180 Figure 5.3 : Entrées et sorties du modèle analytique de dimensionnement de la machine

dans le cas d’une alimentation en tension ..................................................... 181 Figure 5.4 : Structure de la machine sans encoches et définition des dimensions pour (a)

rotor interne et (b) rotor externe .................................................................... 186 Figure 5.5 : Structure du rotor interne de la machine et définition des angles θ1 et θ2 ..... 188 Figure 5.6 : Caractéristiques de démagnétisation d’un aimant permanent ....................... 190 Figure 5.7 : Forces mécaniques agissant sur un élément de la culasse du rotor (rotor

interne) ........................................................................................................... 196 Figure 5.8 : Force centrifuge due aux aimants agissant sur la culasse du rotor (rotor

externe) .......................................................................................................... 197 Figure 5.9 : Force centrifuge due aux aimants agissant sur la frette (rotor interne) ......... 198 Figure 5.10 : Méthode de conception et d’optimisation globale des machines sans encoches

avec mécanisme de correction des pertes par courants de Foucault (cas des onduleurs de tension) ..................................................................................... 200

Figure 5.11 : Méthode de conception et d’optimisation globale des machines sans encoches avec mécanisme de correction du couplage machine-convertisseur (cas des convertisseurs de courant) ............................................................................. 205

Figure 5.12 : Méthode de conception et d’optimisation globale des machines sans encoches avec mécanisme de correction du couplage machine-convertisseur et mécanisme de correction des pertes par courants de Foucault (cas des convertisseurs de courant) ............................................................................. 208

Figure 5.13 : Structures optimales des moteurs sans encoches (a) à 2 pôles et (b) à 4 pôles ....................................................................................................................... 214

Figure 6.1 : Variation des pertes magnétiques dans la culasse du stator de la machine A-1 en fonction de la vitesse de rotation (matériau SMC vs tôles) ...................... 225

Figure 6.2 : Variation des couples utiles en fonction de la vitesse pour des machines à rotor interne à 2 pôles ayant des bobinages avec et sans fil de Litz .............. 229

Figure 6.3 : Couples utiles instantanés des machines A-1 et C-1 à 2 pôles à rotor interne alimentées respectivement par onduleur de tension de type 120o et de type 180o ................................................................................................................ 233

Page 15: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Liste des figures xv

Figure 6.4 : Structure optimale de l’alternateur sans encoches dimensionné (sans correction 3D des pertes par courants de Foucault) ...................................... 237

Figure 6.5 : Variation des pertes magnétiques dans la culasse du stator en SMC de l’alternateur en fonction de la vitesse de rotation .......................................... 239

Figure 6.6 : Formes d’ondes de la fem, du courant et de la tension d’une phase de l’alternateur .................................................................................................... 240

Figure 6.7 : Formes d’ondes de la tension de phase de l’alternateur obtenues par calcul analytique et par simulation ........................................................................... 240

Figure 6.8 : Structure optimale de l’alternateur sans encoches dimensionné (avec correction 3D des pertes par courants de Foucault) ...................................... 242

Figure B.1 : Structure de la machine MSE-1 ..................................................................... 269 Figure B.2 : Structure de la machine MSE-2 ..................................................................... 270

Page 16: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Liste des tableaux

Tableau 1.1 : Avantages et inconvénients des trois machines électriques les plus utilisées dans les applications à haute vitesse [3], [26], [34] ...................................... 11

Tableau 1.2 : Caractéristiques des différents matériaux magnétiques utilisés dans les machines à haute vitesse [58]–[68] ............................................................... 17

Tableau 1.3 : Caractéristiques physiques de différents aimants permanents frittés [82]–[84] ....................................................................................................................... 23

Tableau 2.1 : Caractéristiques des différentes zones du domaine d’étude de la machine et leurs équations du champ associées permettant le calcul du champ à vide .. 68

Tableau 2.2 : Caractéristiques des différentes zones du domaine d’étude de la machine et leurs équations du champ associées permettant le calcul du champ de réaction d’induit ............................................................................................ 77

Tableau 2.3 : Composantes harmoniques de l’inductance cyclique correspondantes à chaque harmonique de courant de rang h : Lsc,h [mH] .................................. 91

Tableau 3.1 : Principales caractéristiques et dimensions de la machine test .................... 143 Tableau 3.2 : Caractéristiques des matériaux SMC utilisés .............................................. 145 Tableau 5.1 : Spécifications et contraintes du cahier des charges d’une application

d’outillage électrique ................................................................................... 210 Tableau 5.2 : Paramètres de dimensionnement et caractéristiques des matériaux ............ 211 Tableau 5.3 : Évolution des facteurs de correction des pertes pour les deux moteurs ...... 212 Tableau 5.4 : Valeurs efficaces des tensions et des courants (valeurs totales et

fondamentales) et couples électromagnétiques obtenus par les deux modèles électriques équivalents : analytique et simulé (pour le moteur à 2 pôles) .. 213

Tableau 5.5 : Principales caractéristiques, performances et dimensions des deux moteurs sans encoches optimisés .............................................................................. 215

Tableau 6.1 : Caractéristiques des tôles Fe-Si considérées [39], [159]............................. 220 Tableau 6.2 : Structures optimales et principales caractéristiques et performances des 4

moteurs sans encoches avec stator en SMC ................................................ 221 Tableau 6.3 : Structures optimales et principales caractéristiques et performances des 4

moteurs sans encoches avec stator en fer laminé ........................................ 223 Tableau 6.4 : Principales caractéristiques et performances des 4 moteurs sans encoches

avec stator en SMC et fils de Litz ............................................................... 227 Tableau 6.5 : Principales caractéristiques et performances optimales des 2 machines sans

encoches dimensionnées avec deux types de matériaux SMC (1er matériau : µrs=200, σs=3400s/m ; 2ème matériau : µrs=300, σs=20000s/m) .................. 230

Tableau 6.6 : Structures optimales et principales caractéristiques et performances des 4 moteurs sans encoches avec stator en SMC dimensionnés (cas d’un onduleur de type 180o à onde pleine de tension) ........................................................ 232

Page 17: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Liste des tableaux xvii

Tableau 6.7 : Spécifications et contraintes du cahier des charges du système de génération ..................................................................................................................... 235

Tableau 6.8 : Paramètres de dimensionnement et caractéristiques des matériaux de l’alternateur ................................................................................................. 235

Tableau 6.9 : Évolution des différentes tensions continues et du facteur de correction du couplage machine-convertisseur ................................................................. 237

Tableau 6.10 : Principales dimensions, caractéristiques et performances optimales de l’alternateur sans encoches dimensionné (sans correction 3D des pertes par courants de Foucault) .................................................................................. 238

Tableau 6.11 : Évolution des différentes tensions continues et du facteur de correction du couplage machine-convertisseur pendant le processus de conception de l’alternateur (suivant les itérations i et j sur les deux mécanismes de correction) ................................................................................................... 242

Tableau 6.12 : Évolution du facteur de correction 3D et des pertes par courants de Foucault en charge en 2D et en 3D lors du processus de conception de l’alternateur ..................................................................................................................... 243

Tableau 6.13 : Principales dimensions, caractéristiques et performances optimales de l’alternateur sans encoches dimensionné (avec correction 3D des pertes par courants de Foucault) .................................................................................. 244

Tableau B.1 : Principales caractéristiques et dimensions de la machine MSE-1 ............... 269 Tableau B.2 : Principales caractéristiques et dimensions de la machine MSE-2 ............... 270

Page 18: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Liste des symboles et des abréviations

Symboles alphabétiques

A

Potentiel vecteur magnétique

mA

, sA

Potentiels vecteurs magnétiques à vide et de réaction d’induit

( )imA , ( )i

sA Composantes des potentiels vecteurs à vide et de réaction d’induit dans la zone (i)

( ),i

m kA , ( ),i

m kB Coefficients de la série de Fourier du potentiel vecteur à vide dans la zone (i)

( ), ,i

s k hA , ( ), ,i

s k hB Coefficients de la série de Fourier du potentiel vecteur de réaction d’induit dans la zone (i)

B

Induction magnétique

BAPmin Induction minimale de démagnétisation des aimants

Bculrmax Induction moyenne maximale dans la culasse du rotor

Bculsmax Induction moyenne maximale dans la culasse du stator

Bm Induction en charge maximale dans la culasse du stator

Br Induction rémanente

Br , Bθ Composantes radiale et tangentielle de l’induction

Cυ(θs) Densité surfacique des conducteurs de l’enroulement de la phase υ

D Diamètre

Dυ(θs) Fonction de distribution du bobinage de la phase υ

E

Champ électrique

hE

, hE , hE Amplitudes réelle et complexe et valeur efficace de l’harmonique de rang h de la fem

e Entrefer mécanique

ec Épaisseur de la frette

eculr Épaisseurs de la culasse du rotor

eculs Épaisseurs de la culasse du stator

Page 19: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Liste des symboles xix

eυ Force électromotrice instantanée aux bornes du bobinage de la phase υ

f Fréquence électrique

H

Champ magnétique

Hc Champ magnétique coercitif

Hr , Hθ Composantes radiale et tangentielle du champ magnétique

hb Épaisseurs du bobinage

Idc Courant dans le bus continu

Ido Courant imposé à la sortie du redresseur

hI , hI , hI Amplitudes réelle et complexe et valeur efficace du courant harmonique de rang h

Irms Courant efficace circulant dans une phase de la machine

iυ Courant instantané dans la phase υ

J

Densité de courant

Js Densité totale des courants statoriques dans la zone de bobinage

Jcu Densité de courant efficace dans les conducteurs du bobinage

Jc Densité des courants de Foucault dans la frette conductrice

Jcs Densité des courants de Foucault dans la culasse du stator en SMC

Jm Densité des courants de Foucault dans les aimants

Kp, Kc, K(i) Facteurs de correction 3D des pertes par courants de Foucault dans la culasse en SMC

Kco(i) Facteur de correction du couplage machine-convertisseur

Ku Coefficient de remplissage des encoches

ke Coefficient d’ouverture des encoches

kw,k Facteur de bobinage pour l’harmonique d’espace de rang k

L Longueur axiale active de la machine

Lsc,h Inductance cyclique harmonique

Ls,h Inductance synchrone harmonique

Lsσ Inductance de fuite correspondant des têtes de bobines Ltbob Longueur moyenne d’une tête de bobine

la Épaisseurs des aimants permanents

M

Aimantation des aimants

Mr(θr), Mθ(θr) Fonctions d’aimantation radiale et tangentielle

Page 20: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Liste des symboles xx

Mr,k, Mθ,k Coefficients de Fourier réels des fonctions d’aimantation

,r kM , ,kMθ Coefficients de Fourier complexes des fonctions d’aimantation

m Nombre de phases

Nsp Nombre de spires par phase

n Vecteur unitaire normal à une surface

npp Nombre d’encoches par pôle par phase

P Puissance

Pertot Pertes totales générées dans la machine

PJ0 Pertes Joules classiques correspondant à la résistance continue du bobinage

PJext Pertes supplémentaires dues à l’effet de peau et de proximité

PJ Pertes Joule totales au stator

Ph Pertes d’hystérésis au stator

Pcf Pertes par courants de Foucault au stator

Pmag Pertes magnétiques au stator

Pc Pertes dans la frette conductrice

Pm Pertes par courants de Foucault dans les aimants

Pr Pertes Joule au rotor

Paero Pertes aérodynamiques

Proul Pertes par frottement dans les roulements

Pméc Pertes mécaniques

Pout Puissance de sortie du redresseur

p Nombre de paire de pôles

R Rayon

Re Nombre de Reynolds

Rs Résistance de phase totale du stator

Rs0 Valeur continue de la résistance de phase du stator

Rsext Valeur alternative de la résistance de phase du stator due à l’effet de peau et de proximité

r Coordonnée radiale

ri Rayon des différentes zones (i) Scu Section totale du cuivre du bobinage

Se Section totale d’encochage

scu Section d’un conducteur

Page 21: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Liste des symboles xxi

T Température

Tem Couple électromagnétique

Tu Couple utile

Vdc Tension du bus continu

Vdo, Vdi, Vdsim Valeurs des tensions imposée, calculée et simulée du bus continu à la sortie du redresseur

hV

, hV , hV Amplitudes réelle et complexe et valeur efficace de l’harmonique de rang h de la tension de phase

vυ Tension instantanée aux bornes de l’enroulement de la phase υ

Symboles grecs

β Ouverture des aimants

Coefficients de Fourier réels de la densité de conducteurs

kδ Coefficients de Fourier complexes de la densité de conducteurs

θ Angle de déphasage de la tension de phase par rapport à la fem

θo Décalage initial du rotor par rapport au stator

θr Coordonnée angulaire dans le référentiel lié au rotor

θs Coordonnée angulaire dans le référentiel lié au stator

µ Perméabilité magnétique

µ0 Perméabilité magnétique du vide

µrc Perméabilité magnétique relative de la frette

µrm Perméabilité magnétique relative des aimants

µrs Perméabilité magnétique relative du stator en SMC

ρ Masse volumique

ρcu résistivité du cuivre

σ Conductivité électrique

σt Contrainte de traction mécanique σc Conductivité de la frette

σm Conductivité des aimants

σs Conductivité du stator en SMC

φm,υ Flux à vide embrassé par l’enroulement de la phase υ

Page 22: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Liste des symboles xxii

φs,υ Flux de réaction d’induit embrassé par l’enroulement de la phase υ

φσ,υ Flux de fuite des têtes de bobines de la phase υ

ϕh Phase à l’origine de l’harmonique de courant de rang h

ψ Angle de commande entre la fem et le fondamental du courant

Ω Vitesse de rotation mécanique

ω Pulsation électrique

Abréviations

CAO Conception Assistée par Ordinateur

CHP Combined Heat and Power Unit

DTC Direct Torque Control

fem Force électromotrice

FFT Fast Fourier Transform

FMM Force magnétomotrice

LEEPCI Laboratoire d’Électrotechnique, d’Électronique de Puissance et de Commande Industrielle

MAP Machine à aimants permanents

MAS Machine asynchrone

MLI Modulation de Largeur d’Impulsions

MRV Machine à reluctance variable

MSE Machine sans encoches

SMC Soft Magnetic Composites

Page 23: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

INTRODUCTION GÉNÉRALE

Les développements récents des convertisseurs statiques à haute fréquence, des matériaux

magnétiques à faibles pertes et des aimants permanents de forte densité d’énergie ont

permis une émergence des applications industrielles et domestiques utilisant des machines

électriques synchrones à aimants permanents à haute vitesse. Parmi ces applications, nous

pouvons citer par exemple les machines-outils, les compresseurs, les perceuses, les

systèmes de génération d’énergie électrique avec des turbines à gaz, etc. La haute vitesse a

permis de réaliser des machines plus compactes, plus légères et plus performantes avec un

bon rendement et une puissance massique plus élevée. Elle a permis aussi de réaliser des

entraînements directs sans utilisation de multiplicateurs mécaniques.

Faisant partie de ce type de machines, les structures sans encoches à aimants permanents à

pôles lisses dont le bobinage est placé directement dans l’entrefer sont attractives dans

plusieurs applications à haute vitesse. Ces machines permettent d’éliminer le couple de

détente, de réduire les vibrations et les pertes par courants de Foucault dans le rotor dues à

l’encochage et de minimiser les pertes magnétiques dans le stator.

Généralement, les stators des machines sans encoches à haute vitesse sont réalisés avec des

tôles laminées. Cependant, la réalisation des stators utilisant des matériaux magnétiques

composites doux (SMC) peut être intéressante pour les applications de grand volume

puisqu’on réduit les étapes et les coûts de production. Ces nouveaux matériaux, qui sont

constitués par des particules de fer séparées par un isolant diélectrique afin de minimiser les

pertes par courants de Foucault, sont massifs et peuvent être plus au moins conducteurs. En

plus des stators en SMC, les machines sans encoches peuvent aussi être munies avec

d’autres pièces conductrices comme les frettes au rotor et les aimants permanents.

À cause de la haute vitesse, la conception des machines sans encoches avec de tels

matériaux massifs et conducteurs est complexe et différente de celle des machines

Page 24: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Introduction générale 2

conventionnelles. Elle présente un certain nombre de difficultés et de limitations d’ordre

électromagnétique, thermique et mécanique dues au fonctionnement à haute vitesse : par

exemple les effets des courants de Foucault induits dans les parties conductrices (stator en

SMC, frette conductrice et aimants), les pertes totales, l’effet de l’alimentation par

convertisseurs statiques et les contraintes mécaniques au rotor.

Les SMC présentent des propriétés magnétiques et thermiques isotropiques, mais leur

perméabilité est plus faible que celle des matériaux laminés et les pertes d’hystérésis sont

plus importantes. L’amélioration de la perméabilité et la minimisation des pertes

d’hystérésis conduit souvent à une augmentation de la conductivité. Dans les machines sans

encoches utilisant de tels matériaux, les courants de Foucault circulent non seulement dans

les particules de fer mais aussi à l’échelle du circuit magnétique et leur distribution et celle

de leur pertes dépendent de la topologie et des dimensions du circuit magnétique ainsi que

de la fréquence de fonctionnement. De plus, l’influence des effets de bord sur les pertes par

courants de Foucault induites dans le stator en SMC est non négligeable lorsque la longueur

axiale de la machine n’est pas très importante. Ainsi, une prédiction plus précise de la

distribution des courants de Foucault et de leurs effets en tenant compte des effets 3D est

nécessaire pour assurer une meilleure évaluation des performances.

Cette prédiction des effets des courants de Foucault est aussi nécessaire au niveau du rotor

des machines sans encoches dans la frette conductrice et dans les aimants. Ces courants

produisent des pertes Joule qui peuvent avoir une influence importante à cause de la haute

fréquence. Elles peuvent conduire à l’échauffement du rotor et à la démagnétisation des

aimants. D’un autre côté, à cause de la haute vitesse, le stress mécanique au niveau du rotor

peut être très critique et les pertes totales dissipées dans les machines peuvent être très

significatives conduisant à l’échauffement de la machine et à la diminution du rendement.

Ces grandeurs doivent être évaluées précisément et contrôlées pendant le dimensionnement

de ce type de machines pour assurer un fonctionnement sécuritaire.

Le couplage et les interactions entre la machine et le convertisseur statique qui lui est

associé doivent aussi être pris en compte lors du dimensionnement. Ces interactions, qui

dépendent du type de la commutation électronique utilisée et qui deviennent plus

significatives en haute vitesse, concernent en premier lieu les harmoniques de courant et

Page 25: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Introduction générale 3

leur influence sur les pertes et les ondulations du couple. Une modélisation de la machine,

de son alimentation et de leur couplage, est alors nécessaire pour évaluer précisément les

performances globales et assurer une meilleure adaptation entre ces deux dispositifs.

Par conséquent, la conception et la modélisation des machines sans encoches à aimants à

haute vitesse équipées avec des pièces massives conductrices doivent tenir en compte toutes

les particularités et les contraintes imposées par la haute vitesse. Une approche de

conception bien adaptée à ce type de machines doit être alors adoptée, par le

développement d’outils de modélisation et de conception appropriés, afin de garantir un

dimensionnement optimal.

• Objectif de la thèse

L’objectif de ce travail de recherche consiste à la mise au point d’un outil de

dimensionnement générique des machines sans encoches à aimants à haute vitesse basé sur

une approche de conception par optimisation globale. Cette approche tient compte de tous

les aspects électromagnétiques, thermiques et mécaniques, et notamment des courants de

Foucault induits dans les pièces conductrices ainsi que du couplage et de l’adaptation de la

machine au convertisseur. L’outil de dimensionnement, qui est constitué de plusieurs outils

de modélisation, de conception et d’optimisation intégrés dans un environnement de CAO,

est développé pour différentes structures de machines fonctionnant en moteur ou en

générateur en considérant les deux modes d’alimentations en tension et en courant par

convertisseurs statiques. Cet outil utilise un modèle analytique qui est associé, suivant le

mode d’alimentation utilisé, à une procédure d’optimisation et des mécanismes de

correction des erreurs du modèle analytique.

L’outil de dimensionnement ainsi que les différents modèles développés sont utilisés pour

effectuer plusieurs analyses comparatives et différentes études de faisabilité et de

sensibilité, au niveau du dimensionnement des machines sans encoches, qui permettent

d’investiguer l’utilisation des SMC dans ce type de machines et d’évaluer leur potentiel.

Ces différents outils sont aussi utilisés pour répondre à plusieurs éléments de la

problématique de modélisation et de conception dont la résolution permet de maîtriser la

méthode de conception optimale de ces machines avec des pièces conductrices.

Page 26: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Introduction générale 4

• Organisation de la thèse

Ce manuscrit de thèse est structuré en six chapitres. Dans le premier chapitre, nous

présentons les différents concepts, particularités et problématiques liés au fonctionnement

et à la conception des machines sans encoches à aimants à haute vitesse. Une revue de

littérature des applications, des différents types de machines électriques et des divers

matériaux utilisés dans le domaine de la haute vitesse est d’abord effectuée. Les différentes

structures de machines sans encoches et les multiples topologies de convertisseurs statiques

choisis dans cette thèse sont alors décrites. Enfin, la problématique détaillée de

modélisation et de conception des machines sans encoches considérées ainsi que la

méthodologie adoptée pour résoudre cette problématique sont présentées.

Dans le deuxième chapitre, nous développons une méthode de modélisation

électromagnétique analytique généralisée adaptée aux machines sans encoches considérées.

Cette méthode est basée sur le calcul analytique en deux dimensions (2D) de la distribution

du champ magnétique en utilisant une résolution harmonique des équations de Maxwell en

magnétodynamique et en tenant compte des courants induits dans les parties conductrices.

La méthode proposée est utilisée pour déterminer les différentes grandeurs

électromagnétiques des machines, nécessaires pour établir le modèle de dimensionnement,

en fonction des dimensions géométriques et des caractéristiques des matériaux.

Le troisième chapitre est consacré au calcul des différentes pertes générées au sein des

machines sans encoches étudiées. Une attention particulière est réservée au calcul des

pertes par courants de Foucault induites dans les différentes parties conductrices. Le calcul

analytique en 2D des pertes magnétiques dans le stator en SMC est validé en utilisant, tout

d’abord, des simulations en calcul numérique du champ en 2D, et ensuite, un banc d’essai

expérimental tournant. Une validation par calcul numérique du champ en 3D est aussi

effectuée et une méthode de correction des pertes par courants de Foucault dans le stator en

SMC, qui tient compte des effets de bord et qui permet de mettre en œuvre un mécanisme

de correction itératif de ces pertes dans le chapitre 5, est proposée.

Le quatrième chapitre est dédié au développement du modèle électrique équivalent global

de l’ensemble convertisseur-machine en considérant différents types de convertisseurs

Page 27: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Introduction générale 5

statiques. Ce modèle est intégré au modèle de dimensionnement pour déterminer les formes

d’ondes des grandeurs électriques permettant de calculer les performances globales du

système et d’effectuer l’adaptation machine-convertisseur. Pour l’alimentation en tension,

plusieurs types d’onduleurs sont considérés. Cependant, pour l’alimentation en courant, le

convertisseur est un commutateur à commutation assistée de courant fonctionnant en

redresseur ou en onduleur. Le couplage fort entre la machine et le convertisseur, dû à la

commutation du courant, est résolu en utilisant un autre mécanisme de correction

spécifique itératif utilisé au niveau des procédures de conception du chapitre 5.

Le cinquième chapitre décrit le développement et la mise en œuvre de la méthode de

conception par optimisation globale des machines sans encoches pour les deux types

d’alimentations. Le modèle de dimensionnement est complété par le développement des

équations de dimensionnement électromagnétique, thermique et mécanique. Les procédures

de conception et d’optimisation sont développées en intégrant le modèle de

dimensionnement et le mécanisme de correction 3D des pertes par courants de Foucault

dans le stator en SMC. Le mécanisme de correction du couplage machine-convertisseur est

aussi intégré lorsque la machine est couplée à un convertisseur à commutation de courant.

Une première validation de la méthode de conception optimale est effectuée en

dimensionnant deux moteurs à rotor interne à 2 et à 4 pôles avec des stators en SMC.

Dans le dernier chapitre, la méthodologie et les outils de conception et d’optimisation

développés sont appliqués et validés sur des cahiers des charges spécifiques en

dimensionnant plusieurs solutions topologiques de machines sans encoches connectées à

différents types de convertisseurs statiques. Pour l’alimentation en tension, plusieurs

structures de moteurs sans encoches équipés avec des stators en SMC et en fer laminé et

alimentés par des onduleurs de tension avec des commandes de type 120o et 180o, sont

dimensionnés, analysés et comparés. Des études de sensibilité sont aussi effectuées pour

analyser l’effet de l’utilisation du fil de Litz dans le bobinage et l’influence des paramètres

du matériau SMC sur le dimensionnement optimal des machines. Dans le cas de

l’alimentation en courant, la méthodologie de conception est validée en dimensionnant un

alternateur avec un stator en SMC débitant sur un redresseur à thyristors.

Page 28: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

CHAPITRE I

1 MACHINES SANS ENCOCHES À HAUTE

VITESSE : CONCEPTS DE BASE ET

PROBLÉMATIQUE DE CONCEPTION

1.1 Introduction

La conception des machines synchrones sans encoches à aimants permanents à haute

vitesse, qui peuvent être réalisées avec des stators en SMC ou en tôles laminées et

éventuellement avec des frettes conductrices au rotor, est difficile et différente de celles des

machines conventionnelles. Les défis majeurs au niveau de la conception sont la

minimisation des pertes dues à la haute vitesse et à la haute fréquence (pertes fer et pertes

induites par les courants de Foucault dans les parties massives conductrices de la machine :

stator en SMC, frette conductrice et aimants permanents), et le dimensionnement

mécanique du rotor. Ainsi, pour assurer un dimensionnement optimal, une approche de

modélisation et de conception bien adaptée à ce type de machines doit être utilisée.

Dans ce premier chapitre, nous présentons une étude de littérature des différents concepts et

particularités liés aux machines à haute vitesse, en particulier les machines synchrones sans

encoches à aimants permanents à flux radial, la problématique de modélisation et de

conception des ces dernières ainsi que la méthodologie adoptée. Dans un premier temps,

l’éventail des applications des machines électriques à haute vitesse et l’intérêt de ce

fonctionnement sont présentés. Une comparaison des différents types de machines

électriques généralement utilisées dans les applications à haute vitesse est présentée et

illustrée par leurs gammes de puissances et de vitesses. Après avoir effectué une description

Page 29: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 7

des caractéristiques des divers matériaux utilisés dans les machines à aimants permanents à

haute vitesse en mettant l’accent sur les aspects à considérer lors du dimensionnement,

nous présentons les différentes structures de machines sans encoches à aimants choisies

dans cette thèse ainsi que les multiples topologies de convertisseurs statiques auxquels elles

sont associées. Nous présentons en détail la problématique de modélisation et de

conception des machines sans encoches en tenant compte de tous les problèmes

électromagnétiques, thermiques et mécaniques, notamment l’effet des courants de Foucault

sur les performances globales ainsi que les interactions convertisseur-machine. En

conclusion, la méthodologie que nous devons mettre en œuvre pour résoudre la

problématique est proposée.

1.2 Intérêt et applications des machines à haute vitesse

1.2.1 Intérêt de la haute vitesse

L’entraînement à haute vitesse des machines électriques a permis d’améliorer les

performances de plusieurs applications nécessitant ce type de fonctionnement. La haute

vitesse a permis de réaliser des entraînements présentant plusieurs avantages par

comparaison avec les systèmes conventionnels, que ce soit pour un fonctionnement en

moteur ou en générateur : compacité, faible poids, fiabilité et bon rendement [1]–[3]. Les

machines électriques sont plus petites, plus performantes et présentent des puissances

massiques plus élevées. Ces machines sont couplées directement aux arbres des dispositifs

entraînés ou entraînants (compresseurs, pompes, turbines à gaz, etc.) sans utilisation de

réducteurs mécaniques. Cela permet de réduire le poids du système et de minimiser les

pertes et le coût total [4], [5]. Cela permet également de réduire les opérations de

maintenance, d’améliorer la fiabilité et d’assurer un meilleur rendement [3], [6].

1.2.2 Domaine d’applications des machines à haute vitesse

Durant les dernières années, plusieurs applications utilisant les machines à haute vitesse ont

vues le jour que ce soit pour les petites, moyennes ou grandes puissances et pour des

fonctionnements en moteur ou en générateur. Pour les moteurs, nous pouvons citer par

exemple les applications suivantes :

Page 30: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 8

• Les machines-outils utilisées dans l’usinage à haute vitesse (fraisage, perçage,

découpage, tournage, etc.) [7], [8] ;

• Les appareils électrodomestiques comme par exemple les perceuses ou les

aspirateurs [9] ;

• Les compresseurs et les turbocompresseurs utilisés dans l’industrie pétrolière

(transport du gaz naturel ou du pétrole par des canalisations), dans l’industrie

chimique, ou dans les applications de réfrigération et de climatisation industrielles

et domestiques [10]–[15] ;

• Les pompes utilisées dans les centrales électriques ou dans l’industrie chimique et

pétrolière [16]–[18] ;

• Les applications militaires et maritimes (traction, propulsion, etc.) [19].

Concernant les générateurs à haute vitesse, nous les trouvons dans de nombreuses

applications de génération d’électricité allant de quelques W à quelques MW. Ils sont

généralement entraînés par des turbines à gaz. Parmi ces applications, nous pouvons citer

entre autres :

• Les systèmes de génération embarqués dans les voitures hybrides, les bateaux tout

électriques, les navires, etc. [19]–[22] ;

• Les applications de démarrage-génération pour les moteurs d’avions [23], [24] ;

• Les dispositifs de stockage d’énergie électromagnétique par volants d’inertie utilisés

dans les véhicules hybrides, les satellites, etc. [25]–[28] ;

• Les systèmes de génération utilisés dans les applications militaires (véhicules

militaires, navires, avions,…) [22] ;

• Les systèmes de génération embarqués dans les applications aérospatiales (satellites,

stations,…) [28]–[30] ;

• Les unités de production d’électricité mobiles et les unités de production combinée

d’électricité et de chaleur avec des turbines à gaz ("CHP : Combined Heat and

Page 31: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 9

Power Unit") utilisées dans les régions éloignées ou dans les applications

domestiques et commerciales (maisons, hôtels, hôpitaux, etc.) [1], [6], [31].

1.3 Machines électriques adaptées à la haute vitesse

Plusieurs types de machines électriques peuvent être utilisés dans les applications à haute

vitesse. Le choix d’une machine pour une application donnée est difficile et dépend des

spécifications du cahier des charges. Généralement, les machines privilégiées sont celles

qui assurent une densité de puissance plus élevée, de faibles pertes, une rigidité mécanique

du rotor et une construction simple et facile de ce dernier [1], [26].

L’analyse de la littérature concernant les applications à haute vitesse nous permet de

constater que les machines les plus utilisées sont les machines synchrones à aimants

permanents (MAP), les machines asynchrones (MAS) et les machines à réluctance variable

(MRV). Toutefois, il existe d’autres types de machines spéciales qui sont moins utilisées

comme par exemple les machines synchrones à griffes ("claw-pole machines") et les

machines synchrones homopolaires ("homopolor machines"). Généralement, ces différentes

machines à haute vitesse sont développées pour des cahiers des charges spécifiques avec

des puissances allant de quelques W jusqu’à quelques MW. Elles sont moins

commercialisées par les manufacturiers et leurs techniques de production en grand volume,

similaires à celles des machines conventionnelles, ne sont pas encore développées [3], [4].

La figure 1.1 montre les gammes de puissances et de vitesses des trois principales machines

électriques utilisées dans les applications à haute vitesse en moteur ou en générateur. Les

points de fonctionnement de ces différentes machines sont issus des publications

scientifiques et des données de quelques manufacturiers. Les données recueillies montrent

que la vitesse de fonctionnement diminue lorsque la puissance augmente. Cela est dû

essentiellement aux différentes limites imposées par la haute vitesse, en particulier les

contraintes mécaniques exercées sur le rotor [3], [32]. Nous remarquons aussi que les

machines qui se démarquent principalement dans le domaine de la haute vitesse sont les

machines à aimants permanents et les machines asynchrones. Les machines à aimants

permanents sont les plus utilisées pour plusieurs niveaux de puissances et de vitesses. Elles

Page 32: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 10

sont par contre moins utilisées dans les grandes puissances (supérieures à 100 kW).

Cependant, les machines asynchrones peuvent atteindre des puissances très élevées et sont

utilisées surtout dans les applications de type compresseur dans l’industrie gazière et

pétrolière [32], [33].

Figure 1.1 : Points de fonctionnement dans le plan puissance-vitesse de quelques machines à

haute vitesse existantes dans la littérature

Le tableau 1.1 présente les avantages et les inconvénients des trois principales machines à

haute vitesse citées précédemment. L’analyse de ce tableau et l’étude de la littérature

effectuée nous permettent de mettre en évidence les différentes caractéristiques suivantes

de chaque type de machines.

• Machines asynchrones

La machine asynchrone à cage d’écureuil est très populaire dans les applications à haute

vitesse, notamment pour les moyennes et grandes puissances. Elle présente une simplicité

au niveau de la structure du rotor et une grande robustesse de ce dernier. Ces qualités lui

permettent, d’une part, de présenter un faible coût de construction, et d’autre part, d’avoir

une résistance significative aux contraintes mécaniques exercées sur le rotor et d’atteindre

des vitesses très élevées [4]. Cependant, la machine asynchrone, comparée à la machine à

aimants permanents, est caractérisée par un faible facteur de puissance, une taille plus

importante et un mauvais rendement à cause des pertes Joule générées au rotor qui

10

100

1000

10000

100000

1000000

10000000

1000 10000 100000 1000000

Puis

sanc

e [W

]

Vitesse [rpm]

MAPMASMRV

Page 33: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 11

augmentent rapidement avec la vitesse [32], [34]. Ces inconvénients n’ont pas empêché

cette machine d’être utilisée dans plusieurs applications à haute vitesse et aussi étudiée dans

la littérature grâce à ses divers avantages [11], [13] et [15].

Type de machine Avantages Inconvénients

Machine asynchrone - Construction simple du rotor - Faible coût - Rotor robuste

- Faible facteur de puissance - Pertes au rotor élevées - Faible rendement

Machine à réluctance variable

- Construction simple du rotor - Rotor robuste - Pas de pertes Joule au rotor (absence des pertes d’excitation)

- Couple pulsatoire - Mauvais facteur de puissance (suivant le mode d’alimentation) - Pertes aérodynamiques élevées - Pertes de Foucault élevées au rotor (pour un rotor massif)

Machine à aimants permanents

- Forte densité de puissance - Faibles pertes au rotor - Facteur de puissance élevé - Bon rendement - Compacité

- Coût des aimants élevé - Démagnétisation des aimants - Maintien des aimants sur le rotor - Rotor complexe

Tableau 1.1 : Avantages et inconvénients des trois machines électriques les plus utilisées dans les applications à haute vitesse [3], [26], [34]

• Machines à réluctance variable

La machine à réluctance variable est aussi attractive pour les applications à haute vitesse

grâce essentiellement à sa robustesse. Son rotor est simple, plus robuste et permet une

certaine économie au niveau des matériaux utilisés. La robustesse de cette machine permet

de la faire fonctionner dans des conditions extrêmes parce qu’elle peut supporter des

contraintes mécaniques et thermiques très élevées au niveau du rotor. Toutefois,

dépendamment du mode d’alimentation utilisé, ce type de machine peut absorber une

puissance réactive qui diminue le facteur de puissance et il peut être le siège de vibrations

dues aux oscillations du couple [11], [26]. De plus, les pertes aérodynamiques peuvent être

plus significatives à cause de la saillance du rotor. Cela la rend moins populaire par rapport

à la machine à aimants permanents [10]. Néanmoins, elle a été utilisée dans plusieurs

applications de haute vitesse en moindre proportion comme cela est proposé dans les

références [18], [34] et [35].

Page 34: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 12

• Machines à aimants permanents

La machine synchrone à aimants permanents est généralement considérée comme la plus

intéressante dans plusieurs applications à haute vitesse grâce à l’utilisation des aimants de

type terres rares qui ont une forte densité d’énergie [10], [17]. Elle présente une densité de

puissance supérieure, un meilleur rendement, une taille plus compacte et un facteur de

puissance plus élevé [3], [26]. Cependant, la construction du rotor de la machine à aimants

permanents fonctionnant à haute vitesse est plus complexe en comparaison avec les autres

types de machines. À cause de la haute vitesse, le rotor doit être résistant au stress

mécanique dû aux forces centrifuges. De plus, les aimants permanents doivent être

maintenus au niveau du rotor en dépit de ces forces et leur démagnétisation doit être évitée

[1], [36]. Cette démagnétisation peut être accentuée à cause de l’élévation de la température

due aux pertes par courants de Foucault générées dans les aimants qui sont généralement

conducteurs (cas du NdFeB) et dont le prix peut être plus élevé.

Malgré ces inconvénients, la machine à aimants permanents reste très attractive dans le

domaine de la haute vitesse. Le coût des aimants peut être compensé par le bon rendement

de la machine. La démagnétisation peut être évitée par une conception adaptée et

éventuellement par un refroidissement du rotor. Le maintien des aimants peut être assuré

soit en les insérant dans le rotor, soit en les enterrant ou en les collant et en les fixant par

des frettes mécaniques. Ainsi, différents types de structures de machines à aimants

permanents peuvent être utilisés pour la haute vitesse. Elles diffèrent par la topologie du

stator et du rotor et par la disposition et le maintien des aimants dans le circuit magnétique.

Dans la littérature, les principaux types de machines à aimants permanents utilisés au

niveau des applications à haute vitesse sont les machines à flux radial et les machines à flux

axial. Les machines à flux axial sont souvent utilisées mais en moindre proportion [27],

[37], [38]. Pour ce type de machines, le rotor a une forme de disque et les aimants sont soit

insérés ou collés sur la surface du rotor. Les machines à flux radial représentent la majorité

des machines à aimants rencontrées dans le domaine de la haute vitesse. La structure du

stator, la forme du rotor et la disposition des aimants multiplient les catégories possibles de

ce type de machines : machines avec encoches ou sans encoches, à rotor intérieur ou à rotor

extérieur, à pôles lisses ou à pôles saillants.

Page 35: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 13

Les machines à aimants permanents dont le stator est encoché sont les plus utilisées en

haute vitesse [5]–[10], [39]. Cependant, les machines sans encoches à bobinage dans

l’entrefer, qui nous intéressent dans cette thèse, deviennent de plus en plus intéressantes

grâce à leurs plusieurs avantages, notamment dans les applications où l’ondulation du

couple est non désirable [17], [40]–[44]. Le choix d’une machine dépend des spécifications

de l’application visée, mais également de l’intégrité et de la rigidité mécanique du rotor. Il

existe une multitude de structures de rotors qui sont plus ou moins adaptées au

fonctionnement à haute vitesse. Parmi les structures de rotors, qui sont évoquées dans la

littérature, nous trouvons (cf. Fig. 1.2) :

• Rotor à aimants montés en surface [4]–[10], [39]–[45] ;

• Rotor à aimants insérés [46] ;

• Rotor à aimants enterrés à aimantation radiale [45], [47] ;

• Rotor à aimants enterrés à concentration de flux [48], [49] ;

• Rotor à aimants chapeautés par des pièces polaires [49] ;

• Rotor à aimants enterrés à distribution asymétrique [49].

(a) (b) (c)

(d) (e) (f) Figure 1.2 : Structures de rotors (a) à aimants montés en surface, (b) à aimants insérés, (c) à

aimants enterrés à aimantation radiale, (d) à aimants enterrés à concentration de flux, (e) à aimants chapeautés par des pièces polaires et (f) à aimants enterrés à distribution asymétrique

Page 36: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 14

Plusieurs auteurs [30], [48]–[50] ont étudié le choix optimal de la structure du rotor qui

répond au mieux aux contraintes mécaniques imposées par la haute vitesse. Généralement,

la structure du rotor qui semble être la plus favorable, et qui est par ailleurs la plus répandue

dans la littérature que ce soit pour les machines avec encoches ou sans encoches, est la

structure à pôles lisses avec des aimants montés sur la surface du rotor. Pour un rotor

interne et à des vitesses très élevées, les aimants peuvent se détacher suite à l’action des

forces centrifuges. L’utilisation d’une frette de matériau résistant aux contraintes

mécaniques autour des aimants permet alors de les maintenir en place et d’augmenter la

rigidité du rotor. Il existe trois types de frettes qui sont généralement utilisées et qui

peuvent être réalisées à partir de plusieurs types de matériaux :

• Frettes amagnétiques non conductrices qui peuvent être fabriquées en utilisant les

nouveaux matériaux pré-stressés tels que la fibre de carbone, la fibre de verre ou le

Kevlar et qui possèdent de bonnes performances mécaniques et électriques [6], [7],

[50]–[54] ;

• Frettes amagnétiques conductrices réalisées par des matériaux conducteurs comme

par exemple le cuivre, l’aluminium, le titane ou l’acier inoxydable : ce type de

frettes est le siège de pertes supplémentaires générées par les courants de Foucault

induits par les harmoniques de temps et d’espace du champ magnétique d’entrefer

de la machine [21], [26], [54]–[57] ;

• Frettes à base de matériaux magnétiques tels que les rubans amorphes par exemple :

ces frettes offrent une bonne résistance mécanique et permettent d’augmenter

l’induction dans l’entrefer. Cependant, elles sont moins utilisées car elles peuvent

court-circuiter les côtés des aimants permanents, augmenter les flux de fuite et

limiter le flux principal [54].

Pour un rotor externe, l’utilisation d’une frette mécanique n’est pas nécessaire puisque les

aimants sont maintenus en place en s’écrasant sur la culasse du rotor lorsque la vitesse

augmente à cause des forces centrifuges. Néanmoins, une frette conductrice peut être

utilisée afin de minimiser les pertes dans le rotor (dans les aimants et la culasse du rotor) et

de faciliter la commutation de courant lorsque la machine est connectée à un redresseur ou

Page 37: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 15

un onduleur à thyristors (convertisseurs à commutation de courant). Cela est valide que ce

soit pour un rotor externe [26] ou un rotor interne [21], [52].

1.4 Caractéristiques des matériaux utilisés dans les machines à aimants permanents à haute vitesse

Les performances des machines à aimants permanents dépendent intrinsèquement des

caractéristiques des divers matériaux utilisés pour leur conception. La sélection de bons

matériaux prend une place importante dans le processus de conception optimal de ces

machines notamment pour un fonctionnement en haute vitesse. Dans ce contexte, il est

judicieux de présenter les différents types de matériaux utilisés en haute vitesse ainsi que

les caractéristiques qui déterminent leur choix.

Dans cette partie, nous présentons tout d’abord les caractéristiques des matériaux

ferromagnétiques doux utilisés dans les structures des machines en confrontant les

matériaux classiques laminés et les matériaux composites. Ensuite, les différents types

d’aimants permanents et leurs propriétés physiques sont décrits. Finalement, les types et les

caractéristiques des conducteurs utilisés dans les bobinages statoriques sont discutés.

1.4.1 Matériaux magnétiques doux

Dans une machine électrique à aimants permanents à haute vitesse, les pertes magnétiques

constituent une part importante des pertes totales et qui se manifestent principalement au

niveau du circuit magnétique du stator. Les pertes par courants de Foucault peuvent

constituer une grande partie de ces pertes puisqu’elles sont proportionnelles au carré de la

fréquence et deviennent très significatives à haute vitesse [39]. Afin de réduire ces pertes,

on utilise généralement des matériaux magnétiques de faible conductivité sous forme de

tôles d’épaisseurs très minces isolées électriquement (matériaux laminés) ou sous forme de

particules de fer séparées par un isolant électrique (résine ou diélectrique) constituant ce

qu’on appelle les matériaux composites doux ("SMC : Soft Magnetic Composites").

Le choix du matériau magnétique à utiliser dépend des spécifications du cahier des charges,

du type de l’application visée (application grande série ou de pointe), des performances du

Page 38: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 16

matériau et de son coût de production. En fait, la sélection optimale du matériau doit

découler d’un compromis entre les propriétés magnétiques, thermiques et mécaniques et le

coût. D’un point de vue magnétique, un bon matériau doit avoir de faibles pertes

massiques, une grande perméabilité et un niveau d’induction de saturation plus élevé.

Généralement, ces trois critères sont toujours inconciliables et des compromis s’imposent.

Dans ce qui suit, nous présentons les performances des deux catégories de matériaux

utilisés dans les machines à haute vitesse, à savoir les matériaux laminés et les matériaux

composites doux, ainsi que leurs avantages et inconvénients.

1.4.1.1 Matériaux magnétiques laminés

Il existe plusieurs types de matériaux magnétiques laminés qui sont utilisés pour la

conception des machines à haute vitesse. Ces matériaux sont développés principalement à

partir de trois familles d’alliages magnétiques : les alliages Fer-Silicium (Fe-Si), les alliages

Fer-Nickel (Fe-Ni) et les alliages Fer-Cobalt (Fe-Co). Ces alliages permettent d’avoir des

matériaux avec des propriétés électromagnétiques, thermiques et mécaniques très variées et

dont le prix dépend essentiellement des performances et de l’épaisseur des tôles mises en

œuvre.

Le tableau 1.2 présente une comparaison des caractéristiques et des performances de divers

matériaux laminés associés aux trois familles d’alliages magnétiques évoquées : résistivité,

perméabilité maximale, niveau de saturation, température de Curie et pertes massiques. Les

performances des SMC sont aussi ajoutées dans ce tableau pour avoir une comparaison plus

globale. L’analyse des différentes caractéristiques présentées dans ce tableau et dans la

littérature en général permet de tirer les commentaires qui suivent.

Page 39: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 17

Type de matériau

Résistivité [µΩm]

Perméabilité maximale

Induction à saturation [T]

Température de Curie [oC]

Pertes [W/kg] (pour

400Hz et 1T) Tôle Fe-Si 3% à gain non orientés (NO)

0.45-0.5 5000-10000 1.8-2 750 10-19

Tôle Fe-Si 6.5% (NO) 0.82 16000-25000 1.25-1.8 740 5.7-10

Alliage Fe-Ni (Permalloy 78) 0.55-0.6 100000-

300000 0.7-1.2 460 3-7

Alliage Fe-Co (Permendur 50) 0.25-0.4 8000-20000 2.2-2.4 930 25

(à 2T, 400Hz)

SMC (Atomet EM-1) 150-600 190-290 1.4-1.6 - 75-85

Tableau 1.2 : Caractéristiques des différents matériaux magnétiques utilisés dans les machines à haute vitesse [58]–[68]

• Alliages Fer-Silicium

Les alliages Fer-Silicium, qui sont principalement à 3% de Silicium, sont les alliages les

plus utilisés sous formes de tôles dans les machines électriques, notamment dans les

machines à haute vitesse. Le fait d’ajouter le Silicium permet d’augmenter la résistivité

électrique de l’alliage et d’améliorer les performances magnétiques, en particulier la

réduction des pertes massiques. Les tôles utilisées sont généralement à grains non orientés

laminées à froid et livrées après recuit ("fully process") [58].

Comparées aux autres matériaux magnétiques, les tôles Fe-3%Si offrent un niveau de

saturation élevé, une bonne perméabilité et des pertes massiques modérées (cf. tableau 1.2).

Cependant, afin de limiter les pertes magnétiques lorsque la fréquence augmente, les

constructeurs proposent des tôles à très faibles épaisseurs comprises entre 0.05mm et

0.35mm et qui sont généralement utilisées dans les machines à haute vitesse [2], [4], [7] et

[69]. Le prix des tôles augmente au fur et à mesure que leur épaisseur diminue. La valeur

de cette dernière doit être choisie en tenant compte de la fréquence de fonctionnement, de

l’importance de l’effet de peau dans les tôles et des pertes massiques spécifiées.

Récemment, quelques constructeurs ont proposé des tôles Fe-Si à 6.5% de Silicium à grains

non orientés à différentes épaisseurs et qui sont destinées essentiellement aux applications à

haute fréquence (machines électriques, transformateurs, etc.). Ces tôles offrent de

meilleures performances magnétiques que les tôles Fe-3%Si étant donné que leur

Page 40: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 18

perméabilité est plus élevée et que leurs pertes massiques sont plus faibles. Toutefois, le

niveau de l’induction à saturation est légèrement inférieur [63]–[65] (cf. tableau 1.2). La

référence [70], par exemple, montre que l’utilisation des tôles Fe-6.5%Si dans la

conception des machines à aimants à haute vitesse de grande puissance permet une

réduction considérable des pertes fer au niveau du stator.

• Alliages Fer-Nickel

Ces alliages sont développés avec un taux de charge en Nickel compris entre 36% et 80%.

Ils offrent des performances très attrayantes par rapport aux autres alliages, à savoir une

haute perméabilité et de faibles pertes massiques. Cependant, leur induction à saturation est

plus faible et leur coût est élevé [59], [60]. À cause de leur prix et de leurs performances

intéressantes, les tôles Fer-Nickel sont souvent réservées pour des applications spécialisées.

Elles sont néanmoins utilisées dans les machines à haute vitesse mais en moindre quantité

[31].

• Alliages Fer-Cobalt

Comparées aux autres alliages magnétiques, les alliages Fer-Cobalt présentent des

caractéristiques plus intéressantes mais à un coût plus élevé. Ils offrent le niveau de

saturation le plus élevé, une bonne perméabilité, des pertes massiques modérées et la

température de Curie la plus élevée [59], [60] (cf. tableau 1.2). À cause de leur prix très

important, de leur capacité à opérer à des hautes températures et de leur haute induction à

saturation, ces matériaux sont principalement utilisés dans les applications de pointe avec

des conditions ambiantes sévères et qui nécessitent un faible poids et une bonne rigidité

mécanique. Dans le domaine des machines à haute vitesse, ce type d’alliage est utilisé sous

forme de tôles très minces (0.1mm-0.3mm), notamment dans les applications aérospatiales,

aéronautiques et militaires [24], [48], [71].

1.4.1.2 Matériaux magnétiques composites doux

Les SMC sont des matériaux magnétiques issus des derniers développements réalisés dans

le domaine de la métallurgie des poudres. Ils sont constitués de particules de fer revêtues

d’une mince couche d’isolant diélectrique (cf. Fig. 1.3). Ce mélange de poudre de fer et de

liant est pressé à haute densité dans une matrice et recuit à moyenne température (entre

Page 41: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 19

200oC et 500oC) afin d’éliminer les défauts du réseau cristallin du fer et d’assurer une

bonne tenue mécanique du matériau obtenu. L’isolation électrique des granules permet aux

SMC d’avoir une grande résistivité qui assure une réduction très importante de la

circulation des courants de Foucault [72]–[75]. Le processus de fabrication des SMC par

moulage et compression permet de réaliser des pièces avec des formes complexes et des

propriétés magnétiques et thermiques isotropiques permettant d’avoir une circulation

tridimensionnelle du flux magnétique et de la chaleur. Il permet aussi de faciliter la

production en série des machines électriques utilisant les SMC, de minimiser les étapes

d’assemblage avec moins de pertes de matière et de réduire les coûts de production ainsi

que les coûts de recyclage en fin de vie [75].

Figure 1.3 : Structure microscopique d’un matériau magnétique composite doux [74]

Cependant, comparés aux matériaux laminés classiques, les SMC présentent une faible

perméabilité relative et un niveau d’induction à saturation moins élevé (cf. tableau 1.2). Le

coude de saturation est peu prononcé à cause du volume d’air interne qui se comporte

comme un entrefer réparti (cf. Fig. 1.4). Les pertes magnétiques sont beaucoup plus

importantes en basse fréquence et se réduisent essentiellement aux pertes d’hystérésis. Les

pertes par courants de Foucault sont plus faibles à cause de l’isolation électrique des

particules de fer, tandis que les pertes d’hystérésis sont prédominantes suite à la

recristallisation non complète du fer après le recuit à une température moins élevée [74].

Les pertes par courants de Foucault sont diminuées dans ce type de matériaux au détriment

de la perméabilité.

Particules de fer

Porosités

Revêtement

Page 42: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 20

Figure 1.4 : Caractéristiques d’aimantation d’un matériau composite doux et d’une tôle de fer

L’amélioration de la perméabilité des SMC et la réduction des pertes d’hystérésis

conduisent à une augmentation de la conductivité et des pertes par courants de Foucault. En

fait, contrairement aux matériaux laminés où les courants de Foucault sont limités à

l’épaisseur des tôles, la distribution des pertes par courants de Foucault dans les SMC est

dépendante de la géométrie du circuit magnétique car les courants induits peuvent circuler à

l’échelle du circuit magnétique. L’augmentation de la perméabilité d’un matériau

composite peut être effectuée en augmentant la force de compression pendant le processus

de fabrication. Par contre, cela conduit à rapprocher les particules de fer, à multiplier les

contacts entres elles et à augmenter la conductivité globale du matériau ainsi que les pertes

par courants de Foucault. D’un autre côté, pour réduire les pertes d’hystérésis, on peut

augmenter la température du traitement thermique afin de relaxer d’avantage les contraintes

résiduelles dans le fer. Cependant, dans le cas où on dépasse la température maximale de

l’isolant diélectrique, on peut bruler ce dernier et augmenter la conductivité du matériau.

Par conséquent, la conception des SMC doit découler d’un compromis optimal entre la

perméabilité, la conductivité et les pertes d’hystérésis en modifiant la composition et les

paramètres du procédé de production [72], [75]. Dans ce sens, les fabricants des SMC

(Poudres Métalliques du Québec et Höganäs par exemple) proposent à leurs clients des

matériaux allant du matériau le plus résistif et moins perméable au matériau le moins

résistif et plus perméable qui peuvent être utilisés suivant les spécifications de l’application

visée.

Page 43: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 21

Dans les dispositifs électromagnétiques fonctionnant à des fréquences élevées comme les

machines à haute vitesse, l’utilisation des SMC peut être très intéressante par rapport à celle

des matériaux laminés. L’handicap de pertes magnétiques plus élevées dans les SMC en

basses fréquences peut être compensé lorsque la fréquence augmente suite à la forte

réduction des courants de Foucault. En effet, les pertes magnétiques totales dans les SMC,

qui sont dominées par les pertes d’hystérésis, augmentent linéairement avec la fréquence et

peuvent devenir inférieures à celles des tôles laminées. Dans ces dernières, les pertes par

courants de Foucault sont prépondérantes en haute fréquence et augmentent au carré de la

fréquence. Cependant, ce constat, par ailleurs annoncé par plusieurs auteurs [39], [75], [76]

et qui sera démontré dans cette thèse pour le cas des machines sans encoches de faible

puissance avec des stators réalisés en SMC, est à prendre sous réserve (cf. chapitre 6). En

fait, les pertes par courants de Foucault dans un circuit magnétique fait de SMC peuvent

être très significatives par rapport aux pertes d’hystérésis dépendamment de la conductivité

du matériau, de la topologie et des dimensions globales du circuit magnétique et de la

puissance mise en jeu. Cela est démontré dans le chapitre 6 dans le cas des machines sans

encoches à haute vitesse de puissance et de dimensions importantes utilisant des SMC

(effet dimensionnel).

Dans la littérature, les SMC ont été utilisés avec succès dans plusieurs types de machines

électriques [75]–[81]. À cause de leur faible perméabilité, ces matériaux semblent être plus

appropriés aux machines à aimants permanents où l’entrefer magnétique effectif est plus

important, en particulier pour un fonctionnement à haute vitesse ou à haute fréquence.

L’exploitation de l’isotropie des propriétés magnétiques et thermiques a permis de

concevoir des machines à aimants avec des structures topologiques utilisant des culasses où

la circulation du flux et le transfert de la chaleur sont tridimensionnels, tout en réduisant le

poids et en assurant une meilleure utilisation du cuivre. En plus des machines à flux radial,

les structures de machines à aimants permanents où l’utilisation des SMC a été envisagée,

sont les machines à flux axial, les machines à flux transverse et les machines à griffes [75]–

[80]. Dans le domaine de la haute vitesse, l’utilisation des SMC a été rapportée dans

quelques références [9], [39] et [81], particulièrement dans les cas des machines à aimants

permanents de petite et de moyenne puissances. Cependant, cette utilisation des SMC est

toujours au stade de la recherche et du développement que ce soit au niveau de

Page 44: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 22

l’amélioration des propriétés physiques de ces matériaux ou de l’adaptation et de

l’optimisation des structures des machines comme cela est proposé dans cette thèse dans le

cas des machines sans encoches à aimants permanents à haute vitesse.

1.4.2 Aimants permanents

Les aimants permanents sont des matériaux magnétiques durs caractérisés par un cycle

d’hystérésis très large. La partie utile de leurs caractéristiques B(H), appelée courbe de

démagnétisation, est linéaire et située dans le quadrant du plan où B>0 et H<0. Ces

matériaux sont généralement classés en fonction de trois principaux paramètres :

l’induction rémanente Br, le champ magnétique coercitif Hc et la densité d’énergie

maximale (BH)max. Le choix d’un aimant pour une application donnée dépend de ces

derniers paramètres, qui désignent les performances magnétiques, ainsi que des contraintes

thermiques et du coût [82].

Il existe plusieurs types d’aimants permanents qui sont utilisés dans les machines

électriques tels que les Aluminium-Nickel-Cobalt (AlNiCo), les ferrites, les Samarium-

Cobalt (SmCo) et les Néodyme-Fer-Bore (NdFeB). Dans les machines à aimants

permanents à haute vitesse, les aimants NdFeB et SmCo, qui sont des aimants de type terres

rares, sont les plus utilisés puisqu’ils présentent une forte densité d’énergie [17]. Ces

aimants sont proposés sur le marché avec plusieurs formes et différentes directions pour le

vecteur de magnétisation (radiale, axiale, parallèle, diamétrale, etc.) et peuvent être soit

frittés ou liés.

Le tableau 1.3 présente l’ordre de grandeur des principales caractéristiques physiques des

aimants permanents de type terres rares frittés ainsi que celles des ferrites. Les aimants

NdFeB sont plus puissants et plus performants que les SmCo étant donné qu’ils présentent

d’excellentes propriétés magnétiques (densité d’énergie et induction rémanente plus

élevées). Ils sont les plus utilisés dans un grand nombre d’applications d’autant plus que

leur coût est moins élevé. Cependant, les aimants SmCo peuvent fonctionner à des

températures plus élevées (>300oC) que celles permises pour des aimants NdFeB tout en

assurant de bonnes performances magnétiques [83], [84]. À cause de leur coût plus élevé et

de leur bonne tenue en température, les aimants SmCo sont généralement réservés pour des

Page 45: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 23

applications spécialisés avec des conditions thermiques sévères telles que les applications

aéronautiques, miliaires ou spatiales.

Paramètre NdFeB SmCo Ferrites Induction rémanente Br (à 20oC) [T] 1.02-1.47 0.9-1.12 0.2-0.41 Champ coercitif intrinsèque Hci (à 20oC) [A/m] 750-3250 500-1500 200-350 Densité d’énergie volumique (BH)max [kJ/m3] 200-415 140-250 10-40 Perméabilité magnétique relative µrm 1.02-1.2 1.03-1.1 1.05-1.2 Résistivité électrique ρm [μΩm] 1.4-1.6 0.5-0.9 100 Température de Curie [oC] 310-370 700-800 450 Température maximale de fonctionnement [oC] 80-240 350 250 Coefficient de température pour Br [%/oC] -0.12 ~ -0.08 -0.05 ~ -0.03 -0.18 ~ -0.2 Coefficient de température pour Hci [%/oC] -0.8 ~ -0.4 -0.25 ~ -0.15 +0.2 ~ +0.5 Densité volumique [kg/m3] 7200-7500 8200-8500 3500-5000

Tableau 1.3 : Caractéristiques physiques de différents aimants permanents frittés [82]–[84]

Il est important de noter que la résistivité des aimants de type terres rares est non

négligeable, en particulier celle des aimants frittés. Cela conduit à la génération de pertes

par courants de Foucault qui peuvent être importantes lors de l’utilisation de ces aimants

dans les machines fonctionnant à haute vitesse et qui doivent être considérées lors du

dimensionnement de ce type de machines. Le tableau 1.3 et la figure 1.5 montrent que les

propriétés magnétiques des aimants de terres rares sont dépendantes de la température. Une

augmentation de la température, pour des aimants NdFeB par exemple, se traduit par une

diminution de l’induction rémanente, une réduction du champ magnétique coercitif et un

abaissement de la courbe de démagnétisation. Les aimants perdent de leur puissance en

subissant une démagnétisation réversible, et cet effet est plus prononcé dans le cas des

NdFeB puisqu’ils sont plus sensibles à la température.

Un autre phénomène important à prendre en considération lors du dimensionnement des

machines utilisant des aimants permanents est la démagnétisation irréversible de ces

derniers. Cette perte d’aimantation peut être produite lorsque le point de fonctionnement de

l’aimant dépasse le coude de la courbe de démagnétisation suite à l’application d’un champ

magnétique de réaction d’induit plus important [84]–[86]. Ce phénomène est accentué avec

la température étant donné que le champ magnétique correspondant au coude de la courbe

Page 46: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 24

B(H) diminue (en valeur absolue) au fur et à mesure que la température augmente (cf. Fig.

1.5). Ainsi, lors du dimensionnement des machines à aimants permanents à haute vitesse, la

courbe B(H) correspondant à la température maximale prédite des aimants doit être utilisée

afin d’éviter efficacement leur démagnétisation.

Figure 1.5 : Courbes de démagnétisation d’un aimant permanent de type NdFeB pour différentes

températures [84]

1.4.3 Conducteurs utilisés dans les bobinages des machines électriques à haute vitesse

Dans les machines à aimants permanents à haute vitesse, la fréquence du courant dans les

conducteurs des enroulements du stator peut être très élevée. De plus, les aimants

permanents défilent rapidement devant les conducteurs à cause de la rotation à haute vitesse

du rotor. L’apparition de courants de Foucault à l’intérieur des conducteurs se traduit par la

création de pertes Joule supplémentaires dues à l’effet de peau et de proximité [87]. Ces

pertes sont plus importantes lorsque le stator de la machine est sans encoches. Le contrôle

de la valeur de ces pertes dépend du type de conducteur à utiliser et de leurs sections. Dans

la littérature, deux types de conducteurs sont généralement utilisés pour plusieurs classes

d’isolation :

• Conducteurs de cuivre standards (normaux) qui sont utilisés dans la majorité des

machines électriques ;

Page 47: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 25

• Fils de Litz : ce sont des conducteurs en cuivre composés par un ensemble de brins

plus fins isolés électriquement les uns des autres et qui sont tressés ou toronnés. Ils

permettent de réduire les pertes supplémentaires causées par l’effet de peau et de

proximité. Le diamètre des brins doit être inférieur à l’épaisseur de peau

correspondant à la pénétration des courants de Foucault pour la fréquence de

fonctionnement. L’inconvénient majeur des conducteurs à fils de Litz, qui peuvent

être soit ronds ou rectangulaires, est la diminution du facteur de remplissage au

stator par rapport à celui des conducteurs standards. Toutefois, le facteur de

remplissage dans le cas d’un fil de Litz de forme rectangulaire est plus élevé que

celui d’un fil de forme ronde.

Pendant la phase de conception des machines à aimants permanents à haute vitesse, un

choix optimal entre ces deux types de conducteurs doit être effectué. Ce choix dépend d’un

compromis à réaliser entre l’influence des pertes Joule supplémentaires mises en jeu et

celle du facteur de remplissage des encoches vis-à-vis des performances globales de la

machine, suivant la vitesse de rotation et la puissance considérées. Ce compromis est

analysé et résolu dans cette thèse pour les machines sans encoches à haute vitesse.

1.5 Structures et alimentations des machines sans encoches à aimants permanents à haute vitesse considérées dans la thèse

Dans cette partie, nous présentons les différentes structures d’ensembles convertisseurs

statiques-machines électriques sans encoches à aimants permanents à haute vitesse qui sont

considérées pour développer l’outil de dimensionnement générique global de ce type de

machines. Nous présentons l’intérêt de l’utilisation des machines avec un induit sans

encoches dans les applications à haute vitesse et nous décrivons les différentes structures

des machines sans encoches à aimants choisies. Finalement, nous présentons les différents

types d’alimentations électroniques envisagées pour ces machines en décrivant les

topologies des convertisseurs statiques qui leur sont associés et leurs types de commandes.

Page 48: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 26

1.5.1 Intérêt des machines sans encoches à haute vitesse

Comparées aux machines avec encoches, les machines sans encoches à aimants permanents

sont très attractives dans plusieurs applications à haute vitesse grâce à leurs multiples

avantages. L’absence des dents et des encoches au niveau du bobinage permet d’éliminer le

couple de détente, de minimiser les ondulations du couple total et de réduire les vibrations

et le bruit qui en résulte. Elle permet aussi de réduire les pertes par courants de Foucault

induites au niveau du rotor suite à la réduction des harmoniques de l’induction d’entrefer.

Ces harmoniques sont réduits, d’une part, par l’élimination de la modulation de l’induction

à vide par la réluctance des dents, et d’autre part, par l’augmentation de l’entrefer

magnétique qui assure un certain filtrage. Au niveau du stator, les pertes magnétiques sont

aussi minimisées et la saturation magnétique qui apparaît généralement dans les dents est

éliminée [88], [89].

Par ailleurs, l’augmentation de l’entrefer magnétique due à la structure sans encoches

conduit à une inductance plus faible que celle des machines avec encoches. Cela permet

d’avoir une détection plus précise de la position du rotor lors de l’utilisation d’une

commande sans capteur, basée sur la détection de la tension de phase, pour l’entraînement

de la machine. De plus, ce grand entrefer permet de minimiser les risques de

démagnétisation des aimants permanents. D’un autre côté, le fait que le bobinage soit placé

directement dans l’entrefer permet de faciliter l’évacuation de la chaleur générée lors de

l’utilisation d’un système de refroidissement par ventilation forcée bien que les

performances de dissipation thermique du stator soient diminuées à cause de l’absence des

dents [17], [89]. Cependant, l’entrefer plus large de la machine sans encoches conduit à une

diminution de l’induction magnétique dans l’entrefer, à une augmentation du flux de fuites

et à une réduction de la densité de puissance par comparaison avec une structure avec

encoches équivalente [88]. Néanmoins, l’utilisation des aimants permanents de forte

densité d’énergie permet de produire un flux suffisant et de remédier à ces problèmes.

1.5.2 Structures des machines sans encoches considérées dans la thèse

Afin de développer un outil de dimensionnement général intégré dans un environnement de

CAO des machines sans encoches à aimants permanents à haute vitesse, plusieurs

Page 49: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 27

structures de machines ont été considérées dans cette thèse. La figure 1.6 présente les deux

familles structurelles des machines considérées qui diffèrent suivant la configuration du

rotor : structures à rotor intérieur et structures à rotor extérieur. Il s’agit de plusieurs

variantes de machines synchrones triphasées sans encoches, à aimants permanents, à flux

radial, à pôles lisses, qui peuvent fonctionner soit en moteur ou en générateur.

(a) (b)

Culasse du Stator (SMC / fer laminé)

Bobinage

Frette (conductrice / non conductrice)

Aimants permanents

Culasse du rotor

Figure 1.6 : Structures des machines sans encoches à aimants permanents considérées (a) à rotor

interne et (b) à rotor externe

Le stator est composé d’un bobinage triphasé et d’une culasse cylindrique non encochée

faite avec des matériaux SMC. Cependant, des culasses statoriques réalisées à partir des

matériaux magnétiques laminés sont aussi envisagées dans ce travail, ce qui permettra de

comparer les performances des machines sans encoches utilisant des SMC avec celles

utilisant des tôles et d’investiguer ainsi l’utilisation des SMC dans ce type de machines. Le

bobinage est constitué de trois enroulements équilibrés, symétriques et ayant une

configuration générale incluant ceux à pas diamétral et à pas raccourci. Il est placé

directement dans l’entrefer et fixé à la culasse du stator sans utilisation de dents, ce qui

assure un espace supplémentaire aux conducteurs des enroulements. Ces conducteurs

peuvent être des conducteurs standards ou des conducteurs de type fil de Litz. Notons que

des supports en plastique peuvent aussi être utilisés pour supporter le bobinage et le fixer

sur la culasse du stator comme cela est proposé dans les références [17] et [26].

Page 50: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 28

Le rotor, qui peut être soit de type interne ou externe, a une structure sans pièce polaire où

les aimants permanents sont montés et collés directement sur la surface de la culasse

rotorique. Cette dernière est un cylindre réalisé en fer massif. Dans un objectif de

généraliser d’avantage l’outil de dimensionnement des machines considérées, nous

utilisons des aimants permanents avec une représentation générale de la distribution du

vecteur d’aimantation incluant les formes radiales, parallèles ou de type Halbach. Cette

représentation générale peut être obtenue en considérant que chaque aimant sous un pôle

peut être composé de plusieurs petits segments élémentaires aimantés soit radialement ou

parallèlement avec une orientation définie. Cette segmentation éventuelle des aimants offre

un degré de liberté supplémentaire pour réduire les pertes dans ces derniers lorsqu’ils sont

conducteurs.

Pour les structures de machines à rotor externe, la tenue mécanique des aimants sur la

culasse du rotor est assurée par la force centrifuge et le fait de coller les aimants est

suffisant pour les maintenir en place. Cependant, pour les structures à rotor interne, les

aimants sont maintenus en utilisant des frettes mécaniques qui permettent de limiter le

stress mécanique dû aux forces centrifuges pour des vitesses très élevées. Les frettes

considérées pour le maintien des aimants des machines envisagées sont amagnétiques et

peuvent être soit conductrices ou non conductrices. Les frettes de type magnétique sont

aussi considérées. Les frettes conductrices peuvent avoir une fonction mécanique de

maintien des aimants et/ou une fonction électromagnétique. En effet, comme il a été

mentionné auparavant et suivant la figure 1.6, les machines à rotor externe ainsi que celles

à rotor interne peuvent être munies de frettes conductrices pour réduire les pertes totales au

rotor en jouant le rôle d’un écran magnétique face aux champs de hautes fréquences et en

empêchant ces derniers de pénétrer dans les aimants et dans la culasse du rotor. Les frettes

conductrices peuvent aussi jouer le rôle d’un circuit amortisseur qui abaisse l’inductance

transitoire et améliore la commutation électronique du courant surtout lorsque la machine

est couplée à un convertisseur à commutation de courant. Notons que l’effet de l’utilisation

des frettes conductrices sur les pertes au rotor ainsi que sur les inductances de la machine

est étudié dans cette thèse au niveau du chapitre 3. L’effet de la segmentation transversale

des aimants en petits blocs sur les pertes totales au rotor est aussi analysé.

Page 51: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 29

Pour les machines à haute vitesse considérées, des paliers adaptés au fonctionnement

doivent être utilisés. Suivant les spécifications du cahier des charges, nous pouvons utiliser

soit des roulements à billes ou des paliers sans contact à air comprimé, à huile ou à

suspension magnétique. Pour ce type de machines, un système de refroidissement est

nécessaire à cause des pertes produites qui peuvent être très élevées. Il permet d’évacuer

efficacement les pertes générées et de limiter l’échauffement. Le mode de refroidissement à

utiliser dépend de l’application et de la puissance mise en jeu. Il peut être effectué en

utilisant la convection forcée soit par circulation d’air ou par circulation d’un fluide de

refroidissement.

1.5.3 Types de convertisseurs statiques utilisés

En haute vitesse, les interactions entre la machine sans encoches à aimants et son

convertisseur associé ont une influence très importante sur les performances globales du

système. Dans ce cas, le type du convertisseur et ses interactions avec la machine doivent

être prises en compte afin de garantir un dimensionnement optimal de l’entraînement.

Afin de généraliser l’outil de dimensionnement des machines sans encoches considérées,

différentes topologies de convertisseurs statiques ont été considérées dans cette thèse, qui

forment avec les machines plusieurs structures d’ensembles convertisseurs-machines dont

le schéma de principe général est présenté dans la figure 1.7. Chaque ensemble est composé

d’une machine sans encoches à aimants, d’un convertisseur statique et d’un système de

commande. La machine peut être soit un moteur qui entraîne à haute vitesse une charge

mécanique ou un générateur entraîné par une turbine à gaz par exemple. Le convertisseur

statique assurant l’alimentation électronique de la machine peut être soit un onduleur

connecté à une source d’énergie électrique ou un redresseur débitant sur une charge

électrique.

Page 52: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 30

Système de contrôle et de commande

MSEConvertisseur statique

Figure 1.7 : Schéma bloc de principe simplifié des ensembles convertisseurs-machines considérés

Deux types de commutations au niveau du fonctionnement des convertisseurs statiques sont

considérés. Ils permettent de classifier ces derniers en deux catégories : convertisseurs à

commutation de tension (alimentation en tension) et convertisseurs à commutation de

courant (alimentation en courant). Ces divers convertisseurs sont adaptés à différentes

gammes de puissances des machines sans encoches à aimants permanents à haute vitesse. Il

est important de souligner que la notion d’«alimentation» de la machine par convertisseur

statique utilisée ici et dans toute la thèse est adoptée que ce soit pour un fonctionnement en

moteur ou en alternateur.

• Alimentation par convertisseurs à commutation de tension

Dans cette première catégorie, plusieurs types d’onduleurs de tension à base de transistors

alimentant les machines sans encoches sont considérés pour un fonctionnement en moteur.

Ces onduleurs permettent d’imposer la tension de façon séquentielle aux bornes des

enroulements de la machine suivant le type de commande utilisé. On distingue trois types

d’onduleurs de tension envisagés :

• Onduleur avec une commande de type 120o alimentant la machine avec une forme

d’onde rectangulaire de courant : pour ce type d’onduleur, le courant a la forme de

créneaux de 120o de largeur. Trois types de commande peuvent être utilisés pour

assurer un courant de forme d’onde quasi-rectangulaire : une commande 120o avec

une onde pleine de tension (à onde entière), une commande 120o avec régulation du

courant par MLI (modulation de largeur d’impulsions) et une commande 120o avec

régulation du courant par comparateur à hystérésis ;

Page 53: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 31

• Onduleur avec une commande de type MLI alimentant la machine avec une forme

d’onde sinusoïdale du courant : ce type d’onduleur est régulé en courant et permet

d’appliquer à la machine des tensions modulées sinusoïdalement afin d’assurer des

courants d’alimentation quasi-sinusoïdaux ;

• Onduleur avec une commande de type 180o alimentant la machine avec des tensions

de formes d’ondes rectangulaires (onde entière).

Lorsque la machine sans encoches utilisée fonctionne en générateur, nous considérons que

le convertisseur de tension, qui lui est associé, est un redresseur actif à transistors

commandé en MLI. Dans ce cas, nous pouvons utiliser le même outil de dimensionnement

de la machine développé dans le cas d’un onduleur de type MLI à courant sinusoïdal. Il

suffit de l’adapter avec quelques modifications mineures.

• Alimentation par convertisseurs à commutation de courant

Pour cette deuxième catégorie, les convertisseurs statiques considérés sont des

convertisseurs de courant à thyristors à commutation assistée. Le convertisseur peut être

soit un onduleur à thyristors lorsque la machine sans encoches fonctionne en moteur ou un

redresseur à thyristors (ou à diodes) dans le cas d’un fonctionnement en générateur. Ce type

de convertisseurs est généralement réservé pour des applications de moyenne et de forte

puissance. Leur commande est assurée par le contrôle de l’angle d’amorçage des thyristors

qui permettent de commuter le courant dans les phases de la machine.

Soulignons que la démarche de conception et l’outil de dimensionnement des machines

sans encoches à haute vitesse, proposés pour cette catégorie de convertisseurs, sont décrits

dans cette thèse en considérant le cas d’une machine fonctionnant en générateur et débitant

sur un redresseur à thyristors. Cet ensemble convertisseur-machine est intégré dans un

système de génération d’énergie électrique à haute vitesse entraîné par une turbine à gaz.

Cependant, le même outil de dimensionnement peut être facilement adapté et utilisé

lorsqu’il s’agit d’une machine fonctionnant en moteur et alimentée par un onduleur à

thyristors. Soulignons aussi que la description des différents convertisseurs statiques

considérés dans cette partie (convertisseurs à commutation de tension ou à commutation de

courant) et de leur commande est effectuée en détail au niveau du chapitre 4.

Page 54: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 32

1.6 Problématique de modélisation et de conception des machines sans encoches à aimants permanents à haute vitesse avec des pièces conductrices

La problématique du sujet de recherche consiste à proposer une approche de modélisation

et de conception optimale adaptée aux machines sans encoches à aimants permanents à

haute vitesse munies de pièces massives conductrices (stator en SMC, frette conductrice et

aimants) en tenant compte des différentes particularités et contraintes imposées par la haute

vitesse et du type d’alimentation utilisé. La conception de ce type de machines avec des

matériaux massifs conducteurs est complexe à cause des différents problèmes et limitations

dus au fonctionnement à haute vitesse, tels que les effets des courants de Foucault induits

dans les parties conductrices, l’influence des différentes pertes générées, les interactions

convertisseur-machine et les contraintes mécaniques au rotor.

Tout au long de ce chapitre, nous avons évoqué et décrit ces différents problèmes. Dans ce

qui suit, nous allons les résumer en illustrant leurs effets sur les performances globales des

machines et en identifiant les aspects à considérer pour assurer un dimensionnement

optimal de ces dernières. Nous allons aussi préciser quelques éléments en relation avec la

problématique et pour lesquelles nous devons apporter des réponses dans cette thèse.

• Effet des courants de Foucault induits dans les stators en SMC

L’utilisation des SMC pour la réalisation des stators des machines sans encoches à aimants

à haute vitesse peut être intéressante grâce aux divers avantages cités précédemment. La

conception de ce type de machines avec de tels matériaux, pour lesquels l’amélioration de

la perméabilité se traduit par une augmentation de la conductivité, est complexe et

différente de celle des machines avec des stators à tôles laminées. Un dimensionnement

optimal de ces machines nécessite une modélisation et une prédiction plus précises de la

distribution des courants de Foucault induits dans ces matériaux et de leurs effets sur les

performances.

En effet, les courants de Foucault dans les stators en SMC circulent à l’échelle du circuit

magnétique à cause des propriétés isotropiques des SMC. La distribution de ces courants et

celle des pertes qu’ils génèrent dépendent de la structure et des dimensions du circuit

Page 55: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 33

magnétique global et augmentent avec la fréquence de fonctionnement. En outre, les effets

tridimensionnels ont une influence très importante sur les pertes par courants de Foucault

générées dans le stator en SMC lorsque le rapport entre la longueur et le pas polaire de la

machine n’est pas très important. Dans ce cas, l’utilisation de l’hypothèse bidimensionnelle

pour calculer les pertes par courants de Foucault n’est pas suffisante pour assurer une bonne

précision. Ainsi, une meilleure évaluation de la distribution des courants de Foucault et de

leur pertes, en tenant compte des effets 3D, doit être effectuée afin d’assurer une conception

optimale de la machine.

• Effet des courants de Foucault induits au rotor

Souvent négligés dans les machines synchrones à aimants conventionnelles, les courants de

Foucault induits au rotor des machines sans encoches à haute vitesse génèrent des pertes

dans les parties conductrices, qui peuvent avoir une influence importante à cause de la

haute fréquence. Ces pertes sont dues essentiellement aux harmoniques de temps et

d’espace du champ magnétique produit par les courants circulant dans le bobinage. Elles

peuvent être induites dans les aimants, dans la culasse du rotor ou encore dans la frette

lorsque celle-ci est conductrice. Ces pertes par courants de Foucault, qui prennent une place

importante à haute vitesse, peuvent conduire à un échauffement significatif du rotor qui

peut être difficilement refroidi à cause de sa compacité. Cela peut conduire à une

dégradation du rendement et à une démagnétisation irréversible des aimants sous l’effet de

l’élévation de température.

Dans ce contexte, les pertes au rotor doivent constituer un élément important du

dimensionnement des machines étudiées ainsi que la démagnétisation des aimants. Une

attention particulière doit être réservée à la maîtrise et à la minimisation de ces pertes et à la

limitation de l’échauffement des aimants. Cela peut être effectué, comme proposé dans la

thèse, soit par une segmentation des aimants ou par l’introduction d’une frette conductrice.

Cette frette peut aussi avoir une influence sur les inductances de la machine et sur la

commutation du courant. L’analyse de l’effet de la frette conductrice et de la segmentation

des aimants sur les performances fait partie de la problématique à résoudre.

Page 56: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 34

• Pertes significatives à haute vitesse

Dans les machines à haute vitesse considérées, les pertes sont très importantes à cause des

valeurs très élevées de la vitesse et de la fréquence de fonctionnement. Ces pertes se

manifestent sous forme de plusieurs types dans différentes parties de la machine au niveau

du stator et du rotor. En plus des pertes par courants de Foucault déjà évoquées, et qui sont

induites dans le stator en SMC et dans les pièces conductrices du rotor, les pertes sont

composées des pertes Joule dans le bobinage, des pertes d’hystérésis dans le stator et des

pertes mécaniques. Les pertes Joule au stator tiennent compte des pertes supplémentaires

dues à l’effet de peau et de proximité, tandis que les pertes mécaniques comprennent les

pertes aérodynamiques dues à la friction de l’air sur le rotor et les pertes de frottement dans

les paliers ou les roulements. Ces pertes mécaniques, qui sont généralement négligées à

basse vitesse, peuvent devenir significatives en haute vitesse. Elles doivent être considérées

précisément lors de la phase de conception.

Ces différentes pertes provoquent un échauffement des divers matériaux de la machine, en

particulier les isolants des conducteurs du bobinage et les aimants permanents, ce qui

conduit à un risque de démagnétisation des aimants et à la dégradation des isolants [1]. Ces

pertes conduisent aussi à la diminution du rendement et à l’abaissement des performances.

Lors du dimensionnement, une meilleure prédiction de l’ensemble de ces pertes est

nécessaire afin d’évaluer efficacement le rendement et prédire le comportement thermique

de la machine en tenant compte du système de refroidissement utilisé. Une attention doit

être portée à la minimisation et à la limitation de ces pertes afin de respecter l’échauffement

maximal admissible et d’assurer un fonctionnement sécuritaire de la machine.

La limitation des pertes nécessite une meilleure modélisation, mais aussi un choix adapté

des matériaux utilisés pour la conception des machines. Par exemple, les pertes Joule

supplémentaires induites par les courants de Foucault dans les conducteurs peuvent être

minimisées en utilisant du fil de Litz. Cependant, cela n’est pas toujours bénéfique pour

améliorer les performances, et un choix optimal du type de conducteurs à utiliser doit être

effectué. Soulignons que l’investigation de l’utilisation du fil de Litz dans les machines

sans encoches et le choix optimal du type de conducteurs font partie des études à effectuer

dans la thèse.

Page 57: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 35

• Influence et choix du nombre de pôles

Le nombre de pôles est un paramètre de dimensionnement important lors de la phase de

conception des machines sans encoches à haute vitesse. Ce paramètre a une influence

importante sur les performances, notamment sur les pertes, et sur la structure optimale de la

machine. Une augmentation du nombre de pôles conduit à une diminution des épaisseurs

des culasses du stator et du rotor, à une réduction des têtes de bobines et à une

augmentation du couple massique. Cependant, un grand nombre de pôles conduit à une

augmentation de la fréquence qui induit des pertes plus importantes dans la machine et dans

le convertisseur statique qui lui est associé. Pour les machines à haute vitesse, un faible

nombre de pôles est utilisé et qui est généralement fixé à 2 ou 4 pôles [4], [40]. L’influence

du choix du nombre de pôles sur le dimensionnement optimal des machines considérées est

un élément de la problématique à étudier.

• Effet du couplage et des interactions convertisseur-machine

Dans le domaine de la haute vitesse, les effets du couplage entre la machine sans encoches

à aimants et le convertisseur statique qui lui est associé sont particulièrement marqués et

influencent significativement les caractéristiques globales du système. En effet, il existe

plusieurs interactions entre ces deux dispositifs qui concernent principalement les

harmoniques, le couple, les pertes, les chutes de tension, etc. La forme d’onde du courant

de la machine dépend du type et du fonctionnement du convertisseur et de l’inductance de

commutation de la machine. Elle contient des harmoniques qui ont une conséquence directe

sur les performances globales, en particulier sur les pertes et les ondulations du couple. Une

autre interaction réside au niveau de l’adaptation de la tension de la machine à celle

imposée par le convertisseur par le biais du nombre de spires. Ce nombre, qui est

généralement faible à cause des forces électromotrices importantes résultant de la haute

fréquence, doit être ajusté d’une manière optimale car il agit aussi sur les pertes Joule

supplémentaires dans le bobinage.

D’un autre côté, lorsque la machine est couplée à un convertisseur à commutation de

courant, il existe un couplage fort entre les performances des deux dispositifs dû

essentiellement à la commutation électronique du courant qui dépend de l’inductance

Page 58: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 36

transitoire de la machine. La commutation influence directement la formes d’onde du

courant ainsi que les performances au niveau de la machine (pertes, couple, etc.), tandis

qu’au niveau du convertisseur, elle agit sur la tension sortie à cause des chutes de tension

dans les interrupteurs qui peuvent être importantes à cause des fréquences élevées.

L’approche de modélisation et l’outil de dimensionnement à développer doivent tenir

compte des interactions convertisseur-machine afin d’évaluer précisément les performances

globales du système, de réaliser une meilleure adaptation entre les deux dispositifs et

d’assurer un dimensionnement optimal.

• Contraintes de dimensionnement mécaniques

Le dimensionnement mécanique du rotor des machines sans encoches est critique dans le

cas de la haute vitesse. Le rotor est soumis à un stress mécanique important dû aux forces

centrifuges. Ce stress est subi à la fois par la culasse du rotor et par la frette mécanique de

maintien des aimants (pour un rotor interne). Ces pièces rotoriques doivent être

dimensionnées afin de limiter le stress mécanique et d’éviter la destruction du rotor. Au

cours du dimensionnement, il est nécessaire d’évaluer les contraintes mécaniques

correspondant à ce stress pour définir les dimensions limites de la culasse du rotor et de la

frette qui permettent d’assurer la rigidité du rotor et de garantir un fonctionnement

sécuritaire.

• Synthèse

Comme nous l’avons mis en lumière, il existe plusieurs spécificités électromagnétiques,

thermiques et mécaniques qui régissent le fonctionnement à haute vitesse des machines

sans encoches à aimants permanents avec des matériaux conducteurs. L’approche de

conception à mettre en œuvre doit en tenir compte en insistant sur les effets des courants de

Foucault induits dans les stators massifs en SMC et dans les autres pièces conductrices

(frette et aimants).

La méthode de conception ainsi que les outils de modélisation et de CAO à développer

doivent être appliqués pour effectuer différentes études et analyses comparatives pour

plusieurs structures d’ensembles convertisseurs-machines. En plus des éléments de la

Page 59: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 37

problématique soulevés précédemment et qu’il faut résoudre, ces outils doivent aussi être

utilisés pour effectuer, d’une part, des études de faisabilité en vérifiant si l’utilisation des

SMC dans les stators est meilleure que celle des tôles laminées, et d’autre part, des études

de sensibilité du dimensionnement aux propriétés des matériaux SMC (perméabilité et

conductivité) pour étudier des compromis optimaux entre ces paramètres et pour vérifier si

un matériau SMC est meilleur qu’un autre.

1.7 Méthodologie proposée

Afin de résoudre la problématique des machines sans encoches à aimants à haute vitesse

posée précédemment, nous proposons d’adopter une approche de conception par

optimisation globale itérative assistée par ordinateur (CAO) basée sur une modélisation

analytique multidisciplinaire. Cette approche, qui sera appliquée à chaque ensemble

convertisseur-machine considéré, prend en considération tous les aspects évoqués

auparavant au niveau de la problématique, notamment les courants de Foucault induits dans

les parties conductrices ainsi que les interactions machine-convertisseur.

Pour mettre au point l’approche de conception par optimisation, nous avons besoin d’établir

un modèle de dimensionnement pour évaluer les performances globales de l’ensemble

convertisseur-machine à partir des dimensions géométriques, des paramètres structurels,

des caractéristiques des matériaux de la machine et de son mode d’alimentation. Ce modèle

peut être obtenu en adoptant une approche de modélisation électromagnétique analytique

généralisée de la machine qui tient compte des différentes configurations de bobinage, des

types d’aimantations des aimants ainsi que du type de convertisseur connecté. Cette

approche de modélisation, basée sur la prédiction de la distribution du champ

électromagnétique en deux dimensions, doit être effectuée en magnétodynamique afin de

tenir compte des effets des courants de Foucault induits dans les pièces conductrices.

Le choix d’une méthode analytique de calcul du champ au lieu d’une méthode numérique

pour modéliser la machine est motivé par le fait qu’il permet de réaliser un bon compromis

entre la précision et le temps de calcul. En effet, une méthode de calcul de champ par

éléments finis permet une modélisation plus fine de la machine. Cependant, le temps de

Page 60: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 38

calcul peut être important d’autant plus que le maillage doit être plus fin pour tenir compte

plus précisément de l’effet de peau dû aux courants induits. Ainsi, une méthode analytique

est préférable puisqu’elle est plus adaptée à une utilisation itérative dans le cadre d’un

processus d’optimisation et qu’elle permet un calcul rapide avec une bonne précision sous

réserve d’hypothèses simplificatrices.

La méthode de calcul analytique du champ proposée est basée sur une approche

harmonique de régime permanent qui consiste à effectuer une résolution analytique des

équations de Maxwell en magnétodynamique en tenant compte de la contribution des

harmoniques de temps et d’espace produits par les sources de champ : courants dans les

bobinages du stator et aimants permanents au rotor. La résolution est effectuée en termes de

potentiel vecteur en 2D en coordonnées cylindriques et tient en considération les courants

de Foucault induits dans le stator en SMC et dans la frette conductrice.

Pour tenir compte de l’effet du couplage et des interactions entre la machine et son

convertisseur, nous proposons d’établir un modèle électrique équivalent global du système.

La mise en œuvre de ce modèle permet de déterminer les formes d’ondes des grandeurs

électriques en régime permanent, d’évaluer les performances globales du système et

d’effectuer l’adaptation de la machine à son alimentation. La modélisation

électromagnétique est aussi utilisée pour calculer les différentes pertes dissipées au niveau

de la machine et établir un modèle thermique qui complète le modèle de dimensionnement

avec le modèle mécanique.

Une fois le modèle analytique de dimensionnement établi, il est nécessaire de le valider

pour s’assurer de sa précision et de sa pertinence. Pour cela, nous proposons de le valider

en utilisant des simulations par calcul numérique du champ en 2D en magnétodynamique.

Une autre validation par calcul numérique du champ en 3D est effectuée pour analyser la

distribution des courants de Foucault dans le stator en SMC et quantifier les effets de bord.

De plus, une validation expérimentale des pertes magnétiques dans le stator en SMC est

aussi proposée.

Afin d’effectuer le dimensionnement, nous devons développer des procédures de

conception et d’optimisation globale adaptées à chaque type de machine et de convertisseur

Page 61: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 39

et qui intègrent le modèle de dimensionnement analytique. Une méthode d’optimisation

non linéaire avec contraintes est utilisée pour résoudre le problème de conception. Les

différentes étapes du processus de conception qui intègre ces procédures sont présentées en

détail dans le chapitre 5.

Au cours de l’optimisation, le couplage électrique entre la machine et le convertisseur

statique est résolu complètement dans la boucle d’optimisation par une résolution

analytique harmonique du circuit électrique équivalent global du système dans le cas d’une

alimentation en tension. Dans le cas d’un convertisseur à commutation de courant, le

couplage fort existant entre les performances de la machine et celles du convertisseur est

résolu en dehors de la boucle d’optimisation en utilisant une approche originale utilisant un

mécanisme de correction spécifique associé à la procédure d’optimisation.

Pour tenir compte de l’influence des effets 3D sur la distribution des courants de Foucault

et sur leurs pertes générées dans le stator en SMC et résoudre ainsi le problème posé

auparavant au niveau de la problématique, nous proposons d’associer à la procédure

d’optimisation un autre mécanisme de correction itératif. Ce mécanisme, qui sera appliqué

en dehors de la boucle d’optimisation, permet de corriger les pertes par courants de

Foucault calculées analytiquement en 2D en tenant compte des effets de bord déterminés à

partir des simulations en calcul numérique du champ en 3D.

L’approche de conception par optimisation globale proposée est mise en œuvre en

développant les différents modèles et outils de simulation, de correction, de conception et

d’optimisation, qu’on vient de décrire, pour les multiples structures d’ensembles

convertisseurs-machines considérées. Ces différents outils sont intégrés dans un

environnement de CAO pour constituer un outil de dimensionnement général des machines

sans encoches. Les outils de CAO développés sont validés sur des cahiers des charges

spécifiques et appliqués pour comparer diverses solutions topologiques de machines sans

encoches pour différents types d’alimentations par convertisseurs statiques. Ces outils sont

aussi utilisés pour effectuer plusieurs études et analyses comparatives et pour résoudre les

différents éléments de la problématique mentionnés précédemment.

Page 62: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 1 40

1.8 Conclusion

Dans ce chapitre, nous avons présenté et détaillé les diverses particularités et

problématiques liées au fonctionnement et à la conception des machines sans encoches à

aimants permanents à haute vitesse munies de pièces massives conductrices.

Dans un premier temps, nous avons présenté les différentes applications utilisant des

machines à haute vitesse ainsi qu’une comparaison de ces dernières, en mettant l’accent sur

les machines à aimants permanents, dont les machines sans encoches. Pour ce type de

machines, plusieurs aspects ont été discutés, en particulier la construction du rotor, la

démagnétisation des aimants et leur maintien par différents types de frettes. Une description

des caractéristiques des divers matériaux (SMC, tôles laminées, aimants et conducteurs)

utilisés dans ce type de machines a été aussi effectuée. Une attention particulière a été

accordée au choix de ces différents matériaux et aux divers aspects à prendre en compte

lors du dimensionnement en utilisant ces matériaux, comme entre autres les pertes par

courants de Foucault qui y sont générées à cause de la haute fréquence.

Dans un deuxième temps, nous avons présenté les multiples structures d’ensembles

convertisseurs statiques-machines sans encoches à aimants choisies dans cette thèse.

Plusieurs structures de machines fonctionnant en moteur ou en générateur ont été

considérées. De même, divers types de convertisseurs statiques ont été pris en compte.

Par la suite, la problématique de modélisation et de conception des machines considérées a

été présentée et discutée. Cela a été effectué en tenant compte des différentes contraintes

imposées par la haute vitesse et en mettant en lumière les divers aspects à considérer pour

assurer un dimensionnement optimal de ces machines.

Finalement, la méthodologie qui permet de résoudre la problématique a été proposée. Cette

méthodologie qui permet de maîtriser la conception des machines sans encoches à haute

vitesse avec des matériaux massifs conducteurs est basée sur des approches de

modélisation, de conception et d’optimisation originales que nous allons mettre en œuvre

dès le chapitre suivant.

Page 63: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Equation Chapter 2 Section 1

CHAPITRE II

2 MODÉLISATION ÉLECTROMAGNÉTIQUE

ANALYTIQUE GÉNÉRALISÉE DES MACHINES

SANS ENCOCHES À AIMANTS PERMANENTS

2.1 Introduction

Afin d’établir l’outil de dimensionnement des machines électriques sans encoches à

aimants permanents à haute vitesse à pôles lisses considérées dans cette thèse, nous devons

en premier lieu développer une modélisation électromagnétique adaptée à ce type de

machines. Cette modélisation nous permettra de calculer les différentes grandeurs

électromagnétiques et les performances des machines en fonction des dimensions

géométriques et des caractéristiques des matériaux utilisés. Une meilleure modélisation doit

prendre en compte les courants induits dans les parties massives conductrices de la machine

et leurs effets sur les performances.

Dans ce chapitre, nous proposons une approche de modélisation électromagnétique

analytique généralisée de ces machines. Cette approche est basée sur la prédiction de la

distribution du champ magnétique en deux dimensions par une résolution analytique des

équations de Maxwell dans les différentes zones constitutives de la machine [90], [91]. La

résolution est effectuée en magnétodynamique en tenant compte de la contribution des

aimants au rotor, des courants au stator et des courants de Foucault induits dans les parties

massives conductrices de la machine. Elle tient compte aussi des harmoniques de temps et

d’espace des forces magnétomotrices au stator et au rotor et du mouvement relatif des

différentes parties de la machine. Le champ magnétique est calculé en coordonnées

Page 64: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 42

cylindriques en considérant la courbure de l’entrefer. La méthode de modélisation proposée

dans ce chapitre est particulièrement adaptée aux machines à aimants à induit sans

encoches et à pôles lisses [92], [93]. Comparée à la méthode de calcul du champ en 2D par

éléments finis, la seule hypothèse adoptée consiste à négliger la saturation des matériaux

magnétiques en utilisant un calcul en linéaire.

Il est important de noter que la modélisation électromagnétique décrite dans ce chapitre a

été généralisée en considérant la structure de la machine sans encoches à rotor interne avec

un stator en SMC et une frette conductrice. Le modèle électromagnétique présenté tient

compte alors simultanément des courants induits dans ces deux parties conductrices. Pour

les autres structures de machines sans encoches présentées au chapitre 1 (cf. partie 1.5), le

modèle électromagnétique peut être obtenu facilement à partir du modèle généralisé. Ces

modèles sont utilisables pour les fonctionnements en moteur et en générateur et pour des

rotors internes et externes.

Dans la deuxième partie de ce chapitre, nous exposons le principe, les différentes

hypothèses simplificatrices et les possibilités de calcul de la méthode de modélisation

proposée ainsi que la définition du domaine d’étude. Après avoir établi l’équation générale

du champ électromagnétique et les différentes conditions aux limites basées sur une

formulation en potentiel vecteur, nous modélisons les sources de champ dues aux aimants

et aux courants statoriques. L’équation de champ est ensuite appliquée à la structure de la

machine considérée et résolue pour calculer les champs magnétiques à vide, de réaction

d’induit et en charge. À partir de ces calculs, nous déterminons les différentes grandeurs

électromagnétiques et paramètres de la machine. Finalement, nous procédons à une

validation du calcul analytique en comparant les résultats obtenus avec ceux issus du calcul

du champ par éléments finis en 2D.

2.2 Bases de la modélisation électromagnétique

2.2.1 Principe de l’approche de modélisation

L’approche de modélisation proposée est basée sur le calcul analytique du champ

magnétique en 2D en magnétodynamique. Elle se résume dans la résolution analytique de

Page 65: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 43

l’équation générale du champ de la magnétodynamique issue des équations de Maxwell en

tenant compte des conditions aux limites. Cette équation est établie dans la partie 2.3. Pour

appliquer cette méthode à un dispositif électromagnétique comme la machine sans

encoches, sa structure doit être susceptible d’être subdivisée en des zones élémentaires

continues, d’épaisseurs, de perméabilités et de conductivités constantes (géométrie avec des

régions lisses et homogènes). Afin de résoudre le problème magnétodynamique, l’équation

du champ doit être exprimée dans chaque zone de la machine dépendamment de la présence

ou non des sources de champ (aimant ou courant) et de la nature du milieu considéré (air,

fer, aimant,…). Les sources de champ sont modélisées par des développements en séries de

Fourier. La résolution des équations du champ par la méthode de «séparation des variables»

permet d’établir les expressions du potentiel vecteur dans chaque zone constitutive du

dispositif. Ces expressions font intervenir des constantes qui sont calculées en tenant

compte des conditions aux frontières et des conditions aux limites de séparation des

milieux.

Le champ électromagnétique total est calculé à partir de la superposition du champ produit

par les aimants (champ à vide) et de celui produit par le bobinage au stator avec des

courants supposés connus (champ de réaction d’induit). Dans les deux cas, nous tenons

compte de la réaction des courants de Foucault induits dans les pièces conductrices de la

machine. Les harmoniques d’espace de la distribution du vecteur de magnétisation et les

harmoniques de temps et d’espace de la force magnétomotrice (FMM) de réaction d’induit

sont aussi considérés. Le champ magnétique dû aux aimants est calculé à partir du potentiel

vecteur magnétique à vide mA

, tandis que celui produit par les courants statoriques est

déterminé en calculant le potentiel vecteur de réaction d’induit sA

. Comme la méthode de

modélisation n’est appliquée que pour des structures avec des matériaux magnétiques

linéaires (saturation négligée), le potentiel vecteur total peut être calculé comme la somme

des deux potentiels vecteurs précédents : = +tot m sA A A

. Une fois les distributions de ces

trois potentiels vecteurs définies, toutes les grandeurs électromagnétiques (induction, flux,

fem, inductance, couple, pertes,…), nécessaires pour établir le modèle de

dimensionnement, peuvent être facilement déterminées.

Page 66: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 44

Généralement, cette méthode de modélisation s’applique facilement pour des structures de

machines caractérisées par des formes simples et sans pièces polaires, et qui sont

alimentées par des courants imposés [94]. Le choix de cette méthode de modélisation des

machines sans encoches à pôles lisses en deux dimensions et en coordonnées cylindriques

est justifié par le fait que, d’une part, ces machines entrent parfaitement dans le cadre de

cette situation puisqu’elles ne font pas intervenir de matériaux magnétiques au niveau du

bobinage (cf. Fig. 2.1) et que, d’autre part, elles possèdent un large entrefer. Les lignes de

champ ne traversent pas perpendiculairement l’entrefer, elles sont déformées et possèdent

des composantes radiales et tangentielles. L’utilisation d’un modèle bidimensionnel nous

permet donc d’effectuer une modélisation précise du comportement électromagnétique de

la machine [93], [95].

La méthode analytique de calcul du champ proposée n’est pas récente. Elle a été introduite

en 1929 par Hague [90]. Elle a été, ensuite, reprise par quelques auteurs comme

Lammeraner [96] et Boules [91], [97]. Dans les dernières années, grâce au développement

des aimants permanents de haute densité d’énergie, cette méthode a été réintroduite et

utilisée par plusieurs chercheurs afin de modéliser précisément les machines à aimants

puisqu’elles présentent généralement un large entrefer. Par exemple, les références [5],

[26], [55], [92], [93], [98] et [99] utilisent un calcul du champ en cordonnées cylindriques

en tenant compte de l’effet de la courbure de l’entrefer. Par contre, ce calcul a été effectué

en coordonnées cartésiennes dans les références [96], [100]–[102]. Cette méthode de calcul

du champ a aussi été utilisée en magnétostatique dans les références [9], [92], [93] et [98] et

en magnétodynamique dans [21], [26], [55], [94], [99], [103] et [104]. Le calcul en

magnétodynamique est effectué en tenant compte des courants induits dans les pièces

conductrices représentées généralement par la frette et/ou les aimants. Cependant, à notre

connaissance, il n’existe aucune référence qui a traité de la modélisation des machines à

aimants avec des stators massifs conducteurs en SMC et des frettes qui peuvent être

conductrices ou non conductrices. Toutefois, il existe deux références [105] et [106] où les

auteurs ont calculé seulement le champ magnétique à vide d’un rotor à aimants qui tourne à

l’intérieur d’un cylindre massif conducteur afin de calculer les pertes à vide.

Page 67: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 45

2.2.2 Hypothèses simplificatrices

L’approche de modélisation par calcul analytique du champ, appliquée dans cette thèse,

utilise les hypothèses simplificatrices suivantes :

• Les effets de bord sont négligés, on considère un système infiniment long. La

résolution des équations du champ n’est effectuée qu’en deux dimensions et ne

dépend pas de la direction axiale selon la profondeur. Le potentiel vecteur A

est

invariant par translation et l’induction B

est contenue dans le plan perpendiculaire à

la direction d’invariance. Les effets 3D dus au flux de fuites des têtes de bobines

seront pris en compte séparément et ajoutés au modèle dans les chapitres suivants ;

• Les régions conductrices sont supposées connexes et court-circuitées à l’infini. Cela

implique que les courants induits sont perpendiculaires au plan d’étude que leurs

boucles sont fermées à l’infini [94]. Les effets 3D des courants induits sur les pertes

par courants de Foucault sont considérés séparément et calculés dans le troisième

chapitre en utilisant le calcul numérique du champ en 3D ;

• Les matériaux magnétiques constitutifs de la structure de la machine sont supposés

homogènes et isotropes. Leur conductivité et leur perméabilité sont considérées

constantes. Cela implique que la saturation devient négligeable (calcul en linéaire) ;

• La perméabilité du fer de la culasse du rotor est supposée infinie ; c’est-à-dire que le

champ magnétique H

est nul à l’intérieur de cette culasse ;

• L’effet des courants induits dans les matériaux magnétiques laminés (au rotor et au

stator) et dans les aimants permanents sur le champ électromagnétique est négligé ;

• L’effet du phénomène d’hystérésis sur le champ électromagnétique est négligé ;

• Le vecteur d’aimantation des aimants M

ne dépend pas de la direction radiale dans

un système de coordonnées cylindriques ;

• L’espace interpolaire entre des aimants non jointifs a une perméabilité relative égale

à celle des aimants (µrm) ;

Page 68: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 46

• Les enroulements au stator sont triphasés, équilibrés, symétriques, couplés en étoile

et leurs bobines polaires sont connectées en série ;

• Les courants d’alimentation de la machine forment un système triphasé équilibré en

régime permanent ;

• La machine est supposée symétrique. C’est-à-dire que toutes les quantités respectent

la condition suivante : ( ) ( )/f p fθ π θ+ = − , où p est le nombre de paires de pôles.

2.2.3 Considérations prises en compte lors de la modélisation

L’approche de modélisation utilisée nous permet de prendre en compte les considérations

de calcul suivantes :

• Les effets des harmoniques de temps (courants non sinusoïdaux) et des harmoniques

d’espace (distributions non sinusoïdales du bobinage et du vecteur de magnétisation

des aimants) sont pris en compte. Ces harmoniques ont une grande influence sur les

performances de la machine (ondulation du couple, pertes, inductance, etc.) ;

• La distribution du bobinage de l’armature statorique est modélisée avec une

épaisseur finie afin d’assurer une meilleure précision du calcul analytique [93] ;

• L’effet de peau dû aux courants de Foucault dans la frette conductrice et dans le

stator en SMC est considéré ;

• Le mouvement de rotation est pris en compte en l’intégrant directement dans les

équations du champ à résoudre [94] ;

• La perméabilité relative des aimants est considérée différente de l’unité (µrm ≠ 1).

Cela permet de calculer le champ magnétique avec plus de précision contrairement

au cas où la perméabilité est prise égale à celle de l’air [98] ;

• La perméabilité relative de la frette est supposée différente de 1 (µrc ≠ 1) lorsque

celle-ci est conductrice. Cela nous permet de généraliser le modèle

électromagnétique et d’avoir la possibilité d’étudier l’utilisation des frettes

magnétiques plutôt que des frettes amagnétiques ;

Page 69: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 47

• Les aimants permanents sous un pôle sont modélisés sous formes de petits blocs

aimantés soit radialement, parallèlement ou parallèlement et inclinés. Cela permet

d’avoir une représentation généralisée pour la forme de la distribution du vecteur

d’aimantation : radiale, parallèle ou de type Halbach [92], [107]. Cette distribution

est modélisée en utilisant un développement en séries de Fourier ;

• Les enroulements au stator sont modélisés d’une façon générale pour ceux à pas

diamétral et à pas raccourci.

2.2.4 Définition de la machine et de son domaine d’étude

La machine considérée dans ce chapitre pour décrire la méthode de modélisation est une

machine sans encoches à aimants permanents à pôles lisses à rotor interne. La frette utilisée

pour le maintien des aimants est supposée massive et conductrice. Le rotor, en fer massif,

est constitué de 2p pôles et le stator est une culasse massive conductrice non encochée faite

en SMC (cf. Fig. 2.1(a)).

Pour résoudre l’équation générale du champ et calculer le champ électromagnétique, on

définit un domaine d’étude bidimensionnel représentant la structure de la machine où le

calcul sera effectué. Ce domaine d’étude est constitué de 5 zones élémentaires d’épaisseurs

constantes correspondant respectivement aux aimants, à la frette, à l’entrefer mécanique, au

bobinage et à la culasse du stator. La zone du rotor n’est pas prise en compte car sa

perméabilité est considérée infinie. La figure 2.1(b) représente les différentes zones du

domaine d’étude considéré avec leurs perméabilités, leurs conductivités et leurs rayons

respectifs.

Pour effectuer la modélisation électromagnétique de la machine, le domaine d’étude est

muni par deux référentiels représentés dans la figure 2.2 :

• Un référentiel stationnaire lié au stator ( ), ,sr zθ

dont l’axe d’origine est confondu

avec l’axe de la phase a du bobinage.

• Un référentiel tournant lié au rotor ( ), ,rr zθ

dont l’axe d’origine est positionné sur

l’axe de symétrie du pôle nord.

Page 70: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 48

Zone V

Culasse du stator (µ=µ0µrs, σ=σS)

Bobinage (µ=µ0, σ=0)

Aimants (µ=µ0µrm, σ=0)

Zone III

Zone IV

Zone I

Entrefer (µ=µ0, σ=0)

Culasse du rotor (µ=∞, σ=0)

Zone IIFrette conductrice (µ=µ0µrc, σ=σc)

r1=Rro

r2=Rm

r3=Rco

r4=Rb

r5=Rsi

r6=Rso

(a)

(b)

Figure 2.1 : (a) Structure de la machine considérée et (b) définition des différentes zones de son

domaine d’étude

Les coordonnées statoriques θs et rotoriques θr sont reliées par l’équation (2.1) en

introduisant l’angle de la position instantanée du rotor qui correspond au décalage

instantané entres les deux référentiels.

s rθ θ θ= + (2.1)

Comme le rotor tourne au synchronisme par rapport au stator à une vitesse mécanique Ω,

cette équation devient comme suit :

.s r otθ θ θ= + Ω + (2.2)

Page 71: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 49

Où θo représente l’angle de décalage initial entre les deux référentiels défini à l’instant t=0.

Le calage entre le stator et le rotor de la machine peut être réalisé à partir de cet angle θo.

Cependant, dans la suite de cette thèse, nous considérons que θo=0 et nous réalisons le

calage de la machine par la phase à l’origine des courants au stator. Cette origine est définie

pour l’instant t=0 quand les axes des deux repères sont alignés.

Phase a

r

θ

r

θs

θr

Sud

NordAxe au stator

Axe au rotor

Figure 2.2 : Représentation des deux référentiels de la machine

La machine sans encoches présentée dans ce chapitre pour décrire l’approche de la

modélisation électromagnétique a été choisie car elle présente une structure généralisée.

Le modèle électromagnétique de cette machine est développé en supposant qu’elle

fonctionne en moteur. Ce modèle peut être utilisé pour développer les modèles des autres

structures des machines sans encoches considérées dans cette thèse que ce soit pour le

fonctionnement en moteur ou en générateur. Pour effectuer cette tâche, il suffit de réaliser

les modifications suivantes dans le modèle général :

• Machines avec des frettes non conductrices : on annule la conductivité du matériau

de la frette ;

• Machines avec des stators en fer laminé : on annule la conductivité de la culasse du

stator et on modifie sa perméabilité ;

Page 72: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 50

• Machines avec des rotors externes : on inverse tout simplement l’ordre des rayons

de chaque zone constitutive de la machine et on adapte les signes des couples et des

pertes par courants de Foucault (suivant les conventions adoptées) ;

• Machines en fonctionnement générateur : on décale la phase à l’origine des courants

au stator par un angle π pour une convention générateur.

On note que cette démarche doit être appliquée tout au long des chapitres 3, 4 et 5 de la

thèse pour calculer les pertes et établir les modèles de dimensionnement de ces différentes

machines.

En pratique, nous avons constaté que la simulation du modèle général de la machine avec

un stator en SMC et une frette conductrice est caractérisée par un temps de calcul plus

important. Cela peut être pénalisant lors de son utilisation dans le cadre d’une démarche

d’optimisation. Pour cela, nous avons développé séparément les modèles

électromagnétiques pour les machines dont la frette est amagnétique non conductrice en

considérant que la perméabilité de cette dernière est égale à celle de l’entrefer µ0. Cela nous

a permis de réduire le nombre des zones constitutives de chaque machine, de diminuer le

nombre des équations et d’accélérer la simulation des modèles électromagnétiques de ces

types de machines.

2.3 Équation générale du champ électromagnétique en magnétodynamique

Dans une machine électrique comportant des parties massives électriquement conductrices,

on remarque la présence du phénomène d’induction des courants de Foucault par la

variation du champ électromagnétique à l’intérieur de ces parties. Cette variation est due

essentiellement à la variation des courants d’alimentation et/ou au mouvement des pièces

conductrices par rapport aux sources des champs (aimants ou courants). Par conséquent, la

modélisation électromagnétique d’une telle machine nécessite la résolution des équations

du champ en magnétodynamique en tenant compte de la contribution des courants induits et

du mouvement.

Page 73: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 51

Les équations du champ sont obtenues à partir des équations de Maxwell qui décrivent

l’évolution des différentes grandeurs électromagnétiques. Avec la présence des pièces

conductrices et du mouvement, ces équations doivent être adaptées pour la

magnétodynamique dépendamment du référentiel d’étude choisi. Ce dernier est lié à une

partie du domaine d’étude qui peut être mobile ou immobile par rapport à une autre partie

conductrice.

Dans cette partie de ce chapitre, nous présentons le développement de l’équation générale

du champ en magnétodynamique utilisée pour le calcul analytique du champ dans les

différentes machines. Elle est basée sur une formulation en potentiel vecteur magnétique et

sa résolution nécessite l’introduction des conditions aux limites (conditions aux frontières

et conditions de séparation des milieux). Les références [26] et [94] donnent plus de détails

sur le développement de cette équation.

2.3.1 Équations de Maxwell

Les équations de Maxwell permettent de définir la distribution du champ électromagnétique

dans un dispositif électromagnétique. Dans un référentiel lié au domaine d’étude et en se

plaçant dans le cadre de l’approximation des états quasi-stationnaires (les charges et les

courants de déplacement sont négligés), les équations de Maxwell sont [108], [109] :

( )rott

∂= −

∂BE

(2.3)

( )rot =H J

(2.4)

( ) 0div =B

(2.5)

( ) 0div =J

(2.6)

où H

, E

, B

et J

désignent respectivement le champ magnétique, le champ électrique, la

densité du champ magnétique et la densité de courant.

Ces équations générales sont complétées par les relations qui caractérisent le milieu

considéré (aimants, fer, air,…) dont le matériau est supposé linéaire et isotrope :

Page 74: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 52

µ= +B H M

(2.7)

( )σ σ= + = +ext extJ E E E J

(2.8)

où σ et µ représentent respectivement la conductivité et la perméabilité du matériau du

milieu considéré (par exemple : µ=µ0µrm pour les aimants et µ=µ0 pour l’air). extJ

, extE

et

M

sont respectivement la densité de courant imposé de l’extérieur du domaine d’étude, le

champ électrique correspondant et l’induction rémanente (ou aimantation) des aimants

permanents.

2.3.2 Considération du mouvement

Le choix du référentiel est très important pour exprimer les équations de Maxwell. Ces

dernières changent selon la présence des pièces conductrices en mouvement par rapport au

référentiel d’étude choisi en introduisant le principe de la relativité. Si par exemple, une

partie conductrice est en mouvement avec une vitesse mécanique V

par rapport au

référentiel choisi lié à une autre partie, il faut alors ajouter un autre terme à l’équation (2.8).

Ce terme caractérise l’induction des courants de Foucault par le mouvement de la pièce

conductrice par rapport au référentiel d’étude où les sources de champ sont exprimées [94],

[108] :

( )σ σ= + + ×extJ E J V B

(2.9)

2.3.3 Équation générale en termes de potentiel vecteur

L’utilisation du potentiel vecteur magnétique A

dans la formulation des équations du

champ est très avantageuse. Elle permet de réduire le nombre des variables et de faciliter la

résolution en 2D. À partir de l’équation (2.5) de la divergence de l’induction, on définit le

potentiel vecteur comme suit :

( )rot=B A

(2.10)

En remplaçant cette équation dans l’expression de la loi de Faraday (2.3), on obtient :

Page 75: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 53

( )rot rott

∂= − ∂

AE

(2.11)

C’est-à-dire :

( )gradt

ζ∂= − −

∂AE

(2.12)

Où ζ est le potentiel scalaire électrique.

À partir des équations (2.4), (2.6), (2.7), (2.9) et (2.12), et en éliminant les grandeurs H

et

J

, on trouve les équations du champ suivantes :

( ) ( ) ( )

rotrot rot grad

tσ σ ζ

µ

− ∂ = − − × + − ∂ ext

A M A V A J

(2.13)

( )( ) ( )div grad div rott

σ ζ σ σ ∂

= × − + ∂ ext

AV A J

(2.14)

La résolution de ces deux équations permet de calculer le champ électromagnétique.

Cependant, cette résolution n’assure pas l’unicité de la solution (couple A

et ζ). Pour

obtenir une solution unique, il faut imposer une valeur à la divergence de A

.

Généralement, on impose une divergence nulle. Dans ce cas, cette condition constitue ce

qu’on appelle la «Jauge de Coulomb» qui est exprimée comme suit [94], [108] :

( ) 0div =A

(2.15)

Si le modèle est considéré bidimensionnel (2D), le potentiel vecteur A

aura une seule

composante et sa divergence devient automatiquement nulle. Le potentiel scalaire

électrique n’intervient que dans les régions conductrices où son gradient est nul. Il est

invariant suivant la troisième dimension et peut être choisi comme étant nul (ζ=0). Cela

signifie que les régions conductrices sont connexes et court-circuitées à l’infini [94].

Page 76: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 54

Si la saturation des matériaux magnétiques est négligée, la simplification de l’équation

(2.13) nous permet d’écrire l’expression suivante en remplaçant la densité du courant

externe extJ

par la densité des courants dans le bobinage du stator sJ

:

( )( ) ( ) ( )rot rot rot rott

µ σµ ∂

= − − × + ∂ s

AA J V A M

(2.16)

Puisque la divergence du potentiel vecteur A

est nulle, l’équation (2.16) nous permet de

trouver la forme générale de l’équation du champ électromagnétique qui tient compte de la

réaction des courants induits :

( ) ( )2 rot rott

µ σµ ∂

∇ = − + − × − ∂ s

AA J V A M

(2.17)

En utilisant l’hypothèse de 2D et en se plaçant dans un système de coordonnées

cylindriques, le potentiel vecteur A

a une seule composante suivant la direction axiale (z) :

( ) ( ), , .r A r zθ θ=A

(2.18)

Cependant, l’induction et le vecteur d’aimantation des aimants permanents sont contenus

dans le plan 2D perpendiculaire à la direction axiale avec des composantes radiales et

tangentielles. Ils sont définis par les relations suivantes en tenant compte des hypothèses

simplificatrices :

( ) ( ) ( ), , . , .rr B r r B rθθ θ θ θ= +B

(2.19)

( ) ( ) ( ), , . , .rr M r r M rθθ θ θ θ= +M

(2.20)

À partir de ces définitions, l’équation générale du champ (2.17) est simplifiée sous la forme

suivante en considérant un mouvement de rotation :

2 2

2 2 2

1 1 1 rs r

M MMA A A A AJr r r r t r r r

θ θµ µσθ θ θ

∂∂∂ ∂ ∂ ∂ ∂ + + = − + + Ω + − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ (2.21)

où Ωr est la vitesse de rotation de la pièce conductrice considérée par rapport au référentiel

d’étude.

Page 77: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 55

Nous avons, à présent, développé l’équation générale du champ qui est utilisée pour

calculer le champ électromagnétique dans les structures des machines sans encoches. Pour

résoudre cette équation, l’introduction des conditions aux limites est nécessaire.

2.3.4 Conditions aux limites

Les conditions aux limites permettent de calculer les constantes des expressions des

potentiels vecteurs établies dans chaque zone constitutive de la machine. Deux types de

conditions aux limites peuvent être distingués :

• Conditions aux frontières du domaine d’étude de type «Dirichlet» : ( ), 0A r θ = ou de

type «Newman» : ( ), / 0A r rθ∂ ∂ = ;

• Conditions aux limites de séparation des milieux.

Dans un référentiel d’étude fixe, on distingue deux types de conditions aux limites de

séparation entre deux milieux (i) et (i+1) [5], [94] :

• Condition de continuité du flux magnétique

Il s’agit de la conservation du flux ou de la composante normale de l’induction magnétique

lors du passage du milieu (i) au milieu (i+1). Si la limite de séparation est repérée par le

rayon ro et si le vecteur unitaire n normal à cette limite est orienté du milieu (i) vers le

milieu (i+1), cette condition s’écrit sous la forme suivante :

( )( 1) ( ). 0i in + − =B B

(2.22)

Cette condition peut être réécrite comme suit :

( ) ( )( 1) ( ), ,o o

i ir rr r r r

B r B rθ θ+

= == (2.23)

• Condition de continuité d’Ampère

Cette condition représente la continuité de la composante tangentielle du champ

magnétique H

entre les deux milieux en l’absence d’une densité surfacique de courant

K(θ) localisée à la surface de séparation :

Page 78: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 56

( ) ( )( 1) ( )i in K θ+× − =H H

(2.24)

Cette équation est simplifiée sous la forme suivante :

( ) ( ) ( )( 1) ( ), ,o o

i i

r r r rH r H r Kθ θθ θ θ+

= =− = (2.25)

2.4 Modélisation des sources du champ électromagnétique

Cette partie décrit la modélisation des sources de champ dues aux aimants permanents et

aux courants statoriques qui circulent dans le bobinage de la machine. Ces sources sont

formulées sous forme de séries de Fourier en fonction des harmoniques d’espace (k) et de

temps (h) afin de résoudre l’équation du champ et de calculer séparément la contribution de

chaque harmonique dans le champ.

2.4.1 Modélisation du terme source dû aux aimants

2.4.1.1 Formes des aimants considérés

Dans plusieurs publications telles que [5], [9], [97] et [98], les pôles lisses des machines à

aimants permanents sont généralement considérés par des formes et des vecteurs

d’aimantation préétablis. Comme il a été mentionné dans le chapitre 1, nous utilisons dans

cette thèse une représentation générale du vecteur d’aimantation, tel que proposé dans la

référence [92], et qui permet de représenter des aimants avec des aimantations radiales,

parallèles ou de type Halbach. Les aimants de type Halbach permettent d’avoir une

induction plus sinusoïdale dans l’entrefer.

Pour cela, on considère que le rotor de la machine sans encoches possède 2p pôles

identiques et symétriques par rapport à leurs axes. Chaque pôle est constitué de 2q blocs

d’aimants élémentaires aimantés soit radialement ou parallèlement avec une certaine

direction bien définie. Tous les blocs d’aimants ont la même épaisseur et leurs intensités

d’aimantation sont considérées constantes. La figure 2.3(a) illustre la structure générale

d’un pôle de la machine. Dans un objectif de modélisation, chaque bloc d’aimant d’indice n

est caractérisé par les paramètres suivants :

Page 79: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 57

• Mn désigne l’intensité de l’aimantation du bloc ;

• εm,n est l’angle correspondant à la largeur angulaire du bloc ;

• βm,n est l’angle de repérage du bloc par rapport à l’axe de symétrie du pôle ;

• αm,n représente l’angle définissant la direction du vecteur d’aimantation du bloc par

rapport à son axe de symétrie pour une aimantation de type parallèle.

βm,n

εm,n αm,n

π/2p

θr Bloc à aimantation radiale

Bloc à aimantation parallèle

Mn

θrπ/2p

π/p

Mr

θrπ/2p π/p

(a) (b)

Figure 2.3 : (a) Structure générale d’un pôle de la machine et (b) distribution spatiale des composantes radiale et tangentielle du vecteur d’aimantation

2.4.1.2 Modélisation de la distribution du vecteur d’aimantation

Le vecteur d’aimantation des aimants permanents est indépendant de la direction radiale.

Cependant, les distributions de ses composantes radiale Mr(θr) et tangentielle Mθ(θr) dans

l’espace sont dépendantes de la coordonnée angulaire et peuvent présenter des

discontinuités. Dans le référentiel lié au rotor, la figure 2.3(b) présente la forme de ces deux

composantes correspondant à la structure générale du pôle présentée dans la figure 2.3(a).

Pour déterminer les composantes radiale et tangentielle du vecteur d’aimantation, on utilise

celles d’un bloc d’aimant élémentaire n définies par les relations suivantes :

Page 80: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 58

• Pour un bloc aimanté radialement :

( )( ) 0

r r n

r

M M

θ

θ

=

= (2.26)

• Pour un bloc aimanté parallèlement :

( )( )( )( )

, ,

, ,

( ) .cos

( ) .sin

r r n m n r m n

r n m n r m n

M M

M Mθ

θ α θ β

θ α θ β

= − −

= − −

(2.27)

En utilisant ces deux relations, on peut modéliser les composantes Mr(θr) et Mθ(θr) du

vecteur d’aimantation par un développement en séries de Fourier spatiales avec un

fondamental (k=1) et des harmoniques d’espace (k≥2). Puisque la structure du rotor est

périodique de période 2π/p et anti-périodique, la décomposition en séries de Fourier ne fait

intervenir que les harmoniques de rangs impairs. Dans le référentiel rotorique, cette

décomposition s’écrit sous la forme réelle suivante :

( ) ( )

( ) ( )

,1,3,5,...

,1,3,5,...

cos

sin

r r r k rk

r k rk

M M kp

M M kpθ θ

θ θ

θ θ

=

=

=

=

∑ (2.28)

Les coefficients de Fourier Mr,k et Mθ,k sont calculés à partir des paramètres caractéristiques

des blocs d’aimants élémentaires et de leur nombre q sur un demi-pôle. Les expressions

permettant de calculer ces coefficients sont données à l’annexe A.1.

Sous forme de séries de Fourier complexes, les composantes radiale Mr(θr) et tangentielle

Mθ(θr) sont exprimées comme suit :

( )

( )

,

,

r

r

jkpr r r k

k

jkpr k

k

M M e

M M e

θ

θθ θ

θ

θ

=−∞

=−∞

=

=

∑ (2.29)

où les coefficients de Fourier complexes sont définis par :

Page 81: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 59

,,

,,

2

2

r kr k

kk

MM

MM

θ

=

=

(2.30)

Normalement, les fonctions Mr(θr) et Mθ(θr) sont réelles. Dans ce cas, les coefficients de

Fourier réels et complexes doivent vérifier les relations suivantes :

, ,

, ,

r k r k

k k

M MM Mθ θ

= = −

et *

, ,

*, ,

r k r k

k k

M M

M Mθ θ

=

= (2.31)

2.4.2 Modélisation du terme source dû aux courants au stator

Une modélisation généralisée est proposée ici pour la densité des courants en tout point de

la zone du bobinage du stator. Cette densité représente une des sources du champ

magnétique dans la machine. Pour établir cette modélisation, nous devons tout d’abord

modéliser la distribution spatiale des conducteurs des enroulements au stator pour tenir

compte des harmoniques d’espace, et définir ensuite les formes d’ondes des courants

d’alimentation en considérant les harmoniques de temps. La considération des harmoniques

de temps et d’espace est très importante puisqu’ils ont une grande influence sur les

performances de la machine. Ils contribuent à la génération des pertes que ce soit au niveau

du stator ou du rotor (dans les aimants et dans la frette s’ils sont conducteurs). Ils

contribuent aussi à l’ondulation du couple et aux inductances de la machine. Nous notons

que la modélisation proposée ici est effectuée en considérant un bobinage triphasé constitué

de trois enroulements équilibrés et symétriques avec un nombre entier d’encoches par pôle

par phase.

2.4.2.1 Densité de la répartition spatiale des conducteurs

La description de la répartition spatiale d’un enroulement peut être réalisée à l’aide de la

densité surfacique C de ses conducteurs (nombre de conducteurs par mètre carré). Pour

calculer cette densité, nous considérons que la zone du bobinage a une épaisseur radiale

finie et que les conducteurs sont uniformément répartis sur cette épaisseur tel qu’il a été

proposé dans les références [26], [92] et [93]. Dans ce cas, la densité C ne dépend que de la

variable angulaire θs et son signe nous renseigne sur le sens du bobinage (conducteurs

Page 82: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 60

«aller» ou «retour»). Il existe des références (comme par exemple [110]) qui proposent

d’utiliser une densité linéique des conducteurs (conducteurs par mètre) au lieu d’une

densité surfacique en négligeant l’épaisseur de la zone du bobinage. Contrairement à notre

modélisation, cette représentation ne tient pas compte efficacement de la répartition radiale

des conducteurs et conduit à une diminution au niveau de la précision du calcul.

Si le bobinage est constitué de m phases (dans notre cas m=3), la connaissance de la densité

de conducteurs Ca(θs) de la phase a est suffisante pour définir les densités des autres

phases. Il suffit donc d’introduire une rotation d’un angle électrique 2π/m. Pour la phase υ

(υ =1, 2 ou 3 correspond à la phase a, b ou c), la densité se calcule à partir de :

( ) ( )1 2s a sC C

p mυ

υ πθ θ−

= −

(2.32)

Deux méthodes peuvent être utilisées pour déterminer cette densité. La première méthode

se base sur une décomposition directe en séries de Fourier de la distribution spatiale des

conducteurs [92], et la deuxième méthode introduit les facteurs de bobinage [111].

• Première méthode : décomposition directe en séries de Fourier

Pour tenir compte des bobinages à pas diamétral et à pas raccourci, on suppose que

l’enroulement d’une phase est constitué d’une répartition de plusieurs sous-groupes de

conducteurs (équivalents aux conducteurs dans une encoche) repérés par un angle βs,n+π/2p

par rapport à l’axe de symétrie de la phase. Chaque sous-groupe a une densité de

conducteurs dn uniforme, qui dépend du nombre de spires par phase Nsp et de la surface de

l’encoche occupée par les conducteurs, et une largeur angulaire εs,n. La figure 2.4 présente

cette configuration ainsi que la densité de conducteurs correspondante pour la phase a.

Dans le référentiel statorique et compte tenu de la symétrie, la décomposition en séries de

Fourier de la densité de conducteurs ne fait intervenir que les termes de rangs impairs. Pour

la phase a, cette décomposition est :

( ) ( )1,3,5,...

sina s k sk

C kpθ δ θ+∞

=

= ∑

(2.33)

Page 83: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 61

Les coefficients de Fourier sont déterminés en tenant compte des caractéristiques du

bobinage de la figure 2.4. Ils sont exprimés par :

( ),,

1

8 sin sin cos2 2

gs n

k n s nn

k d kp kpk

επδ βπ =

=

(2.34)

où g est le nombre de sous-groupes de conducteurs sous un demi-pôle.

Sous forme de séries de Fourier complexes, la densité de conducteurs pour la phase υ est

donnée par :

( )( )21

esjk p

ms k

kC

πθ υ

υ θ δ +∞ − −

=−∞= ∑ (2.35)

où :

2

kk j

δδ =

(2.36)

Étant donné que la densité Cυ(θs) est réelle, les coefficients de Fourier réels et complexes

doivent respecter les conditions suivantes :

*

k k

k k

δ δ

δ δ−

=

= −

(2.37)

βs,n

εs,n π/2p

θs

Axe de la phase aSous-groupe

de conducteurs

π/p

dn

θsπ/p 2π/p

Ca

π/2p

(a) (b)

Figure 2.4 : (a) Répartition généralisée des conducteurs de l’enroulement de la phase a et (b) densité de conducteurs correspondante

Page 84: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 62

• Deuxième méthode : approche par facteurs de bobinage

Cette méthode est basée sur l’utilisation d’une fonction de distribution du bobinage D(θs)

calculée à partir des facteurs de bobinage pour chaque harmonique d’espace de rang k.

Cette fonction exprime le nombre de conducteurs par radian. Elle a été introduite par

Slemon dans la référence [111] et reprise dans la référence [5] pour les machines avec

encoches et dans les références [26] et [93] pour les machines sans encoches.

Pour la phase a, la fonction de distribution du bobinage peut être formulée sous forme de

séries de Fourier en tenant compte de la symétrie des enroulements :

( ) ( )1,3,5,...

sin2

ka s s

k

ND kpθ θ+∞

=

= ∑ (2.38)

où Nk est le nombre de spires correspondant à l’harmonique d’espace de rang k. Il se calcule

par l’expression suivante :

,4 sin

2k w k spkN k N π

π =

(2.39)

kw,k est le facteur de bobinage pour l’harmonique d’espace de rang k. Ce facteur est calculé

comme le produit du facteur de distribution, du facteur de raccourcissement, du facteur

d’encochage et du facteur d’inclinaison. Ce dernier facteur est considéré quand les

encoches du stator sont inclinées par rapport au rotor dans les machines avec encoches afin

de réduire le couple de détente. Les expressions de ces différents facteurs sont données

dans l’annexe A.2.

À partir de la fonction de distribution du bobinage Dυ(θs) pour la phase υ, nous pouvons

calculer la densité de conducteurs Cυ(θs) par :

( ) ( )0

ss

b b

DC

h rυ

υ

θθ = (2.40)

Où r0b et hb représentent respectivement le rayon au milieu du bobinage et son épaisseur.

Page 85: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 63

Cette approche de modélisation nous permet d’avoir une idée sur les amplitudes des

harmoniques des différentes grandeurs électromagnétiques (flux, fem, FMM) en vérifiant

directement les facteurs de bobinage.

2.4.2.2 Formes d’ondes des courants statoriques

Pour calculer la densité des courants en tout point de la zone du bobinage, il faut faire

intervenir les courants alimentant les phases de la machine. Les formes d’ondes de ces

courants dépendent du type de convertisseur statique utilisé. Ce convertisseur peut être soit

à commutation de tension ou à commutation de courant. Ces convertisseurs génèrent des

courants non sinusoïdaux avec des harmoniques de temps (h) dont il faut tenir compte.

En supposant que les courants forment un système triphasé équilibré de régime permanent,

la décomposition en séries de Fourier de leurs formes d’ondes ne fait intervenir que les

harmoniques de temps de rangs impairs où 6 1h h′= ± et h’ est un entier. Cela signifie que

les composantes harmoniques de rangs pairs ainsi que celles d’ordre 3 sont nulles. Sous une

forme réelle, cette décomposition vaut :

( ) ( )

( )

( )

1,5,7,11,...

1,5,7,11,...

1,5,7,11,...

sin

2sin3

4sin3

a h hh

b h hh

c h hh

i t I h t

i t I h t

i t I h t

ω ϕ

πω ϕ

πω ϕ

=

=

=

= −

= − − = − −

(2.41)

où hI et ϕh désignent respectivement l’amplitude et l’angle à l’origine (dans le repère du

stator) de l’harmonique de courant de rang h. ω est la pulsation angulaire au stator reliée à

la vitesse de rotation Ω par : ω=Ω/p.

Dans une représentation complexe de la série de Fourier, le courant dans la phase υ est :

( )( )21jh t

mh

hi t I e

πω υ

υ

+∞ − −

=−∞= ∑ avec :

2hjh

hII e

jϕ−=

(2.42)

Page 86: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 64

Étant donné que les courants sont réels, les paramètres hI et ϕh vérifient les conditions

suivantes :

*h h

h h

h h

I I

I Iϕ ϕ

=

= − = −

(2.43)

2.4.2.3 Densité des courants du bobinage au stator

La connaissance de la répartition spatiale des conducteurs et de la forme d’ondes des

courants permet de déterminer la densité de courant dans la zone du bobinage pour chaque

phase. Cette densité est définie comme le produit de la densité de conducteurs par le

courant. Pour la phase a par exemple, elle s’écrit :

( ) ( ) ( ), .a s a s aJ t C i tθ θ= (2.44)

La densité totale de courant Js résultant de la contribution de toutes les phases de la

machine est calculée comme la somme des densités des m phases :

( ) ( ) ( ) ( )1 1

, , .m m

s s s sJ t J t C i tυ υ υυ υ

θ θ θ= =

= =∑ ∑ (2.45)

En substituant dans cette équation les expressions (2.35) et (2.42), la densité de courant

totale dues aux trois phases (m=3) de la machine s’écrit comme suit :

( )( ) ( ) ( )

2 43 3, 1

2 2s h

j k h j k h j kp h tk hs s

k h

IJ t e e ej j

π πθ ω ϕδθ

+∞ +∞ − + − + + −

=−∞ =−∞

= + +

∑ ∑

(2.46)

Après simplification, nous trouvons l’équation suivante sous une forme complexe :

( )( ). 3 ,3 si

, et 3 ,40 ailleurs

s hj kp hp tk h

s s k h

k h l lI e

J t k k kθ ϕδ

θ

+∞ +∞+ Ω −

=−∞ =−∞

+ = ∈− ′ ′= ≠ ∈

∑ ∑

(2.47)

L’expression de la densité de courant peut être également exprimée dans le référentiel lié au

rotor. Pour cela, il suffit d’utiliser l’équation (2.2) permettant le changement du référentiel.

Dans ce cas, nous trouvons l’expression suivante :

Page 87: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 65

( )( )( ). 3 ,3 si

, et 3 ,40 ailleurs

r hj kp k h p tk h

s r k h

k h l lI e

J t k k kθ ϕδ

θ

+∞ +∞+ + Ω −

=−∞ =−∞

+ = ∈− ′ ′= ≠ ∈

∑ ∑

(2.48)

Le développement de l’équation (2.47), en changeant les rangs négatifs (k<0, h<0) par des

rangs positifs, permet de présenter la densité de courant Js sous une forme réelle :

( )

( )

( )

1 1

1 1

3 cos . si 6 ,2

, 0 si 3 ,

3 cos . si 6 ,2

k h s hk h

s s

k h s hk h

I kp hp t k h l l

J t k k k

I kp hp t k h l l

δ θ ϕ

θ

δ θ ϕ

+∞ +∞

= =

+∞ +∞

= =

− Ω + − = ∈

′ ′= = ∈ − + Ω − + = ∈

∑∑

∑∑

(2.49)

La densité totale de courant ne contient que les harmoniques de temps (h) et d’espace (k)

qui vérifient les relations : 6 1h h′= ± et 6 1k k′= ± où k’ et h’ sont des entiers. Ainsi, les

trois conditions utilisées dans l’équation (2.49) ont les significations suivantes :

• La condition 6 ,k h l l− = ∈ est réalisée si [(k=1, 7, 13,…) & (h=1, 7, 13, …)] ou

[(k=5, 11, 17,…) & (h=5, 11, 17,…)] ;

• La condition 3 ,k k k′ ′= ∈ signifie que les harmoniques d’espace d’ordre 3 ne

contribuent pas à la densité de courant ;

• La condition 6 ,k h l l+ = ∈ est remplie si [(k=1, 7, 13,…) & (h=5, 11, 17,…)] ou

[(k=5, 11, 17,…) & (h=1, 7, 13,…)].

À partir de l’équation (2.49), nous remarquons que la densité totale de courant produit une

force magnétomotrice tournante (champ tournant) dans le stator de la machine avec un

fondamental et des harmoniques. Les harmoniques de la FMM tournent dans le même sens

que le fondamental avec une vitesse angulaire égale à /h kΩ lorsque la première condition

est réalisée. Cependant, ils tournent dans le sens opposé avec une vitesse angulaire de

/h k− Ω quand la troisième condition est effective.

La FMM dans le stator peut être déduite directement de l’intégrale de l’expression de la

densité de courant :

Page 88: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 66

( ) ( )0, . . , .s b b s s sFMM t h r J t dθ θ θ= ∫ (2.50)

La figure 2.5(a) montre un exemple de formes d’ondes des densités de courant produites

par chaque phase d’une machine triphasée, tandis que la figure 2.5(b) présente les formes

d’ondes de la densité totale de courant, de la FMM résultante et de son fondamental. Dans

cet exemple, nous avons considéré une machine sans encoches avec 2 pôles, 12 encoches,

un coefficient de raccourcissement de 5/6 et un coefficient d’ouverture des encoches (ke) de

0.5. Il faut noter que les amplitudes des courbes sont normalisées par rapport à 1.

Figure 2.5 : Formes d’ondes (a) des densités de courant des trois phases, (b) de la densité totale,

de la FMM et de son fondamental en fonction de l’angle statorique pour Ia=1 A et Ib=Ic=-0.5 A

Nous notons que toutes les grandeurs et caractéristiques électromagnétiques qui sont

calculées dans cette thèse et qui font intervenir les harmoniques de temps h et d’espace k de

la densité de courant au stator (comme le potentiel vecteur, l’inductance, le couple, les

0 30 60 90 120 150 180 210 240 270 300 330 360-1.5

-1

-0.5

0

0.5

1

1.5

Angle au stator [degré]

Phase aPhase bPhase c

(a)

0 30 60 90 120 150 180 210 240 270 300 330 360

-1

-0.5

0

0.5

1

Angle au stator [degré]

FMM

Fondamental de la FMM

Densité de courant

(b)

Page 89: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 67

pertes par courants Foucault,…) ne sont valables que si les conditions discutées

précédemment sont vérifiées (cf. équations (2.47) et (2.49)). Cependant, les grandeurs

électromagnétiques résultantes de la source de champ due aux aimants (comme le potentiel

vecteur à vide, le flux à vide et la fem) ne sont effectives que pour les harmoniques impairs

incluant ceux d’ordre 3. Dans la suite de ce chapitre et des chapitres suivants, les

expressions de ces grandeurs électromagnétiques seront exprimées sans mentionner ces

différentes conditions afin de simplifier leur écriture.

2.5 Calcul analytique du champ électromagnétique produit par les aimants

Après avoir établi l’équation générale du champ de la magnétodynamique et modélisé les

distributions des sources de champ dues aux aimants et aux courants statoriques, nous

pouvons à présent calculer analytiquement la distribution du champ dans la structure de la

machine. Dans cette partie, nous présentons le calcul du champ magnétique à vide produit

par les aimants en termes de potentiel vecteur mA

. Pour cela, nous appliquons tout d’abord

l’équation du champ dans chaque zone de la machine et nous résolvons, ensuite, les

équations obtenues en respectant les conditions aux limites. Ce calcul est effectué sous

forme de notation complexe en adoptant les hypothèses simplificatrices énumérées

précédemment et en considérant un référentiel d’étude lié au rotor. Le choix de ce

référentiel est motivé par la facilité qu’il procure lors la résolution de l’équation du champ.

Toutefois, le calcul peut être effectué d’une façon similaire dans le référentiel statorique en

transférant seulement la source du champ due aux aimants vers ce dernier.

2.5.1 Équations du champ appliquées pour le calcul du champ à vide

L’application de l’équation générale du champ (2.21) aux 5 zones de la machine (aimants,

frette, entrefer, bobinage et culasse du stator) (cf. Fig. 2.1) permet d’établir un système de 5

équations qui définissent la distribution du champ. En fonctionnement à vide, il y aura des

courants induits seulement dans la culasse du stator puisque la frette conductrice est fixée

au rotor. Cette culasse tourne à une vitesse Ωr =−Ω par rapport au référentiel d’étude choisi

Page 90: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 68

lié au rotor où Ω désigne la vitesse mécanique du rotor par rapport au stator. Nous avons

aussi :

• Js=0 car il n’y a pas de courants d’alimentation dans un fonctionnement à vide ;

• et 0mA t∂ ∂ = puisque la source du champ ( M

) n’est pas variable dans le temps

mais plutôt dans l’espace dans le référentiel d’étude choisi.

Dans ces conditions, l’équation du champ adaptée à la structure de la machine considérée

devient :

2 2

22 2 2

1 1 1m m m m rm

A A A A M MMAr r r r r r r

θ θµσθ θ θ

∂ ∂ ∂ ∂ ∂∂∇ = + + = − Ω + − −

∂ ∂ ∂ ∂ ∂ ∂ (2.51)

Comme les composantes radiale et tangentielle du vecteur d’aimantation ne dépendent pas

de la direction radiale (r), cette équation est simplifiée sous la forme suivante :

2 2

22 2 2

1 1 1m m m m rm

A A A A MA Mr r r r r θµσ

θ θ θ∂ ∂ ∂ ∂ ∂ ∇ = + + = − Ω + − ∂ ∂ ∂ ∂ ∂

(2.52)

Le tableau 2.1 résume les caractéristiques des cinq zones de la machine ainsi que les

différentes équations du champ obtenues après avoir appliqué l’équation (2.52) dans chaque

zone.

Zone Intervalle du rayon Conductivité Perméabilité Équation du champ

Aimants (i=1) 1 2r r r≤ ≤ 0σ = o rmµ µ 2 (1) 1 rm

MMAr r

θ

θ∂

∇ = −∂

Frette (i =2) 2 3r r r≤ ≤ cσ σ= o rcµ µ 2 (2) 0mA∇ =

Entrefer (i =3) 3 4r r r≤ ≤ 0σ = oµ 2 (3) 0mA∇ =

Bobinage (i =4) 4 5r r r≤ ≤ 0σ = oµ 2 (4) 0mA∇ =

Culasse du stator (i=5) 5 6r r r≤ ≤ sσ σ= o rsµ µ (5)

2 (5)0

mm rs s

AA µ µ σθ

∂∇ = − Ω

Tableau 2.1 : Caractéristiques des différentes zones du domaine d’étude de la machine et leurs équations du champ associées permettant le calcul du champ à vide

Page 91: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 69

2.5.2 Résolution des équations du champ

En utilisant la méthode de «séparation des variables» [112] pour résoudre les différentes

équations du champ établies dans le tableau 2.1, les expressions générales du potentiel

vecteur dans chaque zone de la structure de la machine peuvent être déterminées.

• Solution dans la zone d’aimants (zone 1)

L’équation du champ appliquée à cette zone a la forme d’une équation de Poisson :

2 (1) (1) 2 (1)

2 2 2

1 1 1m m m rA A A MMr r r r r r

θ

θ θ∂ ∂ ∂ ∂

+ + = −∂ ∂ ∂ ∂

(2.53)

La solution est décrite par la somme de la solution homogène de l’équation sans second

membre (équation de Laplace) et d’une solution particulière de l’équation avec second

membre. Sous forme de séries de Fourier complexes, la solution homogène s’écrit :

( )(1) (1) (1), , ,( , ) . rjkp

H m r m k m kk

A r A r B r e θα αθ+∞

=−∞

= +∑ , avec : k pα = (2.54)

où (1),m kA et (1)

,m kB sont des constantes complexes qui représentent les coefficients de la série

de Fourier du potentiel vecteur dans cette zone. Comme ce dernier est réel, les constantes

doivent satisfaire les conditions (1) (1) *, ,m k m kA A− = et (1) (1) *

, ,m k m kB B− = .

La solution particulière de l’équation de Poisson s’exprime comme suit :

(1), ( , ) ( ). rjkp

P m r kk

A r S r e θθ+∞

=−∞

= ∑ (2.55)

où la fonction ( )kS r traduit la contribution de chaque harmonique d’espace (k) contenu

dans la source du champ à vide due aux aimants. Elle s’exprime par :

, ,2

, ,

si 11( )

ln( ) si 12

r k k

kr k k

jkpM Mr k p

S rjkpM M

r r k p

θ

θ

αα

α

−= ≠ −=

− = =

(2.56)

À l’aide des solutions homogène et particulière, l’expression du potentiel vecteur dans la

zone d’aimants est déduite comme suit :

Page 92: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 70

( )(1) (1) (1), ,( , ) ( ) . rjkp

m r m k m k kk

A r A r B r S r e θα αθ+∞

=−∞

= + +∑ (2.57)

• Solutions dans la zone de la frette, d’entrefer et de bobinage (zone 2, 3 et 4)

À partir du tableau 2.1, nous remarquons que les équations du champ dans ces trois zones

(i=2, 3, 4) ont la forme d’une équation de Laplace :

2 ( ) ( ) 2 ( )

2 2 2

1 1 0i i i

m m mA A Ar r r r θ

∂ ∂ ∂+ + =

∂ ∂ ∂ (2.58)

La solution de chaque équation du champ a une forme similaire à la solution homogène

donnée par l’équation (2.54). Il vient alors :

( )( 2,3,4) ( ) ( ), ,( , ) . rjkpi i i

m r m k m kk

A r A r B r e θα αθ+∞

= −

=−∞

= +∑ (2.59)

où ( ) ( ) *, ,i i

m k m kA A− = , ( ) ( ) *, ,i i

m k m kB B− = .

• Solution dans la zone de la culasse du stator (zone 5)

Dans la zone de la culasse du stator, l’équation qui gouverne la distribution du champ

s’écrit sous forme d’une équation de diffusion. Elle tient compte de l’effet des courants de

Foucault induits dans le matériau SMC par son second membre :

2 (5) (5) 2 (5) (5)

02 2 2

1 1m m m mrs s

A A A Ar r r r

µ µ σθ θ

∂ ∂ ∂ ∂+ + = − Ω

∂ ∂ ∂ ∂ (2.60)

La méthode de séparation de variables permet d’écrire l’expression de la solution sous la

forme :

(5) (5),( , ) ( ). rjkp

m r m kk

A r R r e θθ+∞

=−∞

= ∑ (2.61)

Le remplacement de cette équation dans celle du champ (2.60) conduit à l’expression

suivante définie pour chaque harmonique d’espace de rang k :

( )2 (5) (5)

, ,2 2 2 2 (5), ,2

( ) ( )( ) 0m k m k

m k m k

R r R rr r r R r

r rτ α

∂ ∂+ − + =

∂ ∂ (2.62)

Page 93: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 71

La constante 2,m kτ introduite dans cette équation traduit l’influence de la profondeur de

pénétration du champ dans la culasse du stator (effet de peau) pour chaque harmonique

d’espace k. L’expression de cette constante ainsi que celle de la profondeur de pénétration

s’écrivent comme suit :

2 2, 0 2m k rs s kjkp jτ µ µ σ δ= − Ω = − (2.63)

0

2k

rs skpδ

µ µ σ=

Ω (2.64)

La solution de l’équation (2.62) fait intervenir les fonctions de Bessel modifiées de

première espèce Iα et de deuxième espèce Kα d’ordre α=kp. Il vient alors :

(5) (5) (5), , , , ,( ) ( ) ( )m k m k m k m k m kR r A I r B K rα ατ τ= + (2.65)

où (5) (5) *, ,m k m kA A− = , (5) (5) *

, ,m k m kB B− = et (5) (5) *, ,m k m kR R− = puisque le potentiel vecteur est réel.

Ainsi, l’expression finale du potentiel vecteur dans la zone de la culasse du stator s’écrit :

( )(5) (5) (5), , , ,( , ) ( ) ( ) . rjkp

m r m k m k m k m kk

A r A I r B K r e θα αθ τ τ

+∞

=−∞

= +∑ (2.66)

• Résumé des solutions dans les 5 zones de la machine

Les expressions obtenues après avoir résolu les équations du champ dans les 5 zones de la

machine sont résumées comme suit :

( )

( )

( )

(1) (1) (1), ,

( 2,3,4) ( ) ( ), ,

(5) (5) (5), , , ,

( , ) ( ) .

( , ) .

( , ) ( ) ( ) .

r

r

r

jkpm r m k m k k

k

jkpi i im r m k m k

k

jkpm r m k m k m k m k

k

A r A r B r S r e

A r A r B r e

A r A I r B K r e

θα α

θα α

θα α

θ

θ

θ τ τ

+∞−

=−∞

+∞= −

=−∞

+∞

=−∞

= + +

= +

= +

(2.67)

Page 94: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 72

Avec :

, ,2

, ,

si 11( )

ln( ) si 12

r k k

kr k k

jkpM Mr k p

S rjkpM M

r r k p

θ

θ

αα

α

−= ≠ −=

− = =

et 2, 0m k rs sjkpτ µ µ σ= − Ω

• Calcul des coefficients de Fourier du potentiel vecteur

Les équations du système (2.67) décrivent parfaitement la distribution du potentiel vecteur

dans les différentes régions du domaine d’étude. Ces équations font intervenir 10

constantes ( ),i

m kA et ( ),i

m kB qu’il faut déterminer afin de compléter la description du potentiel

vecteur. Pour ce faire, nous introduisons les relations supplémentaires qui traduisent les

conditions aux frontières externes du domaine d’étude de la machine et les conditions aux

limites internes de séparation des milieux données par les équations (2.23) et (2.25). Ces

conditions appliquées à notre domaine d’étude sont définies comme suit :

• À la frontière externe au niveau du rayon extérieur de la culasse du stator (r = r6), le

potentiel vecteur est supposé être nul, ce qui correspond à une condition de

Dirichlet ;

• Aux limites internes de séparation des milieux, il y a conservation des composantes

normales de l’induction et des composantes tangentielles du champ puisque aucune

densité surfacique de courant n’existe entre les milieux ;

• À la frontière externe au niveau de l’interface entre les aimants et la culasse du

rotor, la composante tangentielle du champ est annulée puisque la perméabilité du

rotor est supposée infinie.

En termes de potentiel vecteur, ces différentes conditions sont données par le système

d’équations suivant où i=1, 2, 3, 4 :

Page 95: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 73

1

1 1

1 1

6

(1)

( ) ( 1) ( 1)

1

( ) ( 1)

(5)

( , ) / ( ) 0

1 1( , ) / ( ) ( , ) /

( , ) / ( , ) /

( , ) 0

i i

i i

m r rr r

i i im r r m rr r r ri i

i im r m rr r r r

m r r r

A r r M

A r r M A r r

A r A r

A r

θ

θ

θ θ

θ θ θµ µ

θ θ θ θ

θ

+ +

+ +

=

= +

= =+

+

= =

=

∂ ∂ + = ∂ ∂ + = ∂ ∂ ∂ ∂ = ∂ ∂

=

(2.68)

L’introduction des expressions du potentiel vecteur (2.67) dans les équations (2.68) nous

permet d’obtenir deux systèmes linéaires de dix équations à dix inconnues chacun,

correspondants aux deux cas étudiés : α=kp≠1 et α=kp=1. La résolution de ces deux

systèmes permet de déterminer les 10 constantes ( ( ),i

m kA et ( ),i

m kB ) pour chaque harmonique

d’espace de rang k et d’établir ainsi les expressions finales des potentiels vecteurs. Dans

notre cas, cette résolution a été effectuée à l’aide du logiciel de calcul symbolique

Mathematica pour la machine considérée dans ce chapitre et pour les autres structures des

machines étudiées dans cette thèse.

2.5.3 Résultats du problème électromagnétique

Dans ce paragraphe, nous présentons le résultat du calcul du champ à vide en termes de

répartition de l’induction magnétique dans la structure de la machine et de la distribution de

la densité des courants de Foucault dans la culasse du stator. Les composantes radiales et

tangentielles de l’induction à vide dans chaque zone i peuvent être calculées à partir du

potentiel vecteur en utilisant les expressions suivantes :

( )( )

( )( )

( , )1( , )

( , )( , )

ii m r

r r

ii m r

r

A rB rr

A rB rrθ

θθθ

θθ

∂= ∂

∂ = − ∂

(2.69)

Les figures 2.6(a) et 2.6(b) présentent la distribution de ces deux composantes en fonction

de l’angle mécanique rotorique au centre de chaque zone de la machine (aimants, frette,

entrefer, bobinage et culasse du stator). Ces résultats sont donnés pour un moteur sans

encoches à aimants permanents à haute vitesse à rotor interne d’une puissance nominale de

500 W et une vitesse de 20000 rpm. Il s’agit en fait d’une machine avec une frette

Page 96: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 74

amagnétique non conductrice et un stator fait en matériau SMC dont la perméabilité est 200

et la conductivité est 3400 s/m. Le moteur comporte 2 pôles d’aimants de type NdFeB à

aimantation radiale et 6 encoches qui supportent un bobinage triphasé à pas diamétral. Les

principales caractéristiques et dimensions de cette machine sont données dans l’annexe B.1.

Nous notons que cette machine sera appelée MSE-1 tout au long de cette thèse puisqu’elle

est utilisée pour la validation du modèle de dimensionnement analytique. De plus, le

matériau SMC utilisé sera aussi appelé Mat-1.

Nous remarquons à partir des figures tracées que l’induction radiale diminue quand le

rayon augmente puisque la surface traversée par le flux augmente aussi. Un résultat

contraire est remarqué dans le cas d’une machine à rotor externe. Nous remarquons

également que l’induction dans la culasse du stator est due essentiellement à la composante

tangentielle et qu’elle est plus concentrée vers la surface interne de cette culasse. De plus,

l’induction dans l’entrefer est moins affectée par l’effet de la réaction des courants de

Foucault engendrés dans la culasse du stator. Cela est dû au fait que le matériau SMC

utilisé est moins conducteur. Cet effet devient de plus en plus visible lorsque la

conductivité du matériau augmente [95].

Figure 2.6 : Composantes (a) radiales et (b) tangentielles de l’induction à vide au milieu de chaque

zone de la machine à une vitesse de 20000 rpm

La densité des courants de Foucault dans la culasse du stator peut être aussi déterminée à

partir du potentiel vecteur exprimé dans cette zone en utilisant la formule suivante :

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1

Angle mécanique [rad]

Indu

ctio

n ra

dial

e [T

]

AimantsFretteEntreferBobinageCulasse stator

(a)

0 1 2 3 4 5 6-1.5

-1

-0.5

0

0.5

1

1.5

Angle mécanique [rad]

Indu

ctio

n ta

ngen

tielle

[T]

AimantsFretteEntreferBobinageCulasse stator

(b)

Page 97: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 75

(5) (5)

,( , ) ( , )( , ) m r m r

cs m r s r sA r A rJ r θ θθ σ σ

θ θ∂ ∂

= − Ω = Ω∂ ∂

(2.70)

Dans ce cas, nous trouvons :

( )2, (5) (5)

, , , , ,( , ) ( ) ( ) . rm k jkpcs m r m k m k m k m k

k o rs

J r A I r B K r e θα α

τθ τ τ

µ µ

+∞

=−∞

−= +

∑ (2.71)

La figure 2.7(a) illustre la distribution de la densité des courants de Foucault en fonction de

l’angle mécanique au rotor à différents rayons r dans la culasse du stator définis par r=(r5,

r5+eculs/4, r5+eculs/2, r6– eculs/4, r6) où eculs représente l’épaisseur de cette culasse. Cette

figure montre que la densité des courants de Foucault diminue et devient plus sinusoïdale

au fur et à mesure qu’on pénètre dans la culasse du stator en augmentant le rayon. En effet,

les harmoniques d’espace du champ ne pénètrent pas profondément dans la culasse du

stator puisqu’ils sont filtrés par l’effet de peau. Il est intéressant aussi de noter que les

harmoniques des courants de Foucault tournent à la même vitesse que celle du rotor et

contribuent à la diminution du couple.

La figure 2.7(b) présente la distribution de la densité des courants de Foucault en

considérant la même machine MSE-1, mais avec un autre matériau SMC plus conducteur

(appelé Mat-2) dont la conductivité est 50000 s/m et la perméabilité est 350. D’après cette

figure, nous constatons que les courants induits dans la culasse du stator deviennent plus

significatifs et se déphasent de plus en plus lorsque le rayon augmente.

Figure 2.7 : Densités des courants de Foucault dues aux aimants dans la culasse du stator à

différents rayons pour deux types de matériaux SMC : (a) moins conducteur (Mat-1) et (b) plus conducteur (Mat-2) à une vitesse de 20000 rpm

0 1 2 3 4 5 6-6

-4

-2

0

2

4

6 x 104

Angle mécanique [rad]

Den

sité

de

cour

ant [

A/m

2 ]

r=r5

r=r6

(a)

0 1 2 3 4 5 6-6

-4

-2

0

2

4

6x 105

Angle mécanique [rad]

Den

sité

de

cour

ant [

A/m

2 ]

r=r6

(b)

r=r5

Page 98: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 76

2.6 Calcul analytique du champ électromagnétique produit par les courants

Le champ de réaction d’induit produit par les courants d’alimentation au stator de la

machine peut être calculé en adoptant la même démarche utilisée lors du calcul du champ à

vide. Dans ce calcul, les aimants permanents ne sont pas pris en compte et seule la

contribution des courants statoriques est considérée. De plus, ce calcul est effectué en

termes de potentiel vecteur de réaction d’induit sA

en considérant le référentiel lié au rotor.

La résolution de l’équation générale du champ tient compte, d’une part, des harmoniques

de temps h et d’espace k de la FMM de réaction d’induit, et d’autre part, de la contribution

des courants de Foucault induits à la fois dans la culasse du stator et dans la frette

conductrice. Les courants de Foucault crées dans la culasse du stator sont dus à tous les

harmoniques du champ tournant au niveau du stator incluant le champ fondamental.

Cependant, ceux créés dans la frette sont induits seulement par les combinaisons des

harmoniques de temps et d’espace qui ne sont pas synchrones avec le rotor. Cela montre

l’importance du choix du référentiel du rotor pour résoudre l’équation du champ puisqu’il

permet de mettre en évidence les combinaisons d’harmoniques qui sont synchrones ou

asynchrones avec le rotor.

2.6.1 Équations du champ appliquées pour le calcul du champ de réaction d’induit

L’équation utilisée pour le calcul du champ magnétique produit par les courants

d’alimentation est déduite à partir de l’équation générale du champ (2.21) établie

précédemment. Pour trouver cette équation, nous adoptons les modifications suivantes :

• Les composantes du vecteur d’aimantation sont considérées nulles (Mr=Mθ=0),

puisque la contribution des aimants permanents est annulée ;

• Vu que le référentiel rotorique est choisi comme repère d’étude, la culasse

conductrice du stator tourne par rapport à ce référentiel à une vitesse Ωr égale à −Ω.

Considérant ces simplifications, l’équation du champ adoptée s’écrit sous la forme

suivante :

Page 99: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 77

2 2

22 2 2

1 1s s s s ss s

A A A A AA Jr r r r t

µ µσθ θ

∂ ∂ ∂ ∂ ∂ ∇ = + + = − + − Ω ∂ ∂ ∂ ∂ ∂ (2.72)

Pour déterminer les expressions du potentiel vecteur, il suffit d’appliquer cette équation

dans les 5 zones constitutives de la machine (cf. Fig. 2.1) et de résoudre les équations du

champ qui en découlent. Le tableau 2.2 présente les cinq régions de la machine avec leurs

perméabilités, leurs conductivités ainsi que les équations qui gouvernent le calcul du champ

dans chacune de ces régions.

Zone Intervalle du rayon Conductivité Perméabilité Équation du champ

Aimants (i=1) 1 2r r r≤ ≤ 0σ = o rmµ µ 2 (1) 0sA∇ =

Frette (i =2) 2 3r r r≤ ≤ cσ σ= o rcµ µ (2)

2 (2)0

ss rc c

AAt

µ µ σ∂

∇ = Ω∂

Entrefer (i =3) 3 4r r r≤ ≤ 0σ = oµ 2 (3) 0sA∇ =

Bobinage (i=4) 4 5r r r≤ ≤ 0σ = oµ 2 (4)0s sA Jµ∇ = −

Stator (i=5) 5 6r r r≤ ≤ sσ σ= o rsµ µ

(5) (5)2 (5)

0s s

s rs sA AA

tµ µ σ

θ ∂ ∂

∇ = − Ω ∂ ∂

Tableau 2.2 : Caractéristiques des différentes zones du domaine d’étude de la machine et leurs équations du champ associées permettant le calcul du champ de réaction d’induit

2.6.2 Résolution des équations du champ

En appliquant la même méthode de résolution utilisée dans le calcul du champ à vide, aux

équations du champ du tableau 2.2, nous pouvons déterminer facilement les expressions du

potentiel vecteur dans les 5 régions de la machine exprimées dans le référentiel rotorique.

Ces expressions font intervenir les harmoniques de temps h et d’espace k introduits par la

densité des courants circulant dans les enroulements du stator.

• Solution dans la zone d’aimants (zone 1)

La solution du potentiel vecteur dans cette zone est celle d’une équation de Laplace. Elle

dépend de la direction radiale r, de la position angulaire au rotor θr et du temps t :

Page 100: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 78

( ) ( )( ).(1) (1) (1), , , , ,( , , ) r hj kp k h p t

s r s k h s k h k hk h

A r t A r B r J e θ ϕα αθ+∞ +∞

+ + Ω −−

=−∞ =−∞

= +∑ ∑

(2.73)

Avec :

,34k h k hJ Iδ= −

et k pα = (2.74)

• Solution dans la zone de la frette (zone 2)

Le champ magnétique dans la frette est calculé à partir de l’équation de diffusion donnée

dans le tableau 2.2. Cette équation fait intervenir la densité des courants induits dans la

frette. Elle s’écrit comme suit :

2 (2) (2) 2 (2) (2)

02 2 2

1 1s s s src c

A A A Ar r r r t

µ µ σθ

∂ ∂ ∂ ∂+ + = Ω

∂ ∂ ∂ ∂ (2.75)

La solution à cette équation peut être exprimée sous la forme suivante en utilisant la

méthode de séparation des variables :

( )( ).(2) (2), , ,( , , ) ( ) r hj kp k h p t

s r s k h k hk h

A r t R r J e θ ϕθ+∞ +∞

+ + Ω −

=−∞ =−∞

= ∑ ∑

(2.76)

À partir de ces deux dernières équations, nous remarquons que les composantes de temps et

d’espace du potentiel vecteur vérifient l’équation :

( )2 (2) (2)

, , , ,2 2 2 2 (2), , , ,2

( ) ( )( ) 0s k h s k h

c k h s k h

R r R rr r r R r

r rτ α

∂ ∂+ − + =

∂ ∂ (2.77)

Avec :

( )2, , 0c k h rc cj k h pτ µ µ σ= + Ω (2.78)

L’interprétation physique de la constante 2, ,c k hτ est importante pour trouver les solutions de

l’équation (2.77). En effet, nous distinguons deux cas correspondant à deux solutions :

• Si 0k h+ = , la constante 2, ,c k hτ est nulle ( 2

, , 0c k hτ = ). Cela veut dire que les FMM

dues aux combinaisons des harmoniques de temps h et d’espace k, tels que k h= − ,

tournent à la même vitesse que la frette (synchrones) et n’induisent aucun courant

de Foucault dans cette dernière. Par contre, elles participent à la création du couple.

Page 101: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 79

Dans ce cas, la solution de l’équation du champ est celle d’une équation de

Laplace :

(2) (2) (2), , , , , ,( )s k h s k h s k hR r A r B rα α−= + (2.79)

• Si 0k h+ ≠ , la constante 2, ,c k hτ est non nulle. Cela signifie que les combinaisons des

harmoniques de temps et d’espace qui sont asynchrones avec le rotor participent,

d’une part, à la création des courants de Foucault dans la frette, et d’autre part, à

l’ondulation du couple. Avec cette condition, la solution est obtenue en introduisant

les fonctions de Bessel modifiées de première espèce Iα et de deuxième espèce Kα

d’ordre α :

(2) (2) (2), , , , , , , , , ,( ) ( ) ( )s k h s k h c k h s k h c k hR r A I r B K rα ατ τ= + (2.80)

Nous déduisons alors que :

(2) (2), , , , , , , ,(2)

, , (2) (2), , , ,

( ) ( ) si( )

sis k h c k h s k h c k h

s k hs k h s k h

A I r B K r k hR r

A r B r k hα α

α α

τ τ−

+ ≠ −= + = −

(2.81)

• Solutions dans la zone d’entrefer (zone 3)

La solution de l’équation du champ dans cette zone est semblable à celle de la zone des

aimants. Il vient alors :

( ) ( )( ).(3) (3) (3), , , , ,( , , ) r hj kp k h p t

s r s k h s k h k hk h

A r t A r B r J e θ ϕα αθ+∞ +∞

+ + Ω −−

=−∞ =−∞

= +∑ ∑

(2.82)

• Solutions dans la zone du bobinage (zone 4)

Le potentiel vecteur dans la zone du bobinage vérifie l’équation :

2 (4) (4) 2 (4)

02 2 2

1 1s s ss

A A A Jr r r r

µθ

∂ ∂ ∂+ + = −

∂ ∂ ∂ (2.83)

La solution générale de cette équation est composée d’une solution homogène et d’une

solution particulière. Elle vaut :

( ) ( )( ).(4) (4) (4), , , , , , ,( , , ) ( ) r hj kp k h p t

s r s k h s k h P k h k hk h

A r t A r B r R r J e θ ϕα αθ+∞ +∞

+ + Ω −−

=−∞ =−∞

= + +∑ ∑

(2.84)

Page 102: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 80

où la solution particulière vérifie :

( )2 20

, , 20

4 si 2( )

ln( ) 4 si 2P k h

r k pR r

r r k p

µ α α

µ α

− − = ≠= − = =

(2.85)

• Solution dans la zone de la culasse du stator (zone 5)

Dans cette zone, le champ est gouverné par l’équation suivante qui fait intervenir les

courants induits dans le matériau SMC de la culasse statorique :

2 (5) (5) 2 (5) (5) (5)

02 2 2

1 1s s s s srs s

A A A A Ar r r r t

µ µ σθ θ

∂ ∂ ∂ ∂ ∂+ + = − Ω ∂ ∂ ∂ ∂ ∂

(2.86)

Pour résoudre cette équation, nous adoptons la même approche utilisée précédemment pour

calculer le champ à vide dans cette même zone. Nous obtenons alors :

( ) ( )( ).(5) (5) (5), , , , , , . , ,( , , ) ( ) ( ) r hj kp k h p t

s r s k h s k h s k h s k h k hk h

A r t A I r B K r J e θ ϕα αθ τ τ

+∞ +∞+ + Ω −

=−∞ =−∞

= +∑ ∑

(2.87)

où :

2, , 0s k h rs sjhpτ µ µ σ= Ω (2.88)

• Calcul des coefficients de Fourier du potentiel vecteur

Les constantes ( ), ,i

s k hA et ( ), ,i

s k hB , qui interviennent dans les expressions du potentiel vecteur

développées dans chaque région de la machine (équations (2.73), (2.76), (2.82), (2.84) et

(2.87)), peuvent être déterminées en appliquant les mêmes conditions aux limites utilisées

dans le calcul du champ à vide. Ces conditions sont exprimées dans ce cas par (où i=1, 2, 3

et 4) :

1

1 1

1 1

6

(1)

( ) ( 1)

1

( ) ( 1)

(5)

( , , ) / 0

1 1( , , ) / ( , , ) /

( , , ) / ( , , ) /

( , , ) 0

i i

i i

s r r r

i is r s rr r r ri i

i is r s rr r r r

s r r r

A r t r

A r t r A r t r

A r t A r t

A r t

θ

θ θµ µ

θ θ θ θ

θ

+ +

+ +

=

+

= =+

+

= =

=

∂ ∂ = ∂ ∂ = ∂ ∂∂ ∂ = ∂ ∂

=

(2.89)

Page 103: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 81

Il est important de rappeler que la solution du champ dans la frette a été déterminée pour

deux cas (k ≠ –h et k = − h) et que celle dans la zone du bobinage a été aussi développée

pour deux autres cas différents (α =kp≠2 et α =kp=2). Cela conduit alors à quatre cas

distincts. L’application des conditions aux limites aux équations de ces solutions et à celles

trouvées dans la zone d’aimant, d’entrefer et de bobinage conduit à 4 systèmes linéaires

composés chacun de 10 équations avec 10 inconnues. En résolvant ces quatre systèmes,

nous déduisons les 10 constantes ( ), ,i

s k hA et ( ), ,i

s k hB correspondantes à la contribution de chaque

combinaison d’harmoniques de temps h et d’espace k dans le potentiel vecteur exprimé

dans chaque région de la machine.

2.6.3 Résultats du problème électromagnétique

La méthode du calcul analytique du champ de réaction d’induit a été appliquée pour la

machine MSE-1 présentée dans l’annexe B.1. Dans ce calcul, la machine est supposée être

alimentée par des courants de formes d’ondes rectangulaires avec une amplitude de courant

continu Idc=6.3 A. Comme la frette de cette machine est non conductrice, seuls les courants

de Foucault induits dans la culasse du stator sont considérés.

La figure 2.8 présente les composantes radiales et tangentielles de l’induction au centre de

chaque région de la machine en fonction de l’angle mécanique au stator. Ces composantes

sont tracées pour l’instant où le champ tournant de réaction d’induit est perpendiculaire

(électriquement) à l’axe de la phase a qui est pris comme origine de phase. Nous

remarquons que l’induction radiale dans toute la structure de la machine augmente quand le

rayon diminue et que l’induction au milieu du bobinage est plus affectée par l’effet des

encoches. D’un autre côté, l’effet de la réaction des courants de Foucault sur la répartition

de l’induction est moins visible vu que la conductivité du matériau SMC considéré (Mat-1)

est plus faible.

La figure 2.9 compare la distribution de la densité des courants de Foucault générés par les

courants d’induit à différents rayons dans la culasse du stator de la machine MSE-1 pour

deux types de matériaux SMC : un matériau moins conducteur (Mat-1) et un autre plus

conducteur (Mat-2). Cette densité est déterminée en appliquant la relation suivante :

Page 104: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 82

(5) (5)

,( , ) ( , )( , ) s r s r

cs s r sA r A rJ r

tθ θθ σ

θ ∂ ∂

= − − Ω ∂ ∂ (2.90)

Cette figure montre que l’effet de peau sur la distribution des courants induits dans le

matériau SMC le plus conducteur est plus prononcé. De plus, cet effet est plus visible que

dans un fonctionnement à vide puisque le bobinage, qui représente la source du champ, est

juxtaposé à la culasse du stator.

Figure 2.8 : Composantes (a) radiales et (b) tangentielles de l’induction de réaction d’induit au

milieu de chaque zone de la machine pour une vitesse de 20000 rpm

Figure 2.9 : Densités des courants de Foucault dues aux courants statoriques dans la culasse du stator à différents rayons pour deux types de matériaux SMC : (a) moins conducteur (Mat-1) et (b)

plus conducteur (Mat-2) à une vitesse de 20000 rpm

0 1 2 3 4 5 6-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Angle mécanique [rad]

Indu

ctio

n ra

dial

e [T

]

AimantsFretteEntreferBobinageCulasse stator

(a)

0 1 2 3 4 5 6

-0.1

-0.05

0

0.05

0.1

0.15

Angle mécanique [rad]

Indu

ctio

n ta

ngen

tielle

[T]

AimantsFretteEntreferBobinageCulasse stator

(b)

0 1 2 3 4 5 6-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

Angle mécanique [rad]

Den

sité

de

cour

ant [

A/m

2 ]

r=r6

(a)

r=r5

0 1 2 3 4 5 6-6

-4

-2

0

2

4

6x 104

Angle mécanique [rad]

Den

sité

de

cour

ant [

A/m

2 ]

(b)

r=r5

r=r6

Page 105: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 83

2.7 Calcul analytique du champ électromagnétique en charge

Le champ magnétique en charge est déterminé à partir du potentiel vecteur total dans

chaque région de la machine. Selon l’hypothèse adoptée sur la linéarité des matériaux, ce

potentiel est calculé comme la somme du potentiel vecteur dû aux aimants et de celui

produit par les courants circulant dans le bobinage :

= +tot m sA A A

(2.91)

Afin d’effectuer les calculs des différents grandeurs électromagnétiques caractérisant le

fonctionnement de la machine, nous devons exprimer le potentiel vecteur en charge dans

les deux référentiels de la machine liés respectivement au rotor et au stator.

• Potentiel vecteur au référentiel du rotor

Les expressions des potentiels vecteurs à vide et de réaction d’induit développées

précédemment dans les parties 2.5 et 2.6 sont exprimées dans le référentiel du rotor dans

chaque région i de la machine. Nous pouvons alors les réécrire sous les formes générales

suivantes :

( ) ( ),( , ) ( ). rjkpi i

m r m kk

A r R r e θθ+∞

=−∞

= ∑ (2.92)

( )( ).( ) ( ), , ,( , , ) ( ) r hj kp k h p ti i

s r s k h k hk h

A r t R r J e θ ϕθ+∞ +∞

+ + Ω −

=−∞ =−∞

= ∑ ∑

(2.93)

Dans ce cas, le potentiel vecteur total s’obtient par :

( ) ( ) ( )( , , ) ( , ) ( , , )i i itot r m r s rA r t A r A r tθ θ θ= + (2.94)

• Potentiel vecteur au référentiel du stator

En effectuant un changement de référentiel du rotor au stator à l’aide de l’équation (2.1),

les potentiels vecteurs à vide et de réaction d’induit deviennent :

( ).( ) ( ),( , , ) ( ). sjkp ti i

m s m kk

A r t R r e θθ+∞

−Ω

=−∞

= ∑ (2.95)

Page 106: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 84

( ).( ) ( ), , ,( , , ) ( ) s hj kp hp ti i

s s s k h k hk h

A r t R r J e θ ϕθ+∞ +∞

+ Ω −

=−∞ =−∞

= ∑ ∑

(2.96)

Ainsi, le potentiel vecteur total est calculé comme suit :

( ) ( ) ( )( , , ) ( , , ) ( , , )i i itot s m s s sA r t A r t A r tθ θ θ= + (2.97)

Dans un objectif de validation, nous utilisons la même machine MSE-1 utilisée

précédemment lors du calcul du champ à vide et de celui de réaction d’induit. Les figures

2.10 et 2.11 présentent respectivement les courbes des deux composantes de l’induction au

milieu de chaque zone de la machine et celles de la distribution des courants de Foucault

dans la culasse du stator. Ces courbes sont tracées pour un angle de commande ψ nul (angle

entre la force électromotrice et le fondamental du courant). À partir de ces courbes, nous

pouvons remarquer clairement l’effet de la réaction d’induit transversale produit par les

courants d’alimentation sur l’induction et les courants de Foucault dans la culasse du stator.

Figure 2.10 : Composantes (a) radiales et (b) tangentielles de l’induction en charge au milieu de

chaque zone de la machine pour une vitesse de 20000 rpm et un angle ψ = 0

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1

Angle mécanique [rad]

Indu

ctio

n ra

dial

e [T

]

AimantsFretteEntreferBobinageCulasse stator

(a)

0 1 2 3 4 5 6-1.5

-1

-0.5

0

0.5

1

1.5

Angle mécanique [rad]

Indu

ctio

n ta

ngen

tielle

[T]

AimantsFretteEntreferBobinageCulasse stator

(b)

Page 107: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 85

Figure 2.11 : Densités des courants de Foucault dues aux aimants et aux courants statoriques dans la culasse du stator à différents rayons pour deux types de matériaux SMC : (a) moins conducteur

(Mat-1) et (b) plus conducteur (Mat-2) à une vitesse de 20000 rpm et un angle ψ = 0

2.8 Détermination des grandeurs électromagnétiques caractéristiques

La modélisation électromagnétique analytique de la machine effectuée précédemment en

termes de potentiels vecteurs est utilisée dans cette partie afin de calculer les différentes

grandeurs électromagnétiques et paramètres de la machine : flux à vide, force

électromotrice, inductances, résistances et couple électromagnétique. Ces grandeurs

électromagnétiques, utilisées pour développer le modèle de dimensionnement de la

machine, sont exprimées en fonction des dimensions géométriques et des caractéristiques

des matériaux.

2.8.1 Calcul du flux à vide et de la force électromotrice

Le flux à vide embrassé par un enroulement de la machine peut être déterminé à partir de

l’expression du potentiel vecteur à vide produit par les aimants dans la zone du bobinage

(i=4) et de la densité surfacique de la répartition spatiale des conducteurs C(θ) de cet

enroulement. Si nous considérons une spire appartenant à cet enroulement de surface So

délimité par un contour Co, le flux capté par cette spire est donné par :

o o

sp S Cd dφ = =∫∫ ∫B s A l

(2.98)

0 1 2 3 4 5 6-4

-3

-2

-1

0

1

2

3

4x 104

Angle mécanique [rad]

Den

sité

de

cour

ant [

A/m

2 ]

r=r6

r=r5

(a)

0 1 2 3 4 5 6-6

-4

-2

0

2

4

6x 105

Angle mécanique [rad]

Den

sité

de

cour

ant [

A/m

2 ] r=r5

r=r6

(b)

Page 108: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 86

Compte tenu de l’hypothèse de 2D et de la symétrie du potentiel vecteur, ce flux peut être

déterminé en considérant la contribution des deux conducteurs de la spire. Il vient alors :

(4)2 ( , , )sp mA r t Lφ θ= (2.99)

où L est la longueur axiale de la culasse du stator de la machine.

Si nous considérons un élément de surface de l’enroulement de la phase υ, le nombre de

conducteurs contenu dans cet élément est Cυ(θ).r.dr.dθ. Ainsi, la contribution de ce dernier

dans le flux embrassé par la phase υ est donnée par :

(4), ( , , ). . ( ). . .m md A r t L C r dr dυ υφ θ θ θ= (2.100)

Étant donné que la densité des conducteurs Cυ(θ) est nulle dans les parties non occupées par

les conducteurs de l’enroulement considéré dans la zone du bobinage, le flux totalisé dans

la phase υ peut donc être calculé à partir de la double intégration suivante :

5

4

2 (4), 0

( ) ( , , ) ( ). . .r

m mrt L A r t C r dr d

π

υ υφ θ θ θ= ∫ ∫ (2.101)

où r4 et r5 représentent respectivement le rayon interne et externe de la zone du bobinage.

Afin de calculer cette intégrale, il est essentiel d’utiliser l’expression du potentiel vecteur à

vide (4)mA exprimée dans le référentiel du stator (équation (2.95)) puisque la densité des

conducteurs a été développée en considérant ce référentiel (cf. équation (2.35)). Dans ce

cas, le développement de la relation (2.101) conduit à l’expression suivante du flux

embrassé par le bobinage de la phase υ (υ =1, 2 ou 3) :

( )1 2.

(4) *, ,( ) .

jkp tp mk

m m kk

t L H ej

υ π

υδφ π

− +∞ Ω −

=−∞

= ∑

(2.102)

où :

( ) ( )

( )

2 24 5 4 52 (4) * (4) *

5 , ,

(4) *, 2

4 52 (4) * (4) * 55 , ,

4

1 / 1 /si 2

2 2

1 /ln si 2

2

m k m k

m k

m k m k

r r r rr A B k p

Hr r rr A B k p

r

α α

α

αα α

αα

+ −

+

− − + = ≠

+ − = − + = = +

(2.103)

Page 109: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 87

L’expression (2.102) montre que le flux à vide capté par le bobinage de la phase considérée

est variable dans le temps. Cette variation est à l’origine de la création d’une force

électromotrice (fem) aux bornes du bobinage dont l’expression peut être obtenue à partir

de la loi de Faraday en considérant une convention récepteur :

,( ) mde t

dtυ

υ

φ= (2.104)

En dérivant le flux à vide par rapport au temps, nous obtenons :

( )1 2.

(4) *,( ) .

jkp tp m

k m kk

e t Lp k H eυ π

υ π δ −

+∞ Ω −

=−∞

= Ω ∑

(2.105)

Les expressions du flux à vide et de la fem, issues du calcul analytique développé, tiennent

compte de la contribution de tous les harmoniques impairs incluant ceux d’ordre 3. Chaque

harmonique d’ordre k dépend de l’interaction de chaque harmonique d’espace contenu dans

le potentiel vecteur à vide et de chaque harmonique d’espace issu de la distribution des

conducteurs du bobinage. Le calcul du flux à vide et de la fem prend aussi en compte l’effet

des répartitions radiales et tangentielles de l’induction et du bobinage au niveau de

l’entrefer magnétique entre les culasses du rotor et du stator. Ce calcul permet, en fait,

d’exclure les flux de fuite qui ne traversent pas le bobinage et de considérer les flux qui le

traversent totalement ou partiellement. Il faut noter aussi que, contrairement aux machines

classiques avec des stators faits en tôles laminées, les expressions du flux à vide et de la

fem développées précédemment considèrent l’effet de réaction des courants de Foucault

induits dans le matériau SMC de la culasse du stator.

La figure 2.12(a) présente la courbe de la fem induite aux bornes du bobinage d’une phase

de la machine MSE-1 tracée pour une vitesse de 20000 rpm. Cette fem comporte un certain

contenu harmonique dû aux répartitions spatiales des aimants et des conducteurs (cf. Fig.

2.12(b)). D’une manière générale, pour une machine donnée, le contenu harmonique de la

fem peut être contrôlé essentiellement par la largeur polaire des aimants et leurs formes et

par la distribution des enroulements dans la zone du bobinage (nombre d’encoches, type de

pas, largeur des encoches). D’un autre côté, la courbe de la fem tracée montre que l’effet

des courants de Foucault est très faible vu que le matériau SMC est moins conducteur.

Page 110: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 88

Généralement, cet effet est moins significatif et peut être négligé même pour des machines

utilisant des matériaux SMC plus conducteurs et ayant des performances acceptables. Ce

résultat a été déduit à partir de plusieurs tests effectués pour différents cahiers des charges.

Figure 2.12 : (a) Force électromotrice de la machine MSE-1 pour une vitesse de 20000 rpm et (b)

sa décomposition harmonique

2.8.2 Calcul de l’inductance synchrone du stator

L’inductance synchrone d’une machine électrique à aimants permanents est un paramètre

important car elle influence à la fois les performances fondamentales et dynamiques de

l’ensemble convertisseur-machine. Elle intervient dans la constante du temps électrique et

affecte la forme d’onde du courant que ce soit pour un fonctionnement avec un

convertisseur à commutation de tension ou avec un convertisseur à commutation de

courant. Cela a une influence directe sur le point de fonctionnement et les performances de

la machine comme le couple et les pertes.

Pour une machine sans encoches, l’inductance synchrone est généralement faible et

nécessite une évaluation plus précise dans un objectif de conception. Elle peut être

déterminée à partir d’un calcul analytique en une dimension (1D). Cependant, vu que

l’entrefer de ce type de machines est très large, un calcul en deux dimensions (2D) est

nécessaire afin d’assurer une meilleure précision [41], [93]. Cette inductance est différente

de celle d’une machine avec encoches puisqu’elle ne peut pas être divisée en une

inductance due au flux principal et une autre due aux flux de fuite au niveau de l’entrefer

[113]. De plus, elle devient plus complexe et dépend de la fréquence lorsque la machine

0 0.5 1 1.5 2 2.5 3x 10-3

-60

-40

-20

0

20

40

60

Temps [s]

fem

[V]

(a)

0 1 3 5 7 99 11 13 15 17 19 21 23 250

10

20

30

40

50

60

Rang d'harmonique

Am

plitu

de [V

]

(b)

Page 111: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 89

contient des pièces massives conductrices (stator en SMC et/ou frette conductrice) où des

courants de Foucault sont induits. Dans ce contexte, nous pouvons calculer directement

cette inductance comme la somme d’une inductance cyclique, qui tient compte des flux de

fuite d’entrefer et des effets des courants de Foucault, et d’une inductance de fuite des têtes

de bobines.

2.8.2.1 Inductance cyclique d’entrefer

Cette inductance peut être déterminée soit par un calcul de l’énergie magnétique totale

stockée dans le volume actif de la machine [93] ou par une évaluation du flux magnétique

produit par les courants d’alimentation des trois phases et embrassé par le bobinage d’une

seule phase [41]. En utilisant la deuxième méthode, le flux vu par l’enroulement de la phase

υ peut être calculé à partir de l’intégration du potentiel vecteur de réaction d’induit dans la

zone du bobinage suivant une expression similaire à celle donnée par l’équation (2.101) où

les quantités doivent être exprimées dans le référentiel du stator :

5

4

2 (4), 0

( ) ( , , ) ( ). . .r

s s s s srt L A r t C r dr d

π

υ υφ θ θ θ= ∫ ∫ (2.106)

En remplaçant le potentiel vecteur et la densité des conducteurs par leurs expressions

respectives (2.84) et (2.35), et en développant l’intégrale précédente, nous trouvons une

expression qui fait intervenir les composantes harmoniques de temps du courant , ( )hI tυ

dans la phase considérée et les inductances cycliques harmoniques Lsc,k,h correspondant à la

combinaison de chaque harmonique de temps h et d’espace k de la FMM. Cette expression

a la forme suivante :

, , , ,1

( ) ( )s sc k h hh k

t L I tυ υφ+∞ +∞

=−∞ =

=

∑ ∑ (2.107)

où :

( ) 21

, ( )jh t

mh hI t I e

πω υ

υ

− − = (2.108)

et où l’expression de l’inductance cyclique harmonique est donnée en considérant

seulement la partie réelle qui est vraiment effective :

Page 112: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 90

( )2 (4), , , ,

3 Real2sc k h k s k hL L Hπ δ=

(2.109)

Le terme (4), ,s k hH est exprimé par :

( ) ( )

( ) ( )( )( )

( ) ( ) ( ) ( )( )

2 24 5 4 5(4) (4)

, , , ,2

5 240 5

4 52

(4), , 4

4 5(4) (4) 5, , , ,

2 45

24 40 5

5 4 5 4 4 5

1 / 1 /2 2

si 2. 1 /

4 4

1 /ln

4 si. 1ln / ln / 1

16 4

s k h s k h

s k h

s k h s k h

r r r rA B

r k pr r r

Hr r rA B

rrr r r r r r r

α α

α αα

µα

µ

+ − − − +

+ − = ≠ − −

− = − +

− − + −

2k pα

= =

(2.110)

L’inductance cyclique de l’équation (2.109), calculée pour chaque combinaison

d’harmoniques de temps et d’espace, tient compte simultanément de l’effet des courants

induits dans la culasse SMC du stator et dans la frette du rotor. Elle dépend aussi de la

fréquence puisque les termes , ,s k hτ et , ,c k hτ , qui interviennent dans le calcul des constantes

(4), ,s k hA et (4)

, ,s k hB , sont variables en fonction de la fréquence. Si un convertisseur statique

(onduleur ou redresseur) est connecté à la machine, il verra, pour chaque harmonique de

temps de courant de rang h, une inductance cyclique Lsc,h correspondant à la somme des

inductances obtenues pour chaque harmonique d’espace k :

, , ,1

sc h sc k hk

L L+∞

=

= ∑ (2.111)

Le tableau 2.3 présente les composantes harmoniques Lsc,h de l’inductance cyclique

correspondant à chaque harmonique de courant h. Ces résultats sont donnés pour la

machine MSE-1 en considérant deux configurations :

• Le matériau SMC de la culasse du stator est conducteur (σs=3400 s/m) et la frette

est non conductrice (σc=0) ;

• Le matériau SMC est non conducteur (σs=0) et la frette est conductrice (en cuivre :

σc=5.8×107s/m).

Page 113: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 91

Nous pouvons remarquer que, pour la première configuration, l’inductance cyclique ne

varie pas beaucoup et reste pratiquement constante quand la fréquence des harmoniques

augmente. Cela est dû au faible effet des courants de Foucault induits dans la culasse du

stator par les trois courants d’alimentation. Cependant, lorsque la frette est conductrice, les

inductances vues par les harmoniques de courant de rangs élevés sont plus faibles que

l’inductance correspondant au fondamental du courant. Cela signifie que les courants

induits dans la frette commencent à faire un écran magnétique au champ de réaction

d’induit dès que le rang d’harmoniques commence à augmenter (à partir du 5ème

harmonique). L’inductance vue par les harmoniques de courant intervient directement dans

le processus de commutation du courant lorsque la machine est couplée à un convertisseur

à commutation de courant. Elle peut avoir une influence significative sur les performances

fondamentales et dynamiques de la machine dépendamment de l’épaisseur de la frette.

h 1 5 7 11 13 17 19 23 25 Cas 1 0.2977 0.2977 0.2977 0.2976 0.2976 0.2976 0.2976 0.2975 0.2975 Cas 2 0.2976 0.0667 0.0666 0.0647 0.0647 0.0642 0.0642 0.0639 0.0639

Tableau 2.3 : Composantes harmoniques de l’inductance cyclique correspondantes à chaque harmonique de courant de rang h : Lsc,h [mH]

2.8.2.2 Inductance de fuite

L’inductance de fuite d’une machine électrique est généralement considérée comme la

somme des inductances correspondant aux différents flux de fuite dus au courant

statorique : flux de fuite d’encoches, flux de fuite différentiel (ou flux de fuite d’entrefer) et

flux de fuite des têtes de bobines [114], [115]. Dans notre cas, puisqu’il s’agit d’une

machine sans encoches, l’inductance de fuite d’encoches et l’inductance de fuite d’entrefer

sont déjà prises en compte et incluses dans le terme des inductances cycliques calculé

précédemment (cf. équation (2.109)). Cependant, il reste à déterminer l’inductance

correspondante aux flux de fuites des têtes de bobines pour un enroulement de la machine.

Pour cela, nous utilisons un calcul analytique approximatif en négligeant le couplage

magnétique avec les têtes de bobines des autres enroulements. En fait, un calcul très précis

est loin d’être obtenu car les lignes de champ de fuite autour des têtes de bobines suivent

des trajets de formes complexes. Elles sont influencées par les conducteurs les plus proches

Page 114: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 92

des bobines du même enroulement et des autres enroulements et éventuellement par le fer

voisin au stator. Des approximations sont donc nécessaires au niveau de la géométrie des

têtes de bobines et au niveau du champ magnétique qu’elles créent.

Afin d’effectuer ce calcul, nous considérons une machine comportant p paires de pôles, npp

encoches par pôle par phase et Nc conducteurs par encoches où nous supposons, dans un

premier temps, que le bobinage est réparti diamétralement. Dans ce cas, nous approximons

la forme des têtes de bobines à des demi-cercles dont le diamètre D est égal au pas polaire

τp calculé au niveau du rayon interne du bobinage (cf. Fig. 2.13(a)) [27], [116]. Ainsi, la

longueur moyenne correspondante à une tête de bobine peut être déterminée par :

2p

tbob tbobL kτ π

= (2.112)

où ktbob est un coefficient de correction de la longueur que nous pouvons ajouter afin de

prendre en compte la longueur réelle d’une tête de bobine. Ce coefficient peut être

déterminé expérimentalement à partir d’un prototype.

D=τp

d

D/2r

d/2

I

(a) (b)

Figure 2.13 : (a) Têtes de bobine d’un enroulement de la machine à pas diamétral et (b)

représentation cylindrique d’une tête de bobine

Nous supposons aussi que la distribution du champ magnétique autour d’une tête d’une

bobine est similaire à celle créée autour d’un cylindre de diamètre d et de longueur Ltbob

traversé par un courant I égal à Nc.iυ (cf. Fig.2.13(b)) où iυ est le courant circulant dans

Page 115: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 93

l’enroulement de la phase υ [27], [116]. À un point distant de r de l’axe du cylindre, le

champ magnétique H crée par le courant I peut être exprimé par :

2

cN iHrυ

π= (2.113)

L’inductance de fuite correspondant à une tête de bobine peut être calculée en évaluant

l’énergie magnétique stockée dans l’air par le champ H :

/2

2 2 20 0

/2

/2.

Dtbob

s cvol d

L drL H dv i Nrσ υµ µ

π= =∫ ∫ (2.114)

Le calcul de cette intégrale conduit à :

20 ln

2tbob

s cL DL N

dσ µπ

=

(2.115)

Le diamètre d peut être déterminé à partir de la section de cuivre de la bobine dans une

encoche obtenue en divisant la section totale du cuivre du bobinage Scu par le nombre total

des encoches (pour un bobinage à pas diamétral à une seule couche) :

22

cu

pp

Sdm p n π

= (2.116)

où la section totale de cuivre du bobinage Scu est calculée comme le produit de la section

totale d’encochage Se et du coefficient de remplissage des encoches Ku :

cu u eS K S= (2.117)

Étant donné qu’un enroulement de la machine est composé de 2.p.npp têtes de bobines

correspondantes à Nsp spires par phase, l’inductance totale de fuite des têtes de bobines par

phase s’écrit alors :

2 2

02 . ln8 2

sp p pp ps

pp u e

N m p nL

p n K Sσ

τ π τµ

=

(2.118)

Pour une machine ayant un bobinage à pas raccourci à doubles couches, l’enroulement

d’une phase comporte 4.p.npp têtes de bobines. Dans ce cas, leur inductance de fuite totale

est calculée à partir de l’expression suivante :

Page 116: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 94

2 2 2

0. ln8

sp p acc pp p accs

pp u e

N R m p n RL

p n K Sσ

τ π τµ

=

(2.119)

où Racc désigne le coefficient de raccourcissement du pas de bobinage.

2.8.3 Calcul de la résistance du stator

Étant donné que la machine sans encoches fonctionne en haute vitesse et que son bobinage

statorique est directement plongé dans un champ magnétique variable, des courants de

Foucault sont développés dans les conducteurs de l’induit et conduisent à des pertes Joule

supplémentaires. Deux phénomènes sont liés à l’induction de ces courants de Foucault [96],

[117] :

• L’effet de peau où les courants de Foucault sont induits dans chaque conducteur de

l’induit par la variation à haute fréquence du courant qui y circule ;

• L’effet de proximité résultant de l’induction des courants de Foucault dans chaque

conducteur, d’une part, par la variation d’un champ magnétique externe au bobinage

dû aux aimants permanents tournants, et d’autre part, par la variation d’un champ

interne créé par les courants circulant dans les autres conducteurs.

Ces deux effets conduisent à une distribution non uniforme de la densité du courant dans

les conducteurs et contribuent à l’augmentation de la résistance apparente du stator. De ce

fait, la valeur de la résistance de phase totale de l’induit peut être calculée comme la somme

d’un premier terme constant responsable des pertes Joule classiques (valeur continue ou

DC de la résistance) et d’un deuxième terme variable avec la fréquence et qui est une

conséquence directe de l’effet de peau et de proximité (valeur alternative ou AC de la

résistance).

Pour calculer le premier terme de la résistance de phase du stator, nous déterminons tout

d’abord la résistance d’une seule spire à l’aide de la formule classique suivante qui tient

compte des dimensions géométriques des conducteurs :

2 2( ). tbobsp cu

cu

L LR Ts

ρ += (2.120)

Page 117: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 95

où ρcu est la résistivité du cuivre qui dépend de la température T et Ltbob est la longueur

moyenne d’une tête de bobine déterminée à partir de l’équation (2.112) en introduisant

éventuellement le rapport de raccourcissement. Le terme scu représente la section d’un

conducteur qui peut être déterminée par :

2 2

cu u ecu

sp sp

S K SsmN mN

= = (2.121)

En considérant la somme des résistances de toutes les spires, la valeur continue de la

résistance totale d’une phase s’écrit :

20

2 2. 2 ( ). tbobs sp sp sp cu

u e

L LR N R mN TK S

ρ += = (2.122)

Le deuxième terme de la résistance du stator est calculé selon la formule suivante qui fait

intervenir les pertes Joule classiques PJ0 et les pertes supplémentaires dues à l’effet de peau

et de proximité PJext (cf. partie 3.2) :

00

Jextsext s

J

PR RP

= (2.123)

À présent, en utilisant les expressions développées pour les deux termes (2.122) et (2.123),

nous pouvons établir l’expression finale de la résistance d’une phase de l’induit et qui est

exprimée comme suit :

00

1 Jexts s

J

PR RP

= +

(2.124)

2.8.4 Calcul du couple électromagnétique

Le couple électromagnétique de la machine sans encoches est déduit à partir de la

distribution du champ magnétique résultant dans la région d’entrefer (zone 3). Sa valeur

instantanée peut être calculée en intégrant le Tenseur de Maxwell sur une surface

cylindrique S, de rayon r0, située dans l’entrefer et entourant la frette, les aimants et la

culasse du rotor. La force exercée sur cette surface s’exprime par :

( )S

F T dS= ∫∫

(2.125)

Page 118: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 96

où T

est le Tenseur de Maxwell que nous réduisons ici à un vecteur :

( ) 20

12

T nH H nHµ = −

(2.126)

H

est le champ magnétique total et n est le vecteur unitaire normal à la surface S.

Le développement de l’expression (2.125) permet d’exprimer la composante tangentielle

Fθ de la force en fonction des composantes radiale Hr et tangentielle Hθ du champ

magnétique et de déduire, par la suite, l’expression qui permet de calculer le couple

électromagnétique de la machine :

22

0 0 0 0 0( ) 0( )em r rS

T t F r r H H dS Lr H H dπ

θ θ θµ µ θ= = =∫∫ ∫

(2.127)

En utilisant l’expression du potentiel vecteur total exprimée dans le référentiel du stator (cf.

équation (2.97)), l’expression du couple devient :

0 0

(3) (3)200

0

( , , ) ( , , )( ) tot s tot sem s

sr r r r

Lr A r t A r tT t dr

π θ θ θµ θ

= =

∂ ∂= −

∂ ∂∫ (2.128)

Après tout calcul, nous obtenons l’expression finale du couple électromagnétique

instantané exprimée comme suit :

2

(3) * (3), ,

0

4( ) .Imag ( ) . ( )em tot k tot kk

LpT t k k A t B tπµ

+∞

=−∞

= ∑ (2.129)

où :

( )

( )

.(3) (3) . (3), , , , ,

.(3) (3) . (3), , , , ,

( )

( )

h

h

j hp tjkp ttot k m k s k h k h

h

j hp tjkp ttot k m k s k h k h

h

A t A e A J e

B t B e B J e

ϕ

ϕ

+∞Ω −− Ω

=−∞

+∞Ω −− Ω

=−∞

= +

= +

(2.130)

Le couple électromagnétique instantané est créé par l’interaction des harmoniques d’espace

k du champ magnétique à vide et des harmoniques de temps et d’espace du champ

magnétique de réaction d’induit dont les rangs h et k vérifient la relation 6 ,k h l l± = ∈ .

En fait, ce couple tient compte de l’interaction entre les différentes sources de champ mises

Page 119: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 97

en jeu au niveau du rotor et du stator de la machine sans encoches : les aimants permanents,

les courants de Foucault induit dans la frette conductrice, les courants d’alimentation du

stator et les courants de Foucault induits dans la culasse du stator par les aimants et par les

courants statoriques.

La forme d’onde du couple instantané a une composante continue correspondant au couple

moyen Tem0 et une composante alternative qui représente les ondulations du couple ∆Tem(t).

Le couple moyen peut être déterminé en calculant l’intégrale suivante :

2

0 0

1 ( )2em emT T t dt

π

π= ∫ (2.131)

Il vient alors :

( )

2 (3) * (3) 2 2 (3) * (3), , , , , , ,2

1 1 10

2 (3) * (3) (3) * (3)0, , , , , , ,

1

.Imag ( ) . ( ) .Imag ( ) . ( )8

.Imag ( ) . ( ). ( ) . ( )h h

m k m k k h s k h s k hk k h

emj j

h h m h s h h s h h m hh

k A t B t k J A t B tLpT

h J A t B t e A t B t eϕ ϕ

πµ

+∞ +∞ +∞

= = =

+∞−

=

+ = + − +

∑ ∑∑

(2.132)

Les ondulations du couple peuvent être déterminées directement par une simple

soustraction de la valeur moyenne du couple électromagnétique de sa valeur instantanée :

0( ) ( )em em emT t T t T∆ = − . Ces ondulations ont des pulsations 6pΩ, 12pΩ, 18pΩ, …

Le développement de l’expression du couple électromagnétique instantané (2.129) permet

de mettre en évidence différents termes dont les valeurs moyennes sont représentées dans

l’équation (2.132). L’analyse de ces termes permet d’expliquer les différentes interactions

qui contribuent à la création du couple moyen et des ondulations :

• Le premier terme du couple instantané correspond à l’interaction entre la

composante radiale Hm,r et tangentielle Hm,θ du champ magnétique à vide :

1 , ,( )em m r mT t H H θ⇔ . Autrement dit, il correspond à l’interaction entre les champs

magnétiques produits par les aimants permanents et par les courants de Foucault

induits par ces aimants dans la culasse du stator. Les harmoniques des courants de

Foucault tournent à la même vitesse que celle du rotor. Ainsi, le terme du couple

Tem1(t) présente une valeur moyenne non nulle qui correspond à un couple de

Page 120: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 98

freinage (cf. premier terme de l’équation (2.132)). Cependant, il présente des

ondulations nulles puisque les harmoniques des courants de Foucault sont

synchrones avec ceux de la source de champ (aimants) qui les ont créés ;

• Le deuxième terme est dû à l’interaction entre les deux composantes radiale et

tangentielle du champ magnétique de réaction d’induit : 2 , ,( )em s r sT t H H θ⇔ . Il

tient compte de l’interaction, d’un côté, des courants de Foucault induits dans la

frette, et de l’autre côté, des courants au bobinage du stator et des courants de

Foucault induits dans la culasse du stator par ces courants d’alimentation.

Le terme du couple Tem2(t) n’est effectif (non nul) que pour les combinaisons des

harmoniques de temps et d’espace telles que k h≠ et qui correspondent à des

champs tournants de réaction d’induit asynchrones avec la frette. Il présente une

valeur moyenne non nulle, correspondante au 2ème terme de l’équation (2.132),

malgré qu’il n’y a pas de synchronisme entre les champs tournants et la frette. Cela

s’explique facilement en imaginant que la machine sans encoches munie de la frette

conductrice se comporte comme une machine asynchrone pour chaque combinaison

d’harmoniques de temps et d’espace de la FMM du stator. En fait, chaque champ

tournant harmonique au niveau du stator crée un autre champ tournant qui lui est

synchrone au niveau de la frette et dont l’interaction produit un couple moyen non

nul. Dans ce cas, la puissance fournie du stator à la frette à travers l’entrefer, et qui

correspond au couple moyen, contient deux composantes similaires à celles d’une

machine asynchrone : une puissance électrique dissipée dans la frette sous forme de

pertes Joule et une puissance mécanique exercée sur la frette. Le terme du couple

Tem2(t) présente aussi une composante ondulatoire créée lorsque les champs

harmoniques tournants produits par les courants d’alimentation et les courants de

Foucault dans la culasse statorique sont asynchrones avec ceux créés par les

courants induits dans la frette ;

• Le troisième terme du couple est tel que : 3 , , , ,( )em m r s s r mT t H H H Hθ θ⇔ + . C’est le

plus important terme et qui est dû essentiellement à l’interaction entre les aimants et

les courants circulant dans le bobinage de la machine. Il correspond au couple

classique que nous calculons généralement dans une machine électrique dont la

Page 121: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 99

culasse du stator est supposée non conductrice. Cependant, quand la culasse est

conductrice, ce terme de couple tient compte aussi de l’interaction entre les aimants

et les courants de Foucault induits dans la culasse par les courants d’alimentation du

bobinage. La valeur moyenne de ce terme est obtenue en considérant seulement les

combinaisons des harmoniques de temps et d’espace qui sont synchrones avec le

rotor et pour lesquels k h= . Les autres combinaisons d’harmoniques qui ont un

mouvement relatif par rapport au rotor contribuent aux ondulations du couple.

Le couple électromagnétique peut aussi être calculé en effectuant la somme de toutes les

forces de Laplace qui s’exercent sur les conducteurs de l’ensemble du bobinage.

L’expression permettant de le calculer est telle que :

5

4

2 (3) 2,0

( ) . ( , , ) ( , )r

em m r s s s srT t L B r t J t r drd

πθ θ θ= ∫ ∫ (2.133)

où (3),m rB est la composante radiale de l’induction à vide dans la zone d’entrefer et Js est la

densité totale des courants statoriques.

En appliquant cette deuxième méthode, nous avons remarqué qu’elle conduit à un résultat

moins précis que celui donné par la méthode du Tenseur de Maxwell. Elle ne tient pas

compte des différentes interactions des courants de Foucault induits dans les parties

massives conductrices (frette et culasse statorique) avec les autres sources de champ.

La figure 2.14 présente la forme d’onde du couple électromagnétique instantané ainsi que

ses deux principales composantes (couple moyen et ondulations) développées dans la

machine MSE-1. Ces résultats sont donnés lorsque la machine est alimentée par des

courants de formes d’ondes rectangulaires (similaires à ceux utilisés dans le paragraphe

2.6.3) avec un angle de commande ψ nul. Nous remarquons que les ondulations du couple

ont une pulsation prépondérante de 6pΩ. Ces ondulations peuvent devenir très importantes

lorsque l’angle ψ augmente positivement ou diminue négativement.

Page 122: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 100

Figure 2.14 : Couple électromagnétique instantané Tem(t), couple moyen Tem0 et ondulations du

couple ∆Tem(t) de la machine MSE-1 pour une vitesse de 20000 rpm

Il est intéressant de noter que le couple électromagnétique moyen que nous avons calculé

pour la machine sans encoches généralisée correspond à celui mis en jeu au niveau de

l’entrefer. Il tient compte, en plus du couple d’interaction entre les aimants et le bobinage,

du couple correspondant aux pertes par courants de Foucault dans la culasse du stator et

dans la frette. Dans ce cas, afin d’obtenir le couple net délivré sur l’arbre de la machine

fonctionnant en moteur, il suffit de soustraire les couples correspondants aux pertes

d’hystérésis et aux pertes mécaniques (cf. chapitre 3) du couple moyen calculé. Cependant,

quand la machine fonctionne en générateur, il faut ajouter ces deux derniers couples au

couple moyen pour déterminer le couple d’entrée de la machine fourni par le moteur

d’entraînement.

2.9 Validation par calcul numérique du champ en 2D

Dans cette partie, nous présentons une validation de la modélisation électromagnétique

analytique des machines sans encoches proposée dans cette thèse en confrontant les

résultats analytiques obtenus avec ceux issus des simulations en calcul numérique du

champ en 2D. Cette validation est effectuée en termes de distribution de l’induction

magnétique, d’inductance cyclique et de couple électromagnétique en considérant la

machine MSE-1 dont les trois phases sont alimentées par les mêmes courants considérés

0 0.5 1 1.5 2 2.5 3

x 10-3

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Temps [t]

Cou

ple

[Nm

]

Tem

(t)

Tem0

∆ Tem

(t)

Page 123: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 101

précédemment. Rappelons que la frette de cette machine est toujours considérée

amagnétique et non conductrice.

Le calcul numérique du champ de la machine a été effectué en magnétodynamique avec

une méthode de pas à pas dans le temps, en considérant le mouvement et en négligeant la

saturation. Notons qu’un maillage plus fin de la machine a été utilisé de manière à tenir

compte plus précisément de l’effet de peau lié à la pénétration des courants de Foucault

dans les parties massives conductrices (culasse du stator en SMC).

Les figures 2.15(a) et 2.15(b) donnent une idée sur la répartition spatiale des lignes du

champ magnétique et de la densité des courants de Foucault circulant dans la culasse du

stator, et qui sont obtenues pour un fonctionnement en charge de la machine (pour ψ=0) à

l’aide du logiciel Difimedi [118]. Ces figures montrent clairement l’effet de la réaction

d’induit, qui est transversale, sur le champ magnétique et les courants de Foucault. La

pénétration et la distribution de ces courants induits dépendent essentiellement des

caractéristiques physiques du matériau SMC (conductivité, perméabilité), de la forme

géométrique de la culasse du stator et des sources du champ.

Figure 2.15 : Distribution spatiale (a) des lignes de champ magnétique dans la structure de la

machine MSE-1 et (b) de la densité des courants induits dans la culasse du stator pour une vitesse de 20000 rpm

2.9.1 Induction magnétique

La figure 2.16 compare les composantes radiales et tangentielles de l’induction à vide (due

aux aimants) et de l’induction de réaction d’induit (due aux courants statoriques) calculées

Page 124: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 102

analytiquement avec celles obtenues à partir des simulations en calcul numérique du champ

en 2D. Ces inductions sont calculées au milieu de l’entrefer de la machine sans encoches

pour une vitesse de rotation de 20000 rpm. À partir de cette figure, nous pouvons observer

une parfaite concordance entre les résultats obtenus par les deux méthodes.

D’autres validations, non présentées dans cette thèse, ont été effectuées pour l’induction au

niveau des autres régions de la machine. La référence [119], par exemple, présente une

validation des deux composantes de l’induction en charge et de son amplitude au niveau de

la culasse du stator.

Figure 2.16 : Comparaison de composantes radiales et tangentielles des inductions dues (a) aux

aimants permanents et (b) aux courants d’alimentation du bobinage, obtenues au milieu de l’entrefer par les calculs analytique et numérique du champ

2.9.2 Inductance

Afin de valider le calcul analytique de l’inductance cyclique de la machine (cf. équation

(2.111)) ainsi que son comportement vis-à-vis de chaque harmonique de courant par le

calcul numérique du champ en 2D, nous avons relevé et comparé la réponse fréquentielle

de cette inductance en utilisant les deux méthodes de calcul du champ. La figure 2.17

présente les résultats de cette comparaison où les deux matériaux SMC Mat-1 et Mat-2 sont

considérés. Ce dernier matériau est utilisé puisqu’il est plus conducteur et l’effet de la

fréquence sur l’inductance est plus prononcé.

Pour déterminer l’inductance cyclique à partir du calcul numérique du champ, trois

simulations en magnétodynamique ont été effectuées en alimentant la machine par des

0 1 2 3 4 5 6

-0.4

-0.2

0

0.2

0.4

0.6

Angle mécanique [rad]

Indu

ctio

n à

vide

[T]

Calcul analytique Calcul numérique

(a)

Radiale

Tangentielle

0 1 2 3 4 5 6-0.04

-0.02

0

0.02

0.04

Angle mécanique [rad]

Indu

ctio

n de

réac

tion

d'in

duit

[T]

Calcul analytiqueCalcul numérique

(b)

Tangentielle

Radiale

Page 125: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 103

courants sinusoïdaux dont, à chaque simulation, la fréquence correspond à celles des

harmoniques de rangs 1, 29 et 149. L’inductance est ensuite déduite de l’impédance de la

machine calculée à partir de la mesure de la tension et du courant d’une phase. On note que,

dans chaque simulation, une résistance a été ajoutée en série avec chaque phase de la

machine de manière à adapter l’impédance et assurer une meilleure précision lors du calcul

de l’inductance.

L’analyse de la figure 2.17 permet de constater qu’il y a une bonne coïncidence entre les

résultats obtenus par les deux méthodes du calcul du champ et cela sur pratiquement toute

la plage du domaine fréquentiel. Dans le cas du matériau Mat-1, l’inductance cyclique reste

presque constante quand la fréquence augmente. Un résultat différent est constaté lorsqu’il

s’agit du deuxième matériau Mat-2. En fait, quand la fréquence augmente, le champ

magnétique ne pénètre pas profondément dans la culasse à cause de l’effet écran crée par

les courants de Foucault.

Figure 2.17 : Comparaison des réponses fréquentielles de l’inductance cyclique de la machine obtenues par les calculs analytique et numérique du champ pour les deux types de matériaux

SMC : Mat-1 et Mat-2

2.9.3 Couple électromagnétique

Le calcul analytique du couple électromagnétique a été aussi validé par une simulation de la

machine MSE-1 en calcul numérique du champ en considérant que la forme d’onde de la

fem et celle du courant d’induit sont en phase (l’angle ψ est nul). La figure 2.18 présente

100 101 102 103 104 1050

0.05

0.1

0.15

0.2

0.25

0.3

Fréquence [Hz]

Indu

ctan

ce [m

H] Mat1

Mat12

Page 126: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 104

les formes d’ondes du couple électromagnétique instantané obtenues par les deux

approches de calcul sur une seule période de fonctionnement de régime permanent. Une

excellente concordance entre les résultats peut être remarquée à partir de cette figure.

Figure 2.18 : Comparaison des formes d’onde du couple électromagnétique instantané obtenues

par les calculs analytique et numérique du champ pour une vitesse de 20000 rpm

2.10 Conclusion

Nous avons présenté, dans ce chapitre, une méthode analytique de modélisation

électromagnétique des machines sans encoches à aimants permanents à haute vitesse. Cette

méthode a été généralisée en considérant plusieurs topologies de machines sans encoches à

pôles lisses avec différentes configurations au niveau du bobinage et de l’aimantation des

aimants (radiale, parallèle ou de type Halbach). La méthode de modélisation met en œuvre

un calcul analytique en deux dimensions de la distribution du champ magnétique dans la

structure de la machine produit par les aimants au rotor et les courants d’alimentation au

stator. Ce calcul est effectué par une résolution des équations du champ en

magnétodynamique en termes de potentiel vecteur en tenant compte des courants de

Foucault induits dans les parties massives conductrices (stator en SMC et frette

conductrice) et des harmoniques de temps et d’espace des forces magnétomotrices. Notons

qu’en pratique, les expressions des potentiels vecteurs dans les différentes zones

0 0.5 1 1.5 2 2.5 3x 10-3

0

0.05

0.1

0.15

0.2

0.25

0.3

Temps [t]

Cou

ple

[Nm

]

Calcul analytiqueCalcul numérique

Page 127: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 2 105

constitutives de la machine ont été normalisées par rapport au rayon extérieur de chaque

zone afin d’assurer une certaine stabilité numérique lors de l’application de ces expressions.

La méthode de modélisation nous a permis de déterminer les expressions des diverses

grandeurs électromagnétiques de la machine en fonction des dimensions géométriques et

des caractéristiques des matériaux, des aimants et du bobinage. Une validation de cette

méthode a été effectuée par une confrontation des résultats analytiques obtenus avec ceux

issus du calcul numérique du champ en 2D. L’ensemble des résultats issus de cette

validation démontre bien la validité de l’approche de modélisation développée dans la

mesure où l’hypothèse 2D est respectée. Bien entendu, cette confirmation n’est pas

seulement basée sur l’exemple de la machine considérée MSE-1. De nombreuses

validations ont été réalisées sur d’autres machines pour différents cahiers des charges

comme présenté dans les références [95], [119] et [120].

La modélisation proposée est parfaitement adaptée à l’étude et à l’analyse des machines

sans encoches à aimants permanents. Le fait qu’elle permet de relier les expressions des

grandeurs électromagnétiques aux différentes dimensions et caractéristiques de la machine

et qu’elle assure un calcul rapide et précis, rend son utilisation très intéressante dans le

cadre d’une procédure d’optimisation itérative comme ce qui est proposé dans la suite de la

thèse.

Page 128: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Equation Chapter 3 Section 1

CHAPITRE III

3 CALCUL DES PERTES

3.1 Introduction

Dans les machines sans encoches à aimants permanents à haute vitesse, les pertes générées

sont très significatives par comparaison avec les pertes des machines tournant à basse

vitesse. Ces pertes, qui se manifestent sous forme de pertes Joule, de pertes magnétiques et

de pertes mécaniques au stator et au rotor, doivent être calculées d’une manière plus précise

pour garantir un dimensionnement thermique efficace de la machine.

Parmi ces pertes, les pertes par courants de Foucault induites dans les différentes parties de

la machine constituent une part importante. Elles ont une importance particulière à haute

vitesse car elles augmentent rapidement avec la fréquence. Au stator, ces pertes sont

produites principalement dans la culasse du stator (en SMC ou en tôles) et dans le bobinage

à cause de l’effet de peau et de proximité. Au rotor, elles sont induites dans la culasse du

rotor, dans les aimants et dans la frette conductrice. Par ailleurs, lorsque la culasse du stator

est réalisée en SMC, les effets de bord (effets 3D) peuvent avoir une influence significative

sur les pertes par courants de Foucault qui y sont induites. Ces pertes peuvent être

déterminées à partir d’un calcul du champ magnétique en 2D en supposant que la longueur

de la machine est infinie. Cependant, comme nous allons le montrer dans ce chapitre, cette

hypothèse simplificatrice conduit à un résultat imprécis pour une longueur axiale finie de la

machine puisque les effets 3D sur les pertes par courants de Foucault deviennent de plus de

plus significatives lorsque le rapport entre la longueur et le pas polaire diminue. Par

conséquent, pour avoir un dimensionnement optimal de la machine, nous devons tenir

Page 129: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 107

compte des ces effets 3D tout en assurant, cependant, un bon compromis entre la précision

et le temps de calcul.

Dans ce chapitre, nous présentons le calcul des différentes pertes mises en jeu dans les

machines sans encoches étudiées. Nous effectuons, dans un premier temps, le calcul des

pertes Joule dans le bobinage du stator en considérant l’effet de peau et de proximité.

Ensuite, nous procédons au calcul analytique des pertes magnétiques en charge dans la

culasse du stator que ce soit pour des matériaux SMC ou des tôles laminées. Après avoir

établi le calcul des pertes par courants de Foucault dans les aimants permanents et dans la

frette conductrice et effectué une analyse de l’influence de la frette et de la segmentation

des aimants sur ces pertes, nous déterminons les pertes mécaniques dues à la friction de

l’air sur le rotor et au frottement dans les roulements. Le calcul analytique des pertes

magnétiques dans le stator en SMC est ensuite validé par des simulations en calcul

numérique du champ en 2D. Des simulations en calcul numérique du champ en 3D sont

aussi effectuées afin de quantifier l’influence des effets de bord sur les pertes par courants

de Foucault dans le matériau SMC. Dans cette deuxième validation, une méthode de

correction des pertes par courants de Foucault calculées en 2D est proposée en se basant sur

les résultats des simulations numériques en 3D qui peuvent être effectuées soit en

magnétodynamique en pas à pas dans le temps ou en complexe en régime permanent. Cette

méthode sera utilisée dans les procédures d’optimisation détaillées dans le chapitre 5. Une

validation expérimentale du calcul des pertes magnétiques à vide dans le stator en SMC est

présentée. Elle repose sur la mesure du couple résistant correspondant à ces pertes. Nous

effectuons, finalement, une analyse de l’influence de la conductivité du matériau SMC, de

l’épaisseur de la culasse du stator et de l’angle de commande sur les pertes magnétiques en

charge au stator.

3.2 Pertes Joule au stator

Les pertes Joule dans le bobinage du stator de la machine sans encoches sont calculées par

une approche conventionnelle qui consiste à effectuer la somme de deux composantes : une

première composante correspondant aux pertes Joule classiques dues à la valeur continue

de la résistance du stator, et une deuxième composante correspondant aux pertes par

Page 130: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 108

courants de Foucault dues à l’effet de peau et de proximité [87]. Contrairement aux

machines conventionnelles, cette deuxième composante peut être significative dans les

machines sans encoches à haute vitesse à cause de la haute fréquence de fonctionnement et

du fait que les conducteurs sont directement exposés au champ magnétique produit par les

aimants tournants.

3.2.1 Pertes Joule correspondant à la résistance continue

Les pertes Joule dans le bobinage des trois phases de la machine correspondant à la

résistance continue peuvent être calculées en appliquant la formule classique suivante :

20 03J s effP R I= (3.1)

où Rs0 est la valeur continue de la résistance de l’enroulement d’une phase de la machine

dont l’expression est déterminée dans le chapitre 2 (cf. partie 2.8.3) et Ieff est la valeur

efficace du courant circulant dans une phase calculée en tenant compte de la contribution de

tous les harmoniques de temps suivant l’expression :

2

1,5,7,... 2h

effh

II+∞

=

= ∑

(3.2)

3.2.2 Pertes supplémentaires dues à l’effet de peau et de proximité

Les pertes supplémentaires dans les conducteurs du bobinage de la machine sont dues à la

fois à l’effet de peau et à l’effet de proximité. Les pertes dues à l’effet de peau peuvent être

déterminées à partir de l’évaluation de la valeur alternative de la résistance d’un simple

conducteur isolé en supposant que les pertes dues à l’effet de proximité sont nulles. Pour

des conducteurs en cuivre de section circulaire, de rayon rcu, de perméabilité µ0 et de

conductivité σcu, ces pertes supplémentaires peuvent être calculées par unité de longueur en

utilisant l’expression suivante [26], [96] :

3/2 3/2

201 03/2

1

( )[ / ] 3 real2 ( )

cuJext s rms

cu cu cu

j k I j k rP W m R Ir I j k r

δ δ

δπ σ

= − (3.3)

où I0 et I1 sont respectivement les fonctions de Bessel modifiées de première espèce d’ordre

0 et 1, et kδ est une constante liée à la profondeur de pénétration δ par le relation suivante :

Page 131: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 109

02

cukδ ωµ σδ

= = (3.4)

Les pertes par courants de Foucault dues à l’effet de proximité sont calculées en négligeant

les pertes dues au champ magnétique interne produit par les courants statoriques (l’effet de

proximité entre les conducteurs eux-mêmes est négligé). Dans ce cas, les pertes restantes,

qui correspondent au champ magnétique externe tournant créé par les aimants permanents,

sont déterminées à partir du calcul des pertes induites dans un simple conducteur exposé à

un champ magnétique qu’on suppose, dans un premier temps, sinusoïdal (cf. Fig. 3.1). En

supposant que l’effet des courants de Foucault sur la distribution du champ magnétique est

négligé, la valeur moyenne des pertes dissipées dans un conducteur sont calculées en

intégrant le carré de la densité des courants de Foucault sur tout le volume de ce

conducteur. Il vient alors [88], [117] :

2 2 2

2 1 .8

cu cuJext c cu

B rP s Lω σ− =

(3.5)

où B

est la valeur maximale de l’induction dans le conducteur, scu est sa section et L est sa

longueur qui correspond à la longueur active de la machine.

En généralisant cette expression à tous les conducteurs de la machine sans encoches et en

considérant la contribution de chaque harmonique d’espace du champ magnétique de rang

k, les pertes supplémentaires dues à l’effet de proximité peuvent être évaluées à partir

de l’expression suivante [26], [121] :

( )2 2 2

2 22 , ,

1 8cu cu

Jext r k k cuk

k rP B B Vθω σ+∞

=

= +∑

(3.6)

où ,r kB

et ,kBθ

représentent respectivement les valeurs maximales des composantes radiale

et tangentielle de l’induction au milieu du bobinage correspondant à chaque harmonique

d’espace. Ces inductions peuvent être calculées directement à partir de la solution du

problème électromagnétique résolu dans le chapitre 2. Le terme Vcu représente le volume

total du cuivre du bobinage où Vcu=ScuL. Notons que seul le volume des conducteurs

exposés au champ magnétique est considéré sans prise en compte des têtes de bobines.

Page 132: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 110

Dans les machines sans encoches à haute vitesse, les pertes par effet de proximité résultant

de la rotation des aimants permanents sont prépondérantes et souvent calculées seules en

négligeant les pertes dues à l’effet de peau [88], [122]. Lors du dimensionnement d’une

machine sans encoches pour un cahier de charges donné, l’utilisation des fils de Litz peut

être bénéfique car elle conduit à la diminution de l’ensemble de ces pertes et

éventuellement à l’augmentation du couple. Cela n’est pas toujours vrai puisque le

coefficient de remplissage des encoches devient plus faible et peut conduire, cependant, à

une diminution du couple. Dans le chapitre 6, une étude est effectuée montrant que le choix

optimal entre l’utilisation des fils de Litz ou des conducteurs standards dépend des

spécifications du cahier des charges, notamment de la vitesse de rotation.

+I

-I

BB

Figure 3.1 : Induction des courants de Foucault dans un conducteur exposé à un champ

magnétique alternatif externe

3.3 Pertes magnétiques au stator

Les pertes magnétiques au stator peuvent être très importantes dans les machines sans

encoches à haute vitesse. Elles se manifestent sous forme de pertes d’hystérésis et de pertes

par courants de Foucault qui sont générées par les composantes fondamentale et

harmoniques du champ magnétique tournant dans la culasse du stator. Ces pertes dépendent

de l’induction magnétique, de la fréquence et du volume du circuit magnétique. Dans cette

partie, nous présentons le calcul analytique de ces pertes en se basant sur les résultats de la

modélisation électromagnétique effectuée dans le chapitre 2. Ce calcul est effectué pour des

culasses du stator qui sont réalisées par des matériaux laminés (tôles) et par des matériaux

SMC.

Page 133: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 111

3.3.1 Pertes magnétiques dans un stator en fer laminé

Les pertes magnétiques totales dissipées dans les tôles de la culasse du stator sont calculées

en utilisant la méthode générique la plus utilisé dans la littérature moderne. Elle consiste à

effectuer la somme des pertes d’hystérésis et des pertes par courants de Foucault et à

ajouter à ces dernières une autre composante appelée les pertes excédentaires [109], [123],

[124].

Les pertes d’hystérésis sont dues au caractère discontinu du processus de magnétisation.

Elles sont égales à l’air du cycle d’hystérésis de la courbe B(H). Ces pertes peuvent être

calculées en utilisant la formule empirique de Steinmetz. En supposant que la forme d’onde

de l’induction ne cause pas de cycle mineur, la densité de ces pertes est exprimée par :

[ / ] xh h mP W kg k f B= (3.7)

où kh et x sont des constantes qui caractérisent le matériau des tôles utilisées et qui peuvent

être déterminées expérimentalement ou à partir des données des fabricants. f et Bm

représentent respectivement la fréquence et la valeur maximale de l’induction en charge

dans la culasse du stator sur une période électrique de régime permanent.

Les pertes par courants de Foucault totales induites dans la culasse du stator sont calculées

comme la somme des pertes par courants de Foucault classiques et des pertes excédentaires

selon l’expression qui suit [109], [124] :

2 1.52

0 0

1 ( ) 1 ( )[ / ]12

T Tt tcf cfc exc exc

t

e dB t dB tP W kg P P dt k dtT dt T dt

σρ

= + = + ∫ ∫ (3.8)

où σt, ρt et et représentent respectivement la conductivité, la densité massique et l’épaisseur

des tôles. kexc est une constante qui peut être déterminée expérimentalement.

Pour une distribution sinusoïdale de l’induction dans la culasse du stator, l’équation (3.8)

devient :

2 2

2 2 1.5 1.5[ / ] 8.676t t

cf m exc mt

eP W kg f B k f Bσ πρ

= + (3.9)

Page 134: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 112

Puisque la distribution de l’induction n’est pas vraiment sinusoïdale, nous pouvons calculer

les pertes par courants de Foucault en appliquant cette dernière expression à tous les

harmoniques de l’induction et calculer ensuite la somme des pertes obtenues [18], [125].

3.3.2 Pertes magnétiques dans un stator en SMC

Pour une machine sans encoches munie d’une culasse statorique en SMC, les pertes

magnétiques au stator sont calculées en supposant qu’elles peuvent être séparées en pertes

par courants de Foucault et pertes d’hystérésis. Les pertes excédentaires dans les matériaux

SMC sont très faibles et peuvent être négligées [74], [126]. Ces deux composantes de

pertes sont déterminées en utilisant la distribution du champ magnétique résultant calculée

pour un fonctionnement en charge de la machine et en tenant compte de l’influence de

l’angle de commande ψ entre la fem et le fondamental du courant d’alimentation [127].

3.3.2.1 Pertes par courants de Foucault

Les pertes par courants de Foucault sont calculées par deux méthodes : une première

méthode basée sur l’intégration de la densité des courants de Foucault sur le volume total

de la culasse du stator; et une deuxième méthode basée sur l’utilisation du vecteur de

Poynting.

• Première méthode : intégration de la densité des courants de Foucault

En utilisant cette première méthode, la valeur moyenne des pertes par courants de Foucault

sur une période électrique est déterminée à partir de l’expression suivante [128] :

*2

0 ( )

.1 .2

cs cscf V

s

J JP dV d tπ

ωπ σ

=

∫ ∫∫∫ (3.10)

V est le volume de la culasse du stator et Jcs est la densité des courants de Foucault

résultante qui inclut deux composantes : la densité Jcs,m associée au champ magnétique à

vide et qui est induite par chaque harmonique d’espace k de la distribution du vecteur de

magnétisation; et la densité Jcs,s liée au champ magnétique de réaction d’induit et qui est

due aux combinaisons de chaque harmonique de temps h inclus dans la forme d’onde du

courant statorique et de chaque harmonique d’espace k contenu dans la distribution du

Page 135: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 113

bobinage ( , ,cs cs m cs sJ J J= + ). Le développement du produit *.cs csJ J permet de constater qu’il

est composé de 3 termes :

( ) ( ) ( )* * * * *, , , , , , , ,. . . . .cs cs cs m cs m cs s cs s cs m cs s cs m cs sJ J J J J J J J J J= + + + (3.11)

Pour un fonctionnement à vide Jcs,m≠0 et Jcs,s=0, les pertes par courants de Foucault dans la

culasse du stator sont créées seulement par les harmoniques d’espace du vecteur de

magnétisation. Cependant, pour un fonctionnement en charge Jcs,m≠0 et Jcs,s≠0, ces pertes

sont créées par l’interaction du champ magnétique à vide et du champ de réaction d’induit.

La contribution du troisième terme de l’équation (3.11) au niveau des pertes n’est effective

que pour les combinaisons d’harmoniques de temps et d’espace qui sont synchrones avec le

rotor (c’est-à-dire que k+h=0). Son influence est directement liée aux composantes

magnétisantes et démagnétisantes de la réaction d’induit qui peut être contrôlée par une

stratégie de commande appropriée pour un fonctionnement en moteur par exemple

(commande de l’angle ψ). En fait, pour une réaction d’induit transversale (ψ=0), la

contribution du 3ème terme est nulle. Cependant, ce terme augmente les pertes par courants

de Foucault quand la réaction d’induit est magnétisante et il les diminue lorsque la réaction

d’induit est démagnétisante. Un effet similaire est aussi remarqué sur l’évolution des pertes

par effet d’hystérésis en fonction de l’angle de commande (cf. paragraphe 3.9.3).

En utilisant les techniques d’intégration des fonctions de Bessel, le développement de

l’expression (3.10) permet de constater que les pertes par courants de Foucault dans la

culasse du stator en SMC peuvent être calculées comme la somme de trois composantes

exprimées comme suit :

, , ,cf cf m cf s cf msP P P P= + + (3.12)

Avec :

5

4

(5), (5) *

, ,0

( )2 Imag ( )so

si

r R

m kcf m m k

krs r R

dR rLP kp r R rdr

πµ µ

=+∞

=−∞ =

−= Ω

∑ (3.13)

(5), ,2 (5)*

, , , ,0

( )2 Imag ( )so

si

R

s k hcf s k h s k h

k hrs R

dR rLP hp J r R rdr

πµ µ

+∞ +∞

=−∞ =−∞

= Ω

∑ ∑

(3.14)

Page 136: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 114

(5)* (5), , ,(5) (5)*

, , , , ,0

( ) ( )2 Imag ( ) ( )so

h

si

R

s h h m h jcf ms h h m h s h h

hrs R

dR r dR rLP hp J r R r r R r edr dr

ϕπµ µ

+∞−

=−∞

−= Ω −

(3.15)

où Imag correspond à la partie imaginaire de la variable complexe, Rsi et Rso sont les rayons

interne et externe de la culasse statorique et les fonctions (5),m kR et (5)

, ,s k hR sont définies par :

(5) (5) (5), , , , ,( ) ( ) ( )m k m k m k m k m kR r A I r B K rα ατ τ= + (3.16)

(5) (5) (5), , , , , , , , , ,( ) ( ) ( )s k h s k h s k h s k h s k hR r A I r B K rα ατ τ= + (3.17)

• Deuxième méthode : utilisation du vecteur de Poynting

Les pertes par courants de Foucault au stator peuvent aussi être calculées en intégrant le

vecteur de Poynting sur une surface cylindrique S localisée au rayon interne de la culasse

du stator Rsi. En exprimant ce vecteur dans le référentiel statorique, les pertes par courants

de Foucault correspondent, dans ce cas, à la puissance électromagnétique transmise des

aimants et du bobinage vers la culasse statorique à travers la surface d’intégration S.

L’expression permettant de calculer la valeur moyenne de ces pertes est alors :

( )( )2

0 ( )

1 Real2cf S

P dS d tπ

ωπ

= − Ρ∫ ∫∫

(3.18)

où Ρ

est le vecteur de Poynting défini par [26], [128] :

* * *z z rE H E H r E Hθ θΡ = × = − +

(3.19)

E et H désignent respectivement le champ électrique et le champ magnétique résultants. En

utilisant cette définition du vecteur de Poynting, l’expression qui permet de calculer les

pertes par courant de Foucault est :

( )2 2 *

0 0

1 Real2cf si z sP L R E H d d t

π π

θ θ ωπ

= ∫ ∫ (3.20)

Comme pour la première méthode, le développement de cette expression conduit à 3

composantes exprimées comme suit :

Page 137: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 115

(5)*

,(5), ,

0

( )2 Real ( )si

si

m ksicf m m k r R

krs r R

dR rLRP jkp R rdr

πµ µ

+∞

==−∞ =

= Ω

∑ (3.21)

(5)*, ,2 (5)

, , , ,0

( )2 Real ( )si

si

s k hsicf s k h s k h r R

k hrs r R

dR rLRP jhp J R rdr

πµ µ

+∞ +∞

==−∞ =−∞ =

− = Ω

∑ ∑

(3.22)

(5), ,(5)*

,

, , (5)0 , (5)*

, ,

( )( )

2 Real( )

( )

h

si

si

h

si

si

s h h jm h r R

r Rsicf ms h h

hrs m h js h h r R

r R

dR rR r e

drLRP jhp JdR r

R r edr

ϕ

ϕ

πµ µ

=+∞

=

=−∞ −

==

= Ω

+

(3.23)

Notons que les deux méthodes proposées pour le calcul des pertes par courants de Foucault

donnent des résultats identiques.

3.3.2.2 Pertes d’hystérésis

Étant donné que la perméabilité des matériaux SMC est faible et que l’induction dans la

culasse du stator ne produit pas généralement de cycle d’hystérésis mineur, les pertes

d’hystérésis peuvent être calculées en utilisant un modèle statique d’hystérésis basé sur une

simple expression analytique de la densité de ces pertes exprimée par [66], [126] :

[ / ] xh m mP W kg C B f= (3.24)

où Cm et x sont des coefficients spécifiques au matériau SMC qui sont déterminés

expérimentalement. Bm représente la valeur maximale de l’induction en charge dans la

culasse du stator déterminée à partir du modèle analytique de calcul du champ. En utilisant

une discrétisation spatiale radiale et tangentielle appropriée de la culasse, l’induction Bm est

calculée au milieu de chaque maille sur une période électrique de régime permanent

(période temporelle) et les pertes d’hystérésis correspondantes à chaque maille sont

déterminées. Les pertes d’hystérésis totales sont alors obtenues par une sommation sur tout

le volume de la culasse du stator.

En pratique, le calcul des pertes d’hystérésis est implanté sous forme d’un post-processeur.

Afin de minimiser le temps de calcul, la discrétisation de la culasse du stator est effectuée

Page 138: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 116

seulement sur 1/3 de pôle. Les répartitions spatiales de l’induction maximale Bm et des

pertes se répètent d’une façon périodique sur chaque 1/3 de pôle à cause de l’effet de

chaque phase (cf. partie 3.6). Notons que cette approche de calcul des pertes d’hystérésis a

été aussi appliquée dans le cas des machines dont les stators sont en fer laminé.

3.4 Pertes au rotor

À cause de la haute vitesse, la prédiction des pertes engendrées au niveau du rotor est

essentielle pour assurer une évaluation plus précise des performances des machines sans

encoches et un dimensionnement optimal. Ces pertes se manifestent essentiellement sous

formes de pertes par courants de Foucault dans les aimants permanents et éventuellement

dans la frette quand elle est conductrice, ainsi que sous forme de pertes fer dans la culasse

du rotor. Ces pertes sont dues aux combinaisons des harmoniques de temps et d’espace du

champ magnétique de réaction d’induit qui sont asynchrones avec le rotor (k+h≠0) et qui

résultent de la distribution non sinusoïdale du bobinage et des formes d’onde non

sinusoïdales des courants d’alimentation au stator.

Dans cette partie, nous présentons le calcul des pertes par courants de Foucault induites

dans les aimants et dans la frette conductrice en considérant l’effet de la segmentation

transversale des aimants et en négligeant les effets 3D. La segmentation d’un aimant en

plusieurs blocs élémentaires peut être utilisée pour constituer un aimant de type Halbach

par exemple ou tout simplement pour diminuer les pertes au rotor. Les pertes magnétiques

(pertes par courants de Foucault et pertes d’hystérésis) dans la culasse du rotor sont

considérées comme négligeables. Une investigation de l’influence de la frette conductrice

et de la segmentation des aimants sur les pertes totales au rotor est présentée par la suite.

3.4.1 Pertes par courants de Foucault dans les aimants

Le calcul des pertes par courants de Foucault dans les aimants est effectué en utilisant la

distribution du champ magnétique de réaction d’induit établie dans le chapitre 2 où l’effet

des courants de Foucault dans les aimants sur le champ magnétique dans l’entrefer a été

négligé. Cette simplification est raisonnable puisque les aimants de type terre-rares sont

moins conducteurs et que leur perméabilité est proche de 1. Ainsi, la profondeur de

Page 139: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 117

pénétration des courants de Foucault est largement supérieure aux dimensions des aimants

et leur intensité n’est limitée que par la résistance des aimants [129].

Les pertes par courants de Foucault totales dans les aimants Pm sont calculées comme la

somme des pertes générées dans chaque segment d’aimant (Pm,n). Ces dernières pertes sont

calculées en intégrant la densité des courants de Foucault induits sur le volume total du

segment (d’indice n) comme illustré par l’expression suivante [103], [129] :

,

,

*22

, 02

.Real2

m nm

m nro

R m mm n rR

m

J JLP rdrd d tε

π

ε θ ωπ σ−

=

∫ ∫ ∫ (3.25)

où Rro et Rm représentent respectivement le rayon interne et externe des aimants notés aussi

r1 et r2, σm est leur conductivité, εm,n est l’angle correspondant à la largeur angulaire du

segment d’aimant et Jm est la densité des courants induits. Cette densité doit être exprimée

dans le référentiel du rotor. Elle peut être calculée à partir du potentiel vecteur de réaction

d’induit établi dans la zone des aimants :

(1) ( , , )( , , ) ( )s r

m r mA r tJ r t C t

tθθ σ ∂

= − +∂

(3.26)

( )C t est une constante qui permet d’avoir, à chaque instant, un courant total nul à

l’intérieur du segment d’aimant et qui peut être déterminée en calculant l’intégrale

suivante :

,

,

2

2

0m n

m

m nro

R

m rRJ rdrd

ε

ε θ− =∫ ∫ (3.27)

Le développement de l’expression (3.25) permet de trouver l’équation finale qui conduit à

la détermination des pertes par courants de Foucault dans chaque segment d’aimant :

, , ,1 , ,2 , avec: 0m n m n m nP P P k h= + + ≠ (3.28)

Avec :

( )2 (1), ,1 , , , ,Real ( )m n m n m k h s k h

k hP L k h p J Fε σ

+∞ +∞

=−∞ =−∞

= + Ω ∑ ∑

(3.29)

Page 140: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 118

( )2

, (1) (1)*, ,2 , , , , ,2 2

,

1 cos4 Real m nmm n k h s k h s k h

k hm n m ro

kpL k hP J G Gk R R

εσε

+∞ +∞

=−∞ =−∞

−+ = Ω − ∑ ∑

(3.30)

et :

( ) ( )

( ) ( )

( )

2 2 2 21 2 1 2(1) (1)* (1) (1)*

, , , , , , , ,2

2 21 2(1) (1)* (1)* (1)

, , , , , , , ,(1), , 2 2

1 2(1) (1)* (1), , , , , ,

22

1 / 1 /2 2 2 2 si 1

1 /2

1 /2 2

s k h s k h s k h s k h

s k h s k h s k h s k h

s k h

s k h s k h s k h

r r r rA A B B

r k pr r

A B A BF

r rA A B

r

α α

α

α α α

α

+ −

+

− − +

+ − = ≠ − + +

=−

++

( ) ( )

(1)* 2, ,

1

21 2(1) (1)* (1)* (1)

, , , , , , , ,

lnsi 1

1 /2

s k h

s k h s k h s k h s k h

rBr

k pr r

A B A B

α

= = − + +

(3.31)

( ) ( )

( )

2 21 2 1 22 (1) (1)

2 , , , ,

(1), , 2

1 22 (1) (1) 22 , , , ,

1

1 / 1 /si 2

2 2

1 /ln si 2

2

s k h s k h

s k h

s k h s k h

r r r rr A B k p

Gr r rr A B k p

r

α α

α

αα α

αα

+ −

+

− − + = ≠

+ − = − + = = +

(3.32)

La méthode proposée pour le calcul des pertes dans les aimants segmentés a été inspirée

des références [103] et [129] où les composantes radiale et tangentielle de l’induction sont

considérées. Une autre méthode moins précise peut être trouvée dans les références [5] et

[130]. Ces dernières considèrent que l’induction dans un segment d’aimant a seulement une

composante radiale et que son amplitude est uniforme sur toute la largeur du segment.

3.4.2 Pertes par courants de Foucault dans la frette

Les pertes par courant de Foucault générées dans la frette sont déterminées en utilisant trois

méthodes : par intégration de la densité des courants de Foucault Jc sur le volume total de la

frette, par utilisation du vecteur de Poynting et par utilisation du tenseur de Maxwell. Ces

trois méthodes proposées donnent des résultats identiques.

Page 141: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 119

• Première méthode : intégration de la densité des courants de Foucault

Pour calculer les pertes par courants de Foucault suivant cette méthode, il suffit d’intégrer

le terme *.c cJ J sur tout le volume de la frette et de déterminer ensuite la valeur moyenne du

résultat sur une période électrique :

*2

0 ( )

.1 .2

c cc V

c

J JP dV d tπ

ωπ σ

=

∫ ∫∫∫ (3.33)

Après tout développement, nous trouvons :

3

2

(2), ,2 (2) *

, , ,0

( )2 ( ) Imag ( ) , avec: 0co

m

r R

s k hc k h s k h

k hrc r R

dR rLP k h p J r R r k hdr

πµ µ

=+∞ +∞

=−∞ =−∞ =

= + Ω + ≠

∑ ∑

(3.34)

où Rm et Rco sont les rayons interne et externe de la frette, µrc est sa perméabilité relative et (2), ,s k hR est une fonction définie par :

(2) (2) (2), , , , , , , , , ,( ) ( ) ( )s k h s k h c k h s k h c k hR r A I r B K rα ατ τ= + (3.35)

• Deuxième méthode : utilisation du vecteur de Poynting

Les pertes par courants de Foucault dans la frette peuvent aussi être calculées en

déterminant la valeur moyenne de la puissance électromagnétique qui traverse l’entrefer.

Cette puissance est obtenue par une intégration du vecteur de Poynting sur une surface

cylindrique S de rayon Ro située dans la zone d’entrefer. Elle correspond aux pertes par

courants de Foucault générées dans la frette seulement si le calcul est effectué dans le

référentiel du rotor. C’est-à-dire que les grandeurs électromagnétiques sont exprimées dans

ce référentiel et que la surface d’intégration S tourne en synchronisme avec le rotor [26].

Dans ce cas, les pertes peuvent être calculées à partir de :

( )2 2 *, ,0 0

1 Real2c o s z s rP L R E H d d t

π π

θ θ ωπ

= ∫ ∫ (3.36)

où Es et Hs sont respectivement le champ électrique et le champ magnétique créés par les

courants statoriques.

Le développement de l’équation (3.36) permet d’écrire :

Page 142: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 120

(3)*, ,2 (3)

, , ,0

( )2 Real ( ) ( ) , avec: 0o

o

s k hoc k h s k h r R

k h r R

dR rLRP j k h p J R r k hdr

πµ

+∞ +∞

==−∞ =−∞ =

= + Ω + ≠

∑ ∑

(3.37)

Le rayon Ro peut être égal à n’importe quel rayon compris dans la région d’entrefer. C’est-

à-dire que : [ ]3 4,o co bR r R r R∈ = = . La fonction (3), ,s k hR est exprimée par :

(3) (3) (3), , , , , ,( )s k h s k h s k hR r A r B rα α−= + (3.38)

Notons que si nous plaçons la surface d’intégration S sur la surface externe de la frette

(Ro=Rco), nous pouvons aussi calculer les pertes dans la frette en utilisant les résultats de la

solution du problème électromagnétique dans la zone de la frette (i=2). Dans ce cas, nous

aurons :

(2)*, ,2 (2)

, , ,0

( )2 Real ( ) ( ) , avec: 0co

co

s k hcoc k h s k h r R

k hrc r R

dR rLRP j k h p J R r k hdr

πµ µ

+∞ +∞

==−∞ =−∞ =

= + Ω + ≠

∑ ∑

(3.39)

• Troisième méthode : utilisation du Tenseur de Maxwell

Tel qu’il a été expliqué dans le paragraphe 2.8.4, les pertes dissipées dans la frette peuvent

être calculées à partir du couple moyen exercé sur la frette. Ce couple, qui a été calculé à

partir du Tenseur de Maxwell dans le chapitre 2, correspond au 2ème terme de l’équation

(2.132) exprimé comme suit :

2

2 2 (3) * (3)2 2, , , , , , ,

1 1 1 10

8 .Imag ( ) . ( ) , avec :em em k h k h s k h s k hk h k h

LpT T k J A t B t k hπµ

+∞ +∞ +∞ +∞

= = = =

= = ≠ ∑∑ ∑∑

(3.40)

Par analogie avec une machine asynchrone, les pertes générées dans la frette par les champs

magnétiques tournants de réaction d’induit résultant de la combinaison de chaque

harmonique de temps h et d’espace k peuvent être calculées en introduisant le glissement de

ces champs par rapport au rotor (gk,h). Il vient alors :

,2, ,

1 1 ,

, avec :1

k hc em k h

k h k h

gP T k h

g

+∞ +∞

= =

= Ω ≠−∑∑ (3.41)

où le glissement gk,h est défini par l’expression suivante pour les champs harmoniques

tournants dans le même sens que le fondamental et dans le sens opposé :

Page 143: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 121

,

/ si 6 ,// si 6 ,

/

k h

h k h k k h l lh k hgh k h k k h l l

h k h

Ω − Ω − = − = ∈ Ω= − Ω − Ω + = + = ∈ − Ω

(3.42)

3.4.3 Analyse de l’influence de la frette conductrice sur les pertes au rotor

Une frette amagnétique conductrice peut être utilisée dans une machine à aimants

permanents à haute vitesse pour maintenir les aimants et/ou pour réduire l’inductance

transitoire et améliorer la commutation électronique du courant quand la machine est

couplée à un convertisseur statique à commutation de courant. Son utilisation peut aussi

conduire à une diminution des pertes totales dissipées dans le rotor. Afin de vérifier cette

dernière affirmation, nous avons tracé dans la figure 3.2 la variation des pertes totales au

rotor (somme des pertes par courants de Foucault dans les aimants et dans la frette) en

fonction de la vitesse de rotation pour deux situations correspondant aux cas où la frette

amagnétique est conductrice (en cuivre : σc=5.8×107s/m) et non conductrice (σc=0). Les

résultats sont donnés en considérant la machine MSE-1 (cf. annexe B-1) alimentée par des

courants de formes d’ondes rectangulaires avec une amplitude de courant continu Idc=6.3A.

La figure 3.2 présente aussi les pertes par courants de Foucault induites dans les aimants et

dans la frette lorsque cette dernière est conductrice.

Figure 3.2 : Variation des pertes au rotor en fonction de la vitesse de rotation pour les cas où la

frette est conductrice et non conductrice

0 10 20 30 40 50 600

5

10

15

20

Vitesse [103 rpm]

Perte

s [W

]

Pertes aimants

Pertes totales(frette non condutrice)

Pertes totales(frette condutrice)

Pertes frette

Page 144: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 122

Cette figure montre que pour des vitesses moins élevées, l’utilisation d’une frette

conductrice conduit à une augmentation des pertes totales au rotor. Cependant, pour des

vitesses très élevées, son utilisation peut être très bénéfique puisqu’elle conduit à une

diminution de ces pertes. La frette joue le rôle d’un écran magnétique devant les champs de

haute fréquence en les empêchant de pénétrer dans les aimants et dans la culasse du rotor.

De ce fait, les pertes dans les aimants sont réduites et les pertes au rotor sont concentrées au

niveau de la frette.

La figure 3.2 nous permet aussi de remarquer que les pertes générées dans la frette

augmentent légèrement et se stabilisent pour les très hautes vitesses. Cela est dû à l’effet de

peau qui empêche la pénétration des champs de hautes fréquences à l’intérieur de la frette.

Nous remarquons aussi que, lorsque la frette est non conductrice, les pertes par courants de

Foucault générées dans les aimants augmentent pratiquement au carré de la vitesse. Cela

montre que les courants induits ont un effet très faible sur le champ magnétique dans

l’entrefer et permet de justifier l’hypothèse prise précédemment pour le calcul des pertes

dans les aimants.

La figure 3.3 présente la variation des pertes au rotor ainsi que celle de l’inductance

cyclique de la machine, vue par le 5ème harmonique du courant, en fonction de l’épaisseur

de la frette. L’épaisseur totale correspondant à la somme de l’épaisseur de la frette et celle

de l’entrefer est maintenue constante. Les pertes générées dans les aimants diminuent

lorsque l’épaisseur de la frette augmente. Par contre, les pertes dans la frette et les pertes

totales au rotor augmentent rapidement pour les faibles valeurs de l’épaisseur, passent par

un maximum et diminuent par la suite. L’inductance cyclique harmonique diminue aussi

quand l’épaisseur de la frette augmente. Cette diminution de l’inductance influence la

forme d’onde du courant par augmentation des harmoniques de courant et peut conduire à

une augmentation des pertes Joule. Le choix optimal de l’épaisseur de la frette doit alors

assurer une meilleure adaptation du convertisseur statique à la machine tout en garantissant

des performances globales optimales.

Page 145: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 123

Figure 3.3 : Variation (a) des pertes au rotor et (b) de l’inductance cyclique vue par le 5ème

harmonique du courant en fonction de l’épaisseur de la frette

3.4.4 Analyse de l’influence de la segmentation des aimants sur les pertes au rotor

La figure 3.4 présente la variation des pertes par courants de Foucault induites dans les

aimants permanents en fonction du nombre de segments d’aimants par pôle. La machine

MSE-1 a été considérée pour tracer cette courbe avec une frette amagnétique et non

conductrice. Nous remarquons que la segmentation des aimants conduit à une diminution

très significative des pertes. Le fait de segmenter un aimant polaire en deux segments

permet de réduire les pertes d’environ 70%.

Nous pouvons conclure de cette analyse et de celle réalisée précédemment que pour réduire

les pertes totales au rotor, il suffit soit d’ajouter une frette conductrice autour du rotor ou de

segmenter les aimants en petits blocs. Lorsque la machine est couplée à un convertisseur à

commutation de courant, l’utilisation d’une frette conductrice est avantageuse par rapport à

la segmentation des aimants. L’inductance de commutation peut être adaptée afin

d’améliorer la commutation du courant et d’optimiser les performances globales

fondamentales et dynamiques de l’ensemble convertisseur-machine. Cependant, quand la

machine est associée à un convertisseur à commutation de tension, il est préférable d’éviter

l’utilisation d’une frette conductrice car elle réduit l’inductance de commutation et conduit

à une augmentation des amplitudes des harmoniques de courant créés par les harmoniques

de tension [131]. Dans ce cas, la segmentation des aimants peut être utilisée pour réduire

les pertes totales au rotor.

0 0.2 0.4 0.6 0.8 10

2

4

6

8

10

12

14

Épaisseur de la frette [mm]

Perte

s [W

]

Pertes dans les aimantsPertes dans la frette Pertes totales

(a)

0 0.2 0.4 0.6 0.8 10.05

0.1

0.15

0.2

0.25

0.3

Épaisseur de la frette [mm]

Indu

ctan

ce c

ycliq

ue [m

H]

(b)

Page 146: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 124

Figure 3.4 : Variation des pertes par courants de Foucault dans les aimants en fonction du nombre

de segments d’aimants par pôle

3.5 Pertes mécaniques

Souvent négligées dans les machines conventionnelles à basse vitesse, les pertes

mécaniques peuvent devenir significatives dans les machines sans encoches à haute vitesse

et contribuer à l’échauffement du rotor. Leur détermination est donc importante pour

évaluer précisément les pertes totales dans la machine. Généralement, on distingue deux

types de pertes mécaniques :

• Pertes aérodynamiques dues à la friction de l’air sur la surface du rotor en rotation ;

• Pertes par frottement dans les roulements.

3.5.1 Pertes aérodynamiques

Les pertes aérodynamiques sont générées par la friction de l’air qui peut se produire sur la

surface circonférentielle du rotor au niveau de l’entrefer (air confiné dans le volume de

l’entrefer) et sur ses deux surfaces latérales. Ces pertes dépendent de la vitesse de rotation,

des dimensions du rotor et des propriétés de l’air. Dans la littérature, plusieurs auteurs ont

essayé de calculer les pertes aérodynamiques en utilisant des équations analytiques avec des

coefficients empiriques issus des essais expérimentaux sur des cylindres et des disques en

rotation dans un espace libre ou dans une enceinte [132]–[134]. La référence [132] présente

1 2 3 4 5 6 7 80

1

2

3

4

5

6

Nombre de segments d'aimant par pôle

Per

tes

dans

les

aim

ants

[W]

Page 147: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 125

une étude bibliographique exhaustive concernant les méthodes de calcul de ces pertes qui

ont été utilisées dans le cas des machines sans encoches munies de frettes autour du rotor.

Au niveau de l’entrefer d’une machine, les pertes par frottement d’air dépendent aussi de la

distribution des vitesses de l’air liée à la nature d’écoulement. Trois types

d’écoulements peuvent être distingués (cf. Fig. 3.5) :

• Écoulement tangentiel de l’air dû à la rotation du rotor ;

• Écoulement axial de l’air dans le cas de l’utilisation d’un refroidissement par

ventilation ;

• Tourbillons de Taylor dus aux forces centrifuges.

Écoulement tangentiel Écoulement axial

Tourbillons de Taylor

Stator

Rotor

Entrefer

Direction axiale

Figure 3.5 : Types d’écoulements d’air dans l’entrefer d’une machine électrique [27], [132]

La nature de chaque écoulement est décrite par le nombre de Reynolds qui représente le

rapport entre les forces d’inertie et les forces de viscosité dans un fluide. L’écoulement

tangentiel de l’air est décrit par le nombre de Reynolds exprimé par l’équation suivante et

qui correspond au cas où le rotor, modélisé comme un cylindre, tourne en présence d’un

stator et d’un entrefer :

Rees d

e R e Rρν ν

Ω Ω= = (3.43)

où Ω est la vitesse de rotation, e est l’entrefer mécanique et R est le rayon externe du

cylindre. ρ, νs et νd représentent respectivement la masse volumique, la viscosité

Page 148: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 126

cinématique et la viscosité dynamique de l’air qui dépendent de la température. Dans le cas

où nous disposons d’un cylindre ou d’un disque qui tourne dans un espace libre (sans

stator), le nombre de Reynolds devient :

2

Rerd

RρνΩ

= (3.44)

Par contre, dans le cas d’un écoulement axial de l’air à travers l’entrefer, le nombre de

Reynolds s’exprime comme suit en introduisant la vitesse moyenne axiale va du fluide :

2Re aa

d

v eρν

= (3.45)

L’analyse du nombre de Reynolds permet de déterminer la nature de l’écoulement de l’air.

Pour des faibles valeurs de ce nombre (inférieures à 2000), les forces de viscosité sont

importantes et l’écoulement est laminaire. Cependant, pour des fortes valeurs, les forces

d’inertie sont prépondérantes et l’écoulement est turbulent. Généralement, dans une

machine électrique fonctionnant à haute vitesse, l’écoulement d’air est toujours turbulent

[27], [132].

Les tourbillons de Taylor sont des fluctuations d’air circulaires qui sont créées dans

l’entrefer de la machine sous l’effet des forces centrifuges. Cet écoulement est décrit par le

nombre de Taylor exprimé par [132] :

2ReeeTaR

= (3.46)

Ces tourbillons apparaissent une fois que le nombre de Taylor dépasse environ 1700.

Les pertes aérodynamiques peuvent être calculées à partir de la résolution des équations de

la mécanique des fluides lorsque l’écoulement est laminaire. Cependant, quand

l’écoulement est turbulent, la résolution devient très complexe. Dans ce cas, les pertes

aérodynamiques sont souvent calculées en introduisant un coefficient de frottement Cf

empirique qui dépend des dimensions du rotor, des propriétés du fluide et de l’état de la

surface de frottement (surface lisse ou rugueuse). Au niveau de l’entrefer de la machine, ces

Page 149: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 127

pertes peuvent être déterminées en calculant les pertes par frottement d’air sur un cylindre

en rotation [132], [134] :

3 41aero fP C R Lρπ= Ω (3.47)

où R correspond au rayon externe de la frette dans le cas d’une machine à haute vitesse à

rotor interne et L est la longueur axiale du rotor.

Le coefficient de frottement Cf peut être calculé en se basant sur une formule empirique

développée par Yamada (1962) à partir des essais expérimentaux sur un cylindre en

rotation à l’intérieur d’un autre cylindre [133]. En plus de l’écoulement tangentiel, l’auteur

considère aussi l’écoulement axial en négligeant l’effet des tourbillons de Taylor et l’effet

de la courbure de l’entrefer. Ce coefficient de frottement peut être calculé à partir de

l’équation suivante quand l’écoulement axial est absent :

( )101 7.54 11.5 log Re 2

2 e ff

CC

= + (3.48)

Cette équation peut être mise sous la forme pratique suivante :

0.24

0.0152Ref

e

C = pour: 4800 Re 6.10e< < (3.49)

Cependant, si le fluide coule tangentiellement et axialement, le coefficient Cf peut être

déterminé à partir de l’expression suivante [132], [135] :

0.3822

0.24

4 Re0.0152 81Re 7 Re

af

e e

C = +

(3.50)

Ce coefficient de frottement est donné en assumant que les surfaces du stator et du rotor au

niveau de l’entrefer sont lisses. Une surface rugueuse du stator (avec des dents par

exemple) augmente légèrement le coefficient de frottement. Cependant, la rugosité au

niveau de la surface du rotor augmente considérablement ce coefficient ainsi que les pertes

aérodynamiques. Typiquement, lorsque une surface du rotor est rugueuse axialement avec

des rainures par exemple, le coefficient de frottement augmente de 2 à 4 fois par rapport à

celui d’une surface lisse [132]. Étant donné que les machines étudiées dans cette thèse sont

Page 150: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 128

sans encoches et équipées avec des frettes entourant le rotor, la considération de surfaces

lisses au niveau du stator et du rotor est alors justifiée.

Les pertes aérodynamiques sur les deux surfaces latérales du rotor sont calculées comme

des pertes de frottement sur un disque de rayons interne Ri et externe Ro qui tourne dans un

espace libre à cause des têtes de bobines :

( )3 5 52

12aero f o iP C R Rρ= Ω − (3.51)

Le coefficient de frottement considéré peut être calculé à partir de [32], [128] :

50.5

50.2

3.87 pour : Re 3.10Re0.146 pour : Re 3.10Re

f rr

f rr

C

C

= < = >

(3.52)

Les expressions (3.47) et (3.51) permettant le calcul des pertes aérodynamiques sur les

différentes surfaces du rotor sont valables pour les machines à haute vitesse à rotor interne

et à rotor externe. Cependant, pour les machines à rotor externe, il faut aussi calculer les

pertes sur la surface circonférentielle externe du rotor en introduisant le nombre de

Reynolds Rer pour un cylindre qui tourne dans un espace libre.

La figure 3.6 montre l’évolution des pertes aérodynamiques en fonction de la vitesse de

rotation et du diamètre externe du rotor (celui de la frette) de la machine MSE-1 où

l’entrefer est fixé. Nous pouvons remarquer que ces pertes augmentent rapidement avec la

vitesse et le diamètre du rotor. Normalement, ces pertes sont limitées par la vitesse de

rotation maximale et par le diamètre maximal du rotor imposé par des considérations

électromagnétiques (production du couple) et par les contraintes mécaniques dues aux

forces centrifuges. Pour les dimensions optimales de la machine MSE-1 correspondant au

point nominal (510 W à 20000 rpm), les pertes aérodynamiques sont très faibles. Elles ne

représentent que 0.16% des pertes totales de la machine puisque les valeurs de la vitesse et

du diamètre du rotor ne sont pas assez élevées.

Page 151: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 129

Figure 3.6 : Évolution des pertes aérodynamiques en fonction du diamètre du rotor et de la vitesse

de rotation pour la machine MSE-1

3.5.2 Pertes par frottement dans les roulements

Les pertes de frottement dans les roulements des machines à haute vitesse peuvent être non

négligeables puisqu’elles dépendent directement de la vitesse de rotation. Elles dépendent

aussi de la nature du système utilisé (roulements avec contact lubrifié ou paliers sans

contact à air comprimé ou à suspension magnétique). Pour les roulements à billes par

exemple, ces pertes peuvent être calculées en utilisant l’expression suivante [27], [136] :

3roul r mrP C D= Ω (3.53)

où Dmr représente le rayon moyen du roulement et Cr est un coefficient donné par les

manufacturiers et qui dépend du type du roulement, du lubrifiant et des conditions de

charge.

3.6 Validation des pertes magnétiques dans le stator en SMC par calcul numérique du champ en 2D

Nous présentons, dans cette partie, une validation du calcul des pertes magnétiques au

niveau du stator des machines sans encoches dont les culasses statoriques sont réalisées en

SMC. Cette validation est effectuée en confrontant les résultats du calcul analytique en

charge des pertes par courants de Foucault et des pertes d’hystérésis avec ceux issus des

00.01

0.020.03

0.04

0

50

1000

20

40

60

80

Diamètre du rotor [m]Vitesse [103 rpm]

Per

tes

aéro

dyna

miq

ues

[W]

Page 152: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 130

simulations en calcul numérique du champ en 2D, à l’aide du logiciel Difimedi. Pour cette

validation, la machine MSE-1 dont la culasse est faite avec le matériau SMC Mat-1 et dont

la frette est non conductrice a été considérée en supposant qu’elle est alimentée par les

mêmes courants de formes rectangulaires considérés au paragraphe 3.4.3 où l’angle de

commande ψ est pris égal à 0 (réaction d’induit transversale).

Le calcul du champ a été effectué en magnétodynamique avec une méthode de pas à pas

dans le temps et la prise en compte du mouvement. La discrétisation du maillage a été

adaptée aux caractéristiques du matériau SMC ainsi qu’aux vitesses de rotation afin de

prendre en compte précisément l’effet de peau dans la culasse du stator. Les pertes par

courants de Foucault ont été calculées directement par une intégration de la densité de ces

courants sur le volume total de la culasse du stator. Cependant, les pertes d’hystérésis ont

été déterminées en utilisant un post-processeur implanté dans le calcul du champ, qui utilise

la même expression considérée pour le calcul analytique de ces pertes (cf. équation (3.24)).

L’induction maximale Bm a été calculée dans chaque maille de la discrétisation sur une

période de régime permanent.

La figure 3.7 présente la distribution spatiale de l’induction maximale Bm dans toute la

structure de la machine ainsi que celle des pertes d’hystérésis dans la culasse du stator pour

une vitesse de rotation de 20000 rpm. Les deux distributions ont des formes dépendantes au

niveau de la culasse statorique et qui se répètent d’une manière identique à chaque 1/3 de

pôle. La distribution spatiale des pertes par courants de Foucault devra avoir une forme

similaire à celle des pertes d’hystérésis puisque ces pertes sont pratiquement

proportionnelles au carré de l’induction maximale.

La figure 3.8 présente la variation des pertes magnétiques en charge dans la culasse du

stator en fonction de la vitesse de rotation lorsque ψ=0. Dans ce cas, le troisième terme du

produit *.cs csJ J de l’équation (3.11) ne contribue pas à la production des pertes par courants

de Foucault. Les pertes d’hystérésis et les pertes par courants de Foucault calculées

analytiquement sont comparées à celles issues des simulations en calcul numérique du

champ. Nous pouvons constater qu’il y a une parfaite coïncidence entre les résultats

obtenus par les deux méthodes de calcul. Nous remarquons aussi que les pertes d’hystérésis

Page 153: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 131

augmentent linéairement avec la vitesse, tandis que les pertes par courants de Foucault

augmentent pratiquement au carré de la vitesse. De plus, les pertes d’hystérésis sont plus

significatives que les pertes par courants de Foucault pour les faibles vitesses à cause de

l’utilisation du matériau Mat-1 qui est moins conducteur. Toutefois, les pertes par courants

de Foucault peuvent devenir très importantes par rapport aux pertes d’hystérésis lorsque la

conductivité du matériau SMC, la vitesse d’opération ou la puissance de la machine

augmentent comme nous l’avons démontré dans les articles [95] et [120].

(a) (b)

Figure 3.7 : Distribution spatiale (a) de l’induction maximale dans la structure de la machine MSE-1 et (b) des pertes d’hystérésis dans la culasse du stator pour une vitesse de 20000 rpm

Figure 3.8 : Variation des pertes magnétiques dans la culasse du stator de la machine MSE-1 en

fonction de la vitesse de rotation (calcul analytique vs calcul numérique du champ)

0 20 40 60 80 1000

20

40

60

80

100

Vitesse [103 rpm]

Per

tes

[W]

Pertes totales

Pertes par courants de Foucault

Pertes d'hystérésis

Page 154: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 132

3.7 Validation des pertes par courants de Foucault dans le stator en SMC par calcul numérique du champ en 3D

3.7.1 Étude de l’influence des effets 3D sur les pertes par courants de Foucault

Afin de quantifier les effets de bord sur les pertes par courants de Foucault générées dans la

culasse statorique en SMC d’une machine sans encoches, nous avons effectué des

simulations en calcul de champ par éléments finis en 3D de la machine MSE-1 en utilisant

le logiciel Flux3D. Ces simulations ont été effectuées pour un fonctionnement à vide de la

machine, en magnétodynamique avec une méthode de pas à pas dans le temps, en

considérant le mouvement de rotation des aimants devant la culasse du stator et en

négligeant la saturation. Notons que le maillage a été adapté pour tenir compte de l’effet de

peau d’une façon plus précise.

La figure 3.9 présente la distribution spatiale 3D de la densité des courants de Foucault à

vide induits dans la culasse du stator représentée pour un seul pôle. Ce résultat est donné

pour le matériau SMC Mat-1 à une vitesse de rotation de 20000 rpm. Nous pouvons

remarquer que les courants de Foucault sont distribués d’une façon non uniforme suivant la

direction axiale de la machine à cause de l’influence des effets 3D. Pour analyser cette

influence sur les pertes par courants de Foucault, nous définissons un coefficient de pertes

Kp qui représente le rapport entre les pertes par courant de Foucault à vide obtenues à partir

des simulations en 3D (Pcf,m-3D) et celles calculées en 2D (Pcf,m-2D). La figure 3.10 présente

la variation de ce coefficient en fonction du rapport entre la longueur axiale de la culasse

statorique de la machine et le pas polaire (L/pp). Nous remarquons que l’influence des

effets 3D sur les pertes par courants de Foucault est moins significative et peut être

négligée lorsque le rapport entre la longueur et le pas polaire est plus important. Cependant,

cette influence devient de plus en plus significative lorsque ce rapport diminue en

diminuant la longueur axiale de la machine. Pour un rapport longueur/pas polaire égal à 1,

les pertes calculées en 3D représentent environ 51% de celles calculées en 2D. En fait,

contrairement à une modélisation en 2D, les courants de Foucault en 3D ne sont plus

perpendiculaires au plan 2D et leurs boucles ne sont plus fermées à l’infini mais à

l’intérieur du matériau SMC conducteur en passant par les bords. Cela augmente davantage

Page 155: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 133

la résistance du parcours de ces courants et diminue le flux capté par les bobines

équivalentes à leurs boucles. Par conséquent, la densité des courants de Foucault diminue

ainsi que les pertes générées par ces courants.

Figure 3.9 : Distribution spatiale 3D de la densité des courants de Foucault à vide dans la culasse

du stator de la machine MSE-1 pour une vitesse de 20000 rpm

Figure 3.10 : Variation du coefficient de pertes Kp=Pcf,m-3D/Pcf,m-2D en fonction du rapport entre la

longueur et le pas polaire de la machine MSE-1 pour une vitesse de 20000 rpm

Les résultats de cette validation montrent que l’hypothèse simplificatrice de 2D (longueur

infinie) n’est pas suffisante pour effectuer un calcul plus précis des pertes par courants de

Foucault dans le stator en SMC. Par conséquent, nous devons tenir compte des effets 3D

afin d’obtenir un dimensionnement optimal de la machine, en particulier lorsque la

longueur axiale n’est pas assez importante par rapport au pas polaire. Cela peut être

effectué en introduisant un facteur de correction approprié des pertes par courants de

0 2 4 6 80

0.2

0.4

0.6

0.8

1

Longueur/pas polaire

Kp=P

cf-3

D/P

cf-2

D

Plan de symétrie

Page 156: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 134

Foucault calculées analytiquement en 2D et qui peut être obtenu à partir des simulations en

calcul numérique du champ en 3D tel qu’expliqué dans la section suivante.

Notons que dans cette thèse, les effets 3D sur les pertes d’hystérésis ont été négligés

puisqu’ils sont moins significatifs sur l’induction dans la culasse du stator. Cependant, les

effets 3D sont considérés dans le calcul du couple d’interaction entre les aimants et les

courants de Foucault induits dans le stator en se basant sur le même facteur de correction

des pertes par courants de Foucault.

3.7.2 Correction des pertes par courants de Foucault par calcul du champ en 3D

Pour tenir compte des effets 3D sur les pertes par courants de Foucault dans la culasse du

stator en SMC, nous pouvons calculer ces pertes en effectuant directement des simulations

en calcul numérique du champ en 3D. Cependant, afin d’implanter le modèle de calcul des

pertes par courants de Foucault dans une procédure de conception par optimisation, nous

proposons de calculer ces pertes analytiquement en 2D pour un fonctionnement en charge

et de les corriger par un facteur de correction que nous pouvons déterminer à partir du

calcul du champ en 3D pour un fonctionnement à vide. Ce calcul peut être effectué soit en

magnétodynamique en instantané dans le temps en considérant la rotation des aimants ou

en complexe en régime permanent sans rotation afin de réduire le temps de calcul.

3.7.2.1 Correction des pertes par calcul du champ en 3D en magnétodynamique

La figure 3.11 montre le processus d’évaluation et de correction des pertes par courants de

Foucault proposé lorsque le calcul du champ en 3D est effectué en magnétodynamique. Les

pertes sont déterminées en charge à partir du calcul analytique en 2D et corrigées par un

facteur de correction qui représente, dans ce cas, le coefficient de pertes Kp étudié

précédemment (cf. Fig. 3.10) et qui définit le rapport entre les pertes à vide calculées en 3D

en magnétodynamique et celles calculées analytiquement en 2D. Notons que le facteur de

correction est calculé ici en considérant seulement le fonctionnement à vide de la machine.

Toutefois, il est utilisé pour corriger les pertes par courants de Foucault pour le

fonctionnement en charge en supposant que les effets 3D sont similaires dans les deux cas

de fonctionnement.

Page 157: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 135

Dans une procédure de conception par optimisation des machines sans encoches, ce

processus de correction des pertes par courants de Foucault peut être implanté et effectué à

chaque itération sur les variables d’optimisation. Cependant, le temps de calcul peut être

prohibitif en particulier avec l’utilisation des méthodes de pas à pas dans le temps au niveau

du calcul du champ en 3D pour tenir compte de la rotation. Pour remédier à ce problème,

un mécanisme original de correction des pertes par courants de Foucault est proposé dans le

chapitre 5 où la correction est effectuée à chaque solution optimale intermédiaire de la

procédure d’optimisation au lieu de chaque itération sur les variables d’optimisation. Cela

conduit à une diminution considérable du temps de calcul tout en assurant un bon

compromis précision-temps de calcul. De plus, pour minimiser davantage le temps de

calcul, nous proposons dans le paragraphe suivant de calculer le facteur de correction des

pertes à partir d’une modélisation équivalente de la machine sans encoches dans le calcul

du champ en 3D en complexe sans rotation des aimants.

Évaluation des pertes à vide par calcul analytique

en 2D (Pcf,m-2D)

Évaluation des pertes en charge par calcul

analytique en 2D (Pcf-2D)

Calcul du facteur de correction des pertes

Kp=Pcf,m-3D/Pcf,m-2D

DonnéesParamètres

Évaluation des pertes à vide par calcul du champ en 3D en magnétodynamique (Pcf,m-3D)

Correction des pertes 2D Pcf=Kp.Pcf-2D

Figure 3.11 : Processus de correction des pertes par courants de Foucault dans la culasse

statorique en SMC d’une machine sans encoches basé sur le calcul numérique du champ en 3D en magnétodynamique

Page 158: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 136

3.7.2.2 Correction des pertes par calcul du champ en 3D en complexe

Dans le calcul numérique du champ en complexe en 2D ou en 3D, les seules sources de

champ qui peuvent être représentées sont des courants sinusoïdaux de fréquences imposées.

De plus, les matériaux sont considérés linéaires et le mouvement ne peut pas être pris en

considération. Dans ce cas, pour calculer les pertes par courants de Foucault dans la culasse

du stator avec le calcul du champ en complexe et minimiser ainsi le temps de calcul, nous

devons tout d’abord démontrer que les pertes calculées en magnétodynamique avec la

rotation des aimants permanents sont équivalentes au double des pertes qui sont générées

par des aimants à l’arrêt (sans rotation du rotor) en supposant qu’ils sont pulsants. C’est-à-

dire que l’intensité de leur aimantation varie d’une façon sinusoïdale dans le temps.

Ensuite, nous devons établir une modélisation équivalente des aimants pulsants basée sur

une représentation ampérienne (densité de courant) afin de faciliter leur implantation dans

le calcul du champ en complexe.

• Équivalence des pertes avec ou sans rotation des aimants

Pour démonter cette équivalence des pertes, nous considérons une machine sans encoches

où le rotor est à l’arrêt et les aimants sont supposés être aimantés radialement avec une

aimantation M qui varie sinusoïdalement dans le temps (aimants pulsants) à une pulsation

ω=pΩ. Le même raisonnement utilisé dans cette démonstration peut être effectué quand il

s’agit des aimants avec des aimantations parallèles ou de type Halbach. Dans ce cas, la

distribution spatiale du vecteur d’aimantation est similaire à celle déjà établie

précédemment dans l’équation (2.29) pour des aimants en rotation. Elle s’exprime par :

( ) ( ) ( )( ),,, cos( )

2s ss j kp p t j kp p tr kjkp

r s r kk k

MM t M p t e e eθ θθθ

+∞ +∞− Ω + Ω

=−∞ =−∞

= Ω = +∑ ∑ (3.54)

À partir de cette équation, nous pouvons remarquer que les aimants pulsants vont créer des

champs harmoniques pulsants de rang k dont les amplitudes varient sinusoïdalement à la

pulsation ω. Chaque champ harmonique pulsant peut être considéré comme la

superposition de deux champs harmoniques tournants direct Hd,k et inverse Hi,k

d’amplitudes constantes proportionnelles à , / 2r kM et qui tournent respectivement aux

vitesses angulaires +Ω/k et –Ω/k.

Page 159: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 137

En utilisant la même procédure de calcul analytique du champ établie au chapitre 2 et en

appliquant la méthode d’intégration de la densité de courant, nous démontrons que les

pertes par courants de Foucault à vide (Pcf,m,arrêt) induites dans la culasse du stator par les

aimants pulsants à l’arrêt du rotor sont égales à la somme des pertes générées par les deux

champs tournants direct et inverse. Étant donné que les pertes générées par ces deux

champs tournants sont égales et que celles correspondant à leur interaction sont nulles, nous

pouvons écrire :

5

4

(5), , (5) *

, , , , , , , , , ,0

( )22. 2. Imag ( )so

si

r R

m d kcf m arrêt cf m d cf m i cf m d m d k

krs r R

dR rLP P P P p r R rdr

πµ µ

=+∞

=−∞ =

−= + = = Ω

∑ (3.55)

où :

(5) (5) (5)

, , , , , , , , , ,

2, , 0

( ) ( ) ( )m d k m d k m d k m d k m d k

m d k rs s

R r A I r B K r

jpα ατ τ

τ µ µ σ

= +

= − Ω (3.56)

La comparaison des expressions (3.13) et (3.55) permet de constater que les pertes par

courants de Foucault à vide (Pcf,m,rot) générées dans la culasse du stator par des aimants en

rotation sont égales au double des pertes (Pcf,m,arrêt) générées par les aimants pulsants à

l’arrêt car les fonctions (5),m kR et (5)

, ,m d kR dépendent respectivement de ,r kM et , / 2r kM . Cela

est vrai seulement pour le fondamental du champ magnétique (k=1). Cependant, il existe

une petite différence dans le cas des autres harmoniques (k≠1), due au fait que les champs

magnétiques harmoniques tournent à +Ω quand le rotor est en rotation (aimants en rotation)

et à ±Ω/k lorsque le rotor est à l’arrêt et les aimants sont pulsants ( 2 2, , ,m k m d kτ τ≠ ). Toutefois,

cette différence peut être négligée puisque l’entrefer des machines sans encoches est

généralement très important et la contribution des harmoniques aux pertes à vide est faible

par rapport à celle du fondamental. Par conséquent, pour calculer les pertes par courants de

Foucault en magnétodynamique avec la rotation des aimants, il suffit de les calculer en

considérant que le rotor est l’arrêt et que les aimants sont pulsants et multiplier, ensuite, le

résultat par un facteur de 2. Ainsi, nous pouvons écrire :

, , , ,2.cf m rot cf m arrêtP P= (3.57)

Page 160: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 138

• Modélisation équivalente des aimants en complexe

Afin d’établir une modélisation équivalente aux aimants pulsants et faciliter ainsi leur

implantation dans le calcul du champ en complexe, nous pouvons nous baser sur une

représentation ampérienne des aimants. Elle consiste à remplacer la distribution de

l’aimantation des aimants par une distribution de courants fictifs (appelés courants

ampériens) à l’intérieur du volume de chaque aimant et sur sa surface extérieure et qui

produit le même champ magnétique que celui créé par les aimants. Cette distribution de

courants comporte une répartition volumique de densité Ja,v et une répartition surfacique de

densité Ja,s exprimées comme suit [85], [137] :

( )

0 mr

rot

µ µ=a,v

MJ

(3.58)

0 mr

nµ µ

×=a,s

MJ

(3.59)

où M

est le vecteur d’aimantation des aimants, µrm est leur perméabilité relative et n est le

vecteur unitaire normal à leurs surfaces.

Étant donné que le vecteur d’aimantation ne dépend pas de la direction radiale,

l’application des formules (3.58) et (3.59) aux différents types d’aimants considérés dans

cette thèse montre que la densité volumique de courant Ja,v est toujours nulle et que seule la

densité surfacique de courant est effective. La figure 3.12 présente les modèles équivalents

des aimants avec des aimantations radiale, parallèle et diamétrale que nous avons obtenues

en appliquant la formule (3.59) de la densité surfacique de courant. Dans le calcul du

champ en complexe, l’implantation des aimants doit être effectuée en variant

sinusoïdalement dans le temps l’amplitude de la densité surfacique de courant afin de

modéliser l’effet pulsatoire des aimants. La fréquence de variation est imposée par la

vitesse de rotation du rotor (ω=pΩ).

Page 161: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 139

,0

sina srm

MJ θµ µ

=

,0

sina srm

MJ θµ µ

=

,0

cos2m

a srm

MJε

µ µ =

θ

,0

a srm

MJµ µ

=

εm/2

,0

sina srm

MJ θµ µ

=

,0

sina srm

MJ θµ µ

=

θ

Figure 3.12 : Modèles équivalents des aimants permanents avec aimantation (a) radiale, (b)

parallèle et (c) diamétrale

• Processus de correction des pertes en complexe

Le processus de correction des pertes par courants de Foucault dans la culasse statorique en

SMC basé sur le calcul du champ en complexe est similaire à celui proposé pour la

magnétodynamique (cf. Fig 3.13). Les pertes en charge calculées analytiquement en 2D

sont corrigées par un coefficient de correction Kc déterminé à partir de la simulation de

deux modèles équivalents de la machine sans encoches à vide en calcul du champ en

complexe en 2D et en 3D. Ces deux modèles sont basés sur la modélisation précédente des

aimants et se diffèrent seulement au niveau des effets 3D.

L’application de ce processus de correction des pertes à la machine MSE-1 nous a permis

de tracer et de comparer la variation du coefficient de correction Kc en fonction du rapport

entre la longueur de la machine et le pas polaire avec celle du coefficient Kp basé sur la

modélisation en magnétodynamique en instantané (cf. Fig. 3.14). Les simulations ont été

effectuées à l’aide du logiciel Flux2D/3D en complexe. Étant donné que la représentation

de la distribution surfacique du courant équivalente aux aimants radiaux de la machine

n’était possible qu’en 2D, nous avons modélisé cette distribution en 2D et en 3D avec une

(a) (b)

(c)

Page 162: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 140

bobine rectangulaire de faible largeur parcourue par un courant sinusoïdal d’une densité

volumique équivalente à la densité surfacique. À partir de la figure 3.14, nous pouvons

remarquer que les deux coefficients sont très proches et que les pertes corrigées avec le

processus de correction en complexe seront légèrement surestimées. Cela n’aura pas une

grande influence sur la conception optimale de la machine.

Évaluation des pertes à vide par calcul du champ en 2D

en complexe (Pcfc,m-2D) (modèle équivalent)

Évaluation des pertes en charge par calcul

analytique en 2D (Pcf-2D)

Calcul du facteur de correction des pertes Kc=Pcfc,m-3D/Pcfc,m-2D

DonnéesParamètres

Évaluation des pertes à vide par calcul du champ en 3D

en complexe (Pcfc,m-3D) (modèle équivalent)

Correction des pertes 2D Pcf=Kc.Pcf-2D

Figure 3.13 : Processus de correction des pertes par courants de Foucault dans la culasse

statorique en SMC d’une machine sans encoches basé sur le calcul numérique du champ en 3D en complexe

La représentation des distributions des densités surfaciques de courant des différents types

d’aimants (cf. Fig. 3.12) dans le calcul du champ en complexe en 2D ou en 3D est plus

difficile à cause des limitations des logiciels du calcul du champ. Idéalement, pour effectuer

ces simulations et avoir une bonne précision, il serait nécessaire d’implanter et de

programmer ces différentes distributions dans ces logiciels. Une autre méthode plus simple

et plus précise est de modéliser et d’implanter directement dans les logiciels du calcul du

champ en complexe des aimants permanents pulsants avec des aimantations dont les

intensités varient sinusoïdalement dans le temps.

Page 163: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 141

Figure 3.14 : Variation des coefficients de correction des pertes Kc et Kp en fonction du rapport

entre la longueur et le pas polaire de la machine MSE-1 pour une vitesse de 20000 rpm

3.8 Validation expérimentale des pertes magnétiques dans le stator en SMC

Cette partie présente une validation expérimentale du modèle analytique de calcul des

pertes magnétiques à vide (pertes par courants de Foucault et pertes d’hystérésis) dans les

stators en SMC des machines sans encoches à haute vitesse. Une approche de mesure des

pertes magnétiques est proposée. Elle est basée sur une mesure directe et précise du couple

résistant correspondant à ces pertes. Cette approche est une alternative pour l’évaluation

des pertes magnétiques différente de la méthode classique basée sur la méthode

thermométrique [55], [139]. Pour mettre en œuvre cette approche, un banc d’essai à haute

vitesse a été conçu et réalisé dans lequel la machine testée a été dimensionnée de manière à

minimiser les effets 3D et à respecter dans la mesure du possible les hypothèses

d’invariance par translation du calcul 2D. Grâce à une construction modulaire de la

machine, le banc d’essai permet de caractériser les pertes magnétiques dans différents types

de matériaux SMC ainsi que leurs propriétés (conductivité et perméabilité) et de comparer

ces pertes magnétiques (rotatives) avec celles mesurées à partir des essais statiques. Il

permet aussi de caractériser d’autres types de matériaux magnétiques et de valider

expérimentalement diverses méthodes de modélisation et de calcul de pertes magnétiques

[139].

0 2 4 6 80

0.2

0.4

0.6

0.8

1

Longueur/pas polaire

Kp &

Kc

KpKc

Page 164: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 142

3.8.1 Structure de la machine sans encoches considérée

Le prototype de la machine élaboré pour effectuer la validation expérimentale des pertes

magnétiques est une structure sans encoches à aimants permanents à pôles lisses (cf. Fig.

3.15). Le rotor de la machine, en fer massif, comporte 16 pôles identiques composés

d’aimants permanents de type NdFeB à aimantation radiale de 1.2T. Le stator est une

culasse cylindrique non encochées sans bobinage réalisée en SMC et qui constitue

l’échantillon du matériau à caractériser.

La conception optimale du prototype a été réalisée de manière à permettre d’effectuer des

mesures plus précises des pertes magnétiques avec différents grades de matériaux SMC et à

maximiser ces pertes dans le cas du matériau le moins conducteur. La méthode de

conception utilisée est basée sur un modèle de dimensionnement analytique associé à une

procédure d’optimisation non-linéaire. Ce modèle est issu de la prédiction de la distribution

du champ magnétique à vide en 2D produit par les aimants et par les courants de Foucault

induits dans la culasse du stator en SMC en utilisant la modélisation électromagnétique

analytique établie au chapitre 2. Les pertes par courants de Foucault et les pertes

d’hystérésis sont calculées en se basant sur les formules de pertes développées

précédemment dans le paragraphe 3.3.2. La longueur axiale de la machine a été choisie et

ajustée afin de minimiser les effets 3D sur les pertes par courants de Foucault et de

satisfaire ainsi les hypothèses 2D. Cela a été effectué en utilisant un mécanisme itératif de

correction des pertes par courants de Foucault similaire à celui proposé dans le paragraphe

3.7.2 en se basant sur des simulations en calcul numérique du champ en 3D en

magnétodynamique avec une méthode de pas à pas dans le temps et la pris en compte de la

rotation des aimants.

Les différentes caractéristiques et dimensions optimales de la machine test sont présentées

dans le tableau 3.1. Notons que le nombre de pôles a été choisi plus élevé afin de permettre,

d’une part, d’augmenter la fréquence de variation du champ magnétique ainsi que les pertes

magnétiques pour des vitesses de rotation mécaniques peu élevées, et d’autre part, de

rendre le pas polaire plus faible devant la longueur axiale pour réduire les effets de bord.

Pour les dimensions optimales obtenues, les pertes par courants de Foucault évaluées en 3D

représentent environ 93% de celles calculées en 2D pour une longueur axiale de 117 mm et

Page 165: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 143

un rapport de la longueur par rapport au pas polaire de 5.5. Cela a été considéré acceptable

et valide le dimensionnement optimal du prototype.

Stator en SMC

Rotor

Aimants

Figure 3.15 : Structure du prototype de la machine sans encoches considérée

Paramètre Valeur Nombre de pôles 16 Longueur axiale 117 mm Diamètre externe du stator 62.5 mm Épaisseur de la culasse du stator 11 mm Diamètre interne du stator 51.5 mm Entrefer mécanique 2 mm Épaisseur des aimants 3.18 mm Diamètre du rotor 46.3 mm Coefficient d’ouverture des aimants 0.7 Aimantation rémanente des aimants (NdFeB) 1.2 T Perméabilité des aimants (NdFeB) 1.05

Tableau 3.1 : Principales caractéristiques et dimensions de la machine test

3.8.2 Identification des paramètres des matériaux SMC utilisés

Afin de comparer les pertes magnétiques calculées analytiquement dans le stator en SMC

du prototype avec celles mesurées expérimentalement à l’aide du banc d’essai, une

identification des paramètres (conductivité σs, perméabilité relative µrs, coefficients des

pertes d’hystérésis Cm et x) des différents matériaux SMC utilisés pour cette validation est

nécessaire. Cette identification est réalisée à partir des essais conventionnels statiques sur

Page 166: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 144

chaque culasse statorique en SMC à caractériser. La conductivité du matériau SMC est

déterminée en utilisant la méthode de mesure de résistivité à l’aide d’un micro-ohmmètre à

quatre pointes [74], [140]. Cependant, la perméabilité et les coefficients des pertes sont

déterminés respectivement à partir de la mesure de la caractéristique d’aimantation et des

pertes magnétiques totales dans le matériau SMC à l’aide du montage expérimental de

caractérisation magnétique développé au LEEPCI et qui est présenté à la figure 3.16. Dans

ce montage, deux enroulements ayant le même nombre de spires sont réalisés sur la culasse

torique du stator afin de réaliser un transformateur fonctionnant à vide où le primaire est

alimenté par une source de tension sinusoïdale. La mesure instantanée du courant au

primaire i1(t) et de la tension à vide au secondaire v2(t) permet d’obtenir la variation du

champ magnétique H appliqué ainsi que celle de l’induction B dans la culasse du stator en

fonction du temps en utilisant les expressions suivantes :

1 1( )( )m

N i tH tl

= (3.60)

22

1( ) ( )e

B t v t dtN A

= ∫ (3.61)

où N1 et N2 représentent respectivement le nombre de spires au primaire et au secondaire

(N1=N2), lm est la longueur moyenne du parcours du flux et Ae est la section du circuit

magnétique. À partir de la mesure du champ magnétique H(t) et l’induction B(t), nous

déterminons facilement la courbe d’aimantation qui permet de relever la perméabilité du

matériau SMC correspondant à l’induction pour laquelle le prototype a été dimensionné

(0.56T).

Les pertes magnétiques totales dans le matériau SMC correspondent à la valeur moyenne

de la puissance instantanée mesurée à partir du courant au primaire et de la tension au

secondaire. Afin de déterminer les coefficients de pertes d’hystérésis Cm et x, nous avons

effectué une séparation des pertes en nous basant sur la formule analytique suivante où les

pertes excédentaires ont été négligées :

2 2[ / ] xh m m cf mP W kg C B f C B f= + (3.62)

Page 167: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 145

L’identification des différents paramètres Cm, x et Ccf de cette formule a été effectuée en

utilisant la méthode des moindres carrés. L’implantation de la formule (3.62) dans le

logiciel Excel pour plusieurs valeurs d’induction et de fréquence et l’utilisation du Solveur

d’Excel (méthode d’optimisation) pour minimiser les résidus de la méthode des moindres

carrés nous ont permis de séparer les pertes en identifiant leurs différents coefficients.

Figure 3.16 : Montage expérimental de mesure de la courbe d’aimantation et des pertes magnétiques dans les matériaux SMC

Quatre types de matériaux SMC avec différentes conductivités et perméabilités ont été

identifiés et utilisés pour réaliser la validation expérimentale des pertes magnétiques. Le

tableau 3.2 résume les différentes caractéristiques de ces matériaux caractérisés à partir de

la méthode d’identification que l’on vient d’expliquer.

Paramètre / Matériau Matériau 1 Matériau 2 Matériau 3 Matériau 4 Perméabilité µrs 210 213 220 226

Conductivité σs [s/m] 800 1200 4800 7500 Cm 0.1707 0.1720 0.1731 0.1751 x 1.515 1.537 1.601 1.629

Tableau 3.2 : Caractéristiques des matériaux SMC utilisés

Page 168: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 146

3.8.3 Description du banc d’essai

Le banc d’essai utilisé pour la mesure du couple de pertes magnétiques est un entraînement

constitué du prototype de la machine test entraîné par un moteur asynchrone bipolaire de

3HP, alimenté à fréquence et à tension variables par un onduleur (cf. Fig. 3.17). Cet

entraînement permet d’atteindre des vitesses de l’ordre de 10000 rpm avec une puissance

constante de 3 HP au-dessus de 3600 rpm. Cela permet de relever les variations des pertes

magnétiques en fonction de la fréquence sur une large plage de vitesse. Le stator de la

machine à aimants permanents est réalisé de façon modulaire afin de changer facilement les

échantillons de matériaux SMC dont on veut caractériser les pertes magnétiques. Il est

monté en balance sur le bâti du banc d’essai en utilisant des roulements spéciaux afin de

minimiser les pertes mécaniques dues au frottement. L’enceinte du stator est reliée à une

jauge de contraintes permettant une mesure précise du couple de pertes magnétiques

s’exerçant sur la culasse du stator.

Figure 3.17 : Banc d’essai de mesure du couple de pertes magnétiques dans la culasse du stator

3.8.4 Résultats de mesure des pertes magnétiques

L’utilisation du banc d’essai a permis de mesurer les pertes magnétiques totales dans la

culasse statorique de la machine test pour les quatre matériaux SMC du tableau 3.2. La

figure 3.18 présente les variations des couples correspondant à ces pertes en fonction de la

vitesse de rotation. Ces couples mesurés sont comparés avec ceux obtenus à partir du

modèle analytique de calcul des pertes magnétiques à vide développé précédemment dans

le paragraphe 3.3.2 et qui a été utilisé pour le dimensionnement optimal du prototype de la

Variateur de vitesse

Moteur asynchrone

Stator du prototype de la machine test monté en balance

Jauge de contraintes

Page 169: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 147

machine test. À partir de cette figure, nous pouvons remarquer qu’il y a une bonne

coïncidence entre les résultats expérimentaux et ceux prédits analytiquement. Les

différences sont dues essentiellement, d’une part, aux erreurs introduites par les effets 3D

qui ne sont pas vraiment négligeables, et d’autre part, aux erreurs de mesure et

d’identification des paramètres des matériaux SMC.

Figure 3.18 : Variation des couples de pertes magnétiques mesurés expérimentalement et de ceux

calculés analytiquement en fonction de la vitesse pour 4 types de matériaux SMC

3.9 Étude de l’influence de quelques paramètres sur les pertes magnétiques dans le stator en SMC

Dans cette partie, nous présentons une investigation portant sur l’effet de variation de

quelques paramètres, qui peuvent être contrôlés pendant le processus de conception des

machines sans encoches, sur les pertes magnétiques en charge dissipées dans la culasse du

stator en SMC. Les paramètres considérés dans cette étude sont la conductivité du matériau

SMC, l’épaisseur de la culasse du stator et l’angle de commande ψ entre la forme d’onde de

la force électromotrice à vide et celle du courant d’alimentation.

3.9.1 Influence de la conductivité du matériau SMC

Le modèle analytique en 2D des pertes magnétiques en charge dans la culasse du stator en

SMC développé dans le paragraphe 3.3.2 est utilisé pour quantifier l’influence de la

conductivité sur ces pertes. Pour effectuer cette analyse, nous considérons le moteur sans

0 2000 4000 6000 80000

0.1

0.2

0.3

0.4

0.5

0.6

Vitesse (rpm)

Cou

ple

de p

erte

s (N

m)

µrs=210σs=800s/m

µrs=213σs=1200s/m

µrs=220σs=4800s/m

µrs=226σs=7500s/m

Page 170: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 148

encoches MSE-2 dont la structure et les principales caractéristiques sont données dans

l’annexe B.2. Il s’agit d’une machine à haute vitesse d’une puissance nominale de 1 kW à

une vitesse de 30000 rpm et qui comporte 6 encoches et 2 pôles avec des aimants

permanents de type NdFeB à aimantation diamétrale. La frette de maintien des aimants est

considérée non magnétique et non conductrice. Le moteur est supposé être alimenté par des

courants de forme d’onde rectangulaire avec une amplitude de courant continu Idc=6.45A et

un angle de commande ψ égal à 0. Dans cette étude, la conductivité du matériau SMC

constituant la culasse du stator est considérée variable, tandis que la perméabilité est

supposée être constante et égale à 200.

La figure 3.19 présente la variation des pertes magnétiques en charge dans la culasse du

stator en fonction de la conductivité du matériau SMC. Elle présente aussi les différentes

composantes du couple explicitées dans le paragraphe 2.8.4. Le couple net est obtenu par

soustraction du couple correspondant aux pertes d’hystérésis du couple électromagnétique.

Comme ψ=0, le troisième terme du produit *.cs csJ J dans l’équation (3.11) ne contribue pas

à la création des pertes par courants de Foucault.

Figure 3.19 : Variation (a) des pertes magnétiques en charge dans la culasse du stator de la

machine MSE-2 et (b) des différentes composantes du couple en fonction de la conductivité du matériau SMC

Nous pouvons constater que lorsque la conductivité augmente, les pertes par courant de

Foucault augmentent linéairement et le couple électromagnétique diminue aussi

linéairement à cause du couple de freinage créé par les courants de Foucault induits dans la

culasse du stator. Cependant, les pertes d’hystérésis restent approximativement constantes.

0 1 2 3 4 5x 104

0

50

100

150

200

Conductivité du matériau SMC [s/m]

Per

tes

mag

nétiq

ues

[W]

Calcul analytique Calcul numérique Pertes totales

Pertes par courants de Foucault

Pertes d'hystérésis

0 1 2 3 4 5x 104

-0.1

0

0.1

0.2

0.3

0.4

0.5

Conductivité du matériau SMC [s/m]

Cou

ple

[Nm

]

Couple aimants/bobinage Couple aimants/courants de FoucaultCouple électromagnétiqueCouple net

(a) (b)

Page 171: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 149

Nous pouvons remarquer aussi que les pertes par courants de Foucault obtenues à partir du

modèle analytique sont validées par les simulations en calcul numérique du champ en 2D :

une excellente correspondance entre les résultats obtenus par les deux méthodes de calcul

peut être constatée.

3.9.2 Influence de l’épaisseur de la culasse du stator en SMC

Cette analyse est effectuée en considérant la machine MSE-2 dont la culasse du stator est

réalisée à partir du matériau SMC Mat-1 et dont le bobinage est alimenté par les mêmes

formes d’ondes de courants précédentes. La figure 3.20 présente l’évolution des pertes

magnétiques en charge ainsi que les diverses composantes du couple de la machine lorsque

l’épaisseur de la culasse du stator en SMC varie. La variation de cette épaisseur est

effectuée en variant seulement le diamètre externe du stator, tandis que les autres

dimensions et caractéristiques du moteur restent inchangées.

Figure 3.20 : Variation (a) des pertes magnétiques en charge dans le stator de la machine MSE-2

et (b) des différentes composantes du couple en fonction de l’épaisseur de la culasse du stator

Nous pouvons remarquer à partir de cette figure que l’épaisseur de la culasse du stator a

une influence significative sur les performances de la machine. Lorsque l’épaisseur

augmente, les pertes par courants de Foucault augmentent et les pertes d’hystérésis

diminuent. Ces deux composantes de pertes ne varient plus et deviennent pratiquement

constantes quand l’épaisseur de la culasse dépasse environ le double de la profondeur de

pénétration des courants de Foucault. Nous remarquons aussi qu’il existe une certaine

valeur de l’épaisseur de la culasse du stator qui minimise les pertes magnétiques totales et

0 0.02 0.04 0.06 0.080

20

40

60

80

100

Épaisseur de la culasse du stator [m]

Per

tes

mag

nétiq

ues

[W]

Calcul analytique Calcul numérique Pertes totalesPertes par

courants de Foucault

Pertes d'hystérésis

0 0.02 0.04 0.06 0.08

0

0.1

0.2

0.3

0.4

0.5

Épaisseur de la culasse du stator [m]

Cou

ple

[Nm

]

Couple aimants/bobinageCouple aimants/courants de FoucaultCouple électromagnétiqueCouple net

(a) (b)

Page 172: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 150

où le couple du moteur correspondant est maximal. Nous pouvons alors conclure qu’il

existe des compromis à faire entre les dimensions de la culasse du stator et la conductivité

du matériau SMC afin d’améliorer les performances du moteur (couple et rendement) et

d’assurer un dimensionnement optimal.

3.9.3 Influence de l’angle de commande ψ

L’angle de commande ψ entre la forme d’onde de la force électromotrice à vide et celle du

courant d’alimentation, qui peut être imposé par la commande du convertisseur statique

alimentant la machine sans encoches, peut avoir une influence très significative sur les

pertes magnétiques totales dissipées dans la culasse du stator en SMC pour un

fonctionnement en charge. La figure 3.21 présente et compare la variation des pertes

magnétiques à vide et en charge en fonction de l’angle de commande ψ en considérant la

machine MSE-1 alimentée par des courants rectangulaires tel que Idc=6.3 A. Les résultats

sont donnés pour une vitesse de rotation de 50000 rpm supérieure à la vitesse nominale

(20000 rpm) afin d’augmenter les effets des courants de Foucault. Les pertes magnétiques à

vide sont constantes quand il n’y a pas de réaction d’induit. Cependant, les pertes par

courants de Foucault et les pertes d’hystérésis en charge sont fortement influencées par les

variations de l’angle ψ. Dans ce cas, le troisième terme du produit *.cs csJ J dans l’équation

(3.11) contribue effectivement à la création des pertes par courants de Foucault par le biais

de la composante des pertes Pcf,ms donnée dans l’équation (3.15). Selon le signe de l’angle

de commande ψ, les combinaisons des harmoniques de temps h et d’espace k du champ

magnétique tournant de réaction d’induit, qui sont synchrones ave le rotor (k+h=0),

augmentent ou diminuent les harmoniques d’espace k du champ magnétique à vide créé par

les aimants. C’est-à-dire que, lorsque l’angle ψ augmente, la réaction d’induit devient de

plus en plus magnétisante et le troisième terme du produit *.cs csJ J augmente les pertes par

courants de Foucault. Un effet contraire est remarqué quand la réaction d’induit est

démagnétisante. Par ailleurs, les pertes d’hystérésis évoluent pratiquement d’une façon

similaire aux pertes par courants de Foucault quand l’angle de commande ψ change.

Page 173: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 151

Figure 3.21 : Variation des pertes magnétiques à vide et en charge dans la culasse du stator en

SMC de la machine MSE-1 en fonction de l’angle de commande ψ

3.10 Conclusion

Au cours de ce chapitre, nous avons présenté le calcul et l’analyse des différents types de

pertes dissipées dans les machines sans encoches à aimants permanents à haute vitesse.

Mise à part les pertes mécaniques qui ont été calculées analytiquement sous forme de pertes

de friction d’air sur le rotor et de pertes de frottement dans les roulements, le calcul de

toutes les autres pertes a été effectué en se basant sur les résultats de la modélisation

électromagnétique analytique en 2D de la machine sans encoches développée dans le

chapitre 2. Les pertes Joule dans le bobinage du stator ont été calculées en tenant compte

des pertes supplémentaires dues à l’effet de peau et de proximité dans les conducteurs. Les

pertes magnétiques au stator ont été déterminées pour un fonctionnement en charge de la

machine en considérant à la fois les culasses du stator réalisées en fer laminé et celles

fabriquées à partir des matériaux SMC. Les pertes dans les matériaux SMC ont été

calculées en tenant compte de l’influence de l’angle de commande entre la fem et le

courant. Une attention particulière a été réservée au calcul des pertes par courants de

Foucault dans les pièces massives conductrices de la machine, que ce soit au niveau du

stator ou du rotor où plusieurs méthodes de calcul ont été proposées. Les pertes au rotor ont

été déterminées au niveau de la frette et des aimants en considérant que ces derniers

peuvent être segmentés transversalement en petits blocs. Des études ont été effectuées pour

-80 -60 -40 -20 0 20 40 60 800

5

10

15

20

25

30

35

40

45

Angle de contrôle ψ (deg)

Per

tes

mag

nétiq

ues

[W]

En chage À vide

Pertes totales

Pertes par courants de Foucault

Pertes d'hystérésis

Page 174: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 152

montrer que le fait d’ajouter une frette conductrice autour du rotor ou de segmenter les

aimants permet de diminuer d’une façon significative les pertes totales au rotor.

Le modèle analytique en 2D de calcul de pertes magnétiques dans le stator en SMC a été

validé, d’une part, à l’aide des simulations en calcul numérique du champ en 2D, et d’autre

part, en utilisant un montage expérimental où une approche de mesure des pertes

magnétiques basée sur la mesure directe du couple de pertes a été proposée. La

confrontation des résultats analytiques avec ceux issus du calcul numérique du champ en

2D et de l’expérience s’avère très satisfaisante. Une validation du calcul analytique des

pertes par courants de Foucault dans la culasse du stator en SMC a été aussi effectuée à

l’aide du calcul numérique du champ en 3D afin de quantifier les effets de bord. Cette

validation a démontré que les effets 3D ont une grande influence lorsque la longueur du

stator n’est pas assez importante par rapport au pas polaire et que l’hypothèse de 2D n’est

pas suffisante pour assurer un calcul plus précis de ces pertes et un dimensionnement

optimal de la machine. Pour remédier à ce problème, une méthode de correction des pertes

par courants de Foucault calculées analytiquement en 2D a été proposée et qui est basée sur

l’introduction d’un facteur de correction déterminé à partir des simulations en calcul

numérique du champ en 3D. Ce calcul peut être effectué en magnétodynamique en

instantané dans le temps avec rotation des aimants ou en complexe en régime permanent

avec des aimants pulsants à l’arrêt. L’implantation de la méthode avec un calcul du champ

en 3D en complexe a démontré qu’un gain très important au niveau du temps de calcul peut

être obtenu tout en assurant une bonne précision. Étant donné que les effets 3D ont été

négligés lors du calcul des pertes dans les aimants et dans la frette conductrice, nous notons

que ces effets peuvent aussi être pris en compte en appliquant la même méthode de

correction des pertes proposée dans ce chapitre pour les culasses du stator en SMC.

Une étude de l’effet de la variation de la conductivité du matériau SMC, de l’épaisseur de

la culasse du stator et de l’angle de commande ψ sur les pertes magnétiques au stator nous a

permis de conclure que ces paramètres ont une grande influence et qu’ils peuvent être

contrôlés afin d’améliorer le rendement et d’assurer un dimensionnement optimal de la

machine.

Page 175: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 3 153

Notons que le calcul des différentes pertes établi dans ce chapitre a été effectué en

considérant la machine sans encoches généralisée à rotor interne avec un stator en SMC et

une frette conductrice. Le calcul des pertes pour les autres structures de machines sans

encoches considérées dans cette thèse peut être facilement développé à partir des

expressions déjà établies avec quelques modifications mineures.

Page 176: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Equation Chapter 4 Section 1

CHAPITRE IV

4 MODÈLE ÉLECTRIQUE ÉQUIVALENT DE

L’ENSEMBLE CONVERTISSEUR-MACHINE

4.1 Introduction

Le dimensionnement de la machine sans encoches à aimants permanents en tenant compte

du type et de la forme d’onde des grandeurs électriques imposées par son alimentation

(tensions ou courants délivrés par le convertisseur statique) est nécessaire pour effectuer

une évaluation plus précise des différentes performances et garantir un dimensionnement

optimal de l’ensemble convertisseur-machine. Pour tenir compte de l’effet de l’alimentation

lors du dimensionnement de la machine, nous avons besoin tout d’abord d’établir un

modèle électrique équivalent de régime permanent de cette machine. Ce modèle doit être

couplé à celui du convertisseur statique afin d’établir un modèle électrique équivalent

global de l’ensemble convertisseur-machine. La simulation ou la résolution analytique de

ce modèle permet, d’une part, d’analyser le fonctionnement de la machine pour son point

d’opération, et d’autre part, de déterminer soit le courant dans la machine quand la tension

est imposée par un convertisseur à commutation de tension ou la tension aux bornes de la

machine lorsqu’il s’agit d’un convertisseur à commutation de courant. La connaissance de

ces grandeurs électriques permet d’évaluer les différentes caractéristiques et performances

globales de l’ensemble convertisseur-machine comme par exemple les inductions, le

couple, les pertes, etc., et d’effectuer l’adaptation de la machine à son alimentation.

Dans ce chapitre, nous présentons le développement d’un modèle de type circuit électrique

équivalent de l’ensemble convertisseur-machine en considérant les différents types de

convertisseurs statiques décrits au chapitre 1. Les paramètres du modèle équivalent sont

Page 177: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 4 155

déterminés analytiquement à partir des dimensions géométriques de la machine, des

caractéristiques des matériaux, du bobinage et des caractéristiques du convertisseur

statique. Nous procédons, dans une première partie, à l’établissement du modèle électrique

équivalent de régime permanent de la machine en faisant intervenir les grandeurs

électriques caractéristiques de la machine (fem, inductance et résistance). Nous présentons

ensuite le modèle électrique équivalent de l’ensemble convertisseur-machine lorsque la

machine est alimentée en tension. Dans ce cas, plusieurs types d’onduleurs sont

considérés : onduleurs de type 120o à onde rectangulaire de courant, onduleur de type MLI

à courant sinusoïdal et onduleur de type 180o à onde pleine de tension. Enfin, nous

développons le modèle électrique équivalent de l’ensemble convertisseur-machine dans le

cas où la machine est alimentée en courant par un onduleur ou un redresseur à thyristors.

Dans ce dernier cas, le couplage fort entre le circuit électrique de la machine et celui du

convertisseur, dû à la commutation électronique du courant, est résolu en utilisant une

approche innovante qui consiste à introduire un mécanisme de correction spécifique.

Notons que dans le développement des modèles électriques équivalents des ensembles

convertisseurs-machines considérés dans cette thèse, les pertes au niveau des interrupteurs

sont négligées.

4.2 Détermination du modèle électrique équivalent de la machine

Le modèle électrique équivalent de la machine est déterminé en considérant les paramètres

électriques établis précédemment dans le chapitre 2 : résistance, inductance et fem. Ces

paramètres dépendent des dimensions géométriques de la machine, des caractéristiques des

matériaux et de la structure du bobinage. Pour établir ce modèle, les hypothèses

simplificatrices suivantes sont adoptées :

• La résistance Rs d’une phase du bobinage, déterminée précédemment en tenant

compte de l’effet de peau et de proximité, est supposée constante. Cela signifie que

chaque harmonique de courant de rang h voit la même résistance ;

• La résistance électrique correspondant aux pertes fer (pertes par courants de

Foucault et pertes d’hystérésis) dans la culasse du stator est négligée ;

Page 178: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 4 156

• La résistance électrique équivalente aux pertes par courants de Foucault dans la

frette (dans le cas où elle est conductrice) est aussi négligée.

Le comportement électrique de la machine peut être décrit par l’équation reliant le courant

et la tension aux bornes de l’enroulement d’une phase. En considérant une convention

récepteur, cette équation électrique s’exprime pour la phase υ par :

, , ,( ) ( ) ( )( ) ( ) s m

s

d t d t d tv t R i t

dt dt dtυ σ υ υ

υ υ

φ φ φ= + + + (4.1)

où φs,υ, φσ,υ et φm,υ sont respectivement le flux dû aux courants statoriques, le flux de fuite

des têtes de bobines et le flux à vide.

En faisant intervenir les paramètres électriques de la machine, l’équation électrique

devient :

,,

( ) ( )( ) ( ) ( )hs sc h s

h

di t di tv t R i t L L e tdt dt

υ υυ υ σ υ

+∞

=−∞

= + + +∑ (4.2)

Cette expression tient compte des effets des courants de Foucault dans la culasse statorique

et dans la frette par le biais de l’inductance cyclique harmonique Lsc,h. Elle peut être réécrite

d’une manière plus simple en remplaçant eυ(t), iυ(t) et vυ(t) par leurs expressions complexes

exprimées en fonction des harmoniques de temps de rang h (cf. équations (2.42) et

(2.105)) :

( )

( )( )

( )( )

21

21

21

( )jh t

mh

h

jh tm

hh

jh tm

hh

e t E e

i t I e

v t V e

πω υ

υ

πω υ

υ

πω υ

υ

+∞ − −

=−∞

+∞ − −

=−∞

+∞ − −

=−∞

=

= =

où :

(4) *, 2

2

2

h

h

hh h m h

jhh

jhh

EE Lp k Hj

II ej

VV ej

ϕ

β

π δ

= Ω =

= =

(4.3)

Rappelons que la fem est prise comme origine des phases et que le calage de la machine

(angle ψ) est réalisé en imposant la phase à l’origine des courants au stator. Dans ce cas,

l’équation électrique de la machine peut être réduite à l’équation complexe suivante et cela

pour les 3 phases de la machine :

Page 179: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 4 157

( ),h h s s sc h hV E R jh L L Iσω = + + + (4.4)

où la somme Lsσ + Lsc,h désigne l’inductance synchrone harmonique qu’on note désormais

Ls,h.

Cette équation décrit directement le fonctionnement électrique de la machine en régime

permanent pour chaque harmonique de temps de rang h. Elle correspond au modèle

électrique équivalent harmonique illustré dans la figure 4.1. Ainsi, l’étude du

fonctionnement de l’ensemble convertisseur-machine et le calcul des performances

globales peut être réalisé en couplant ce modèle avec celui du convertisseur statique et en

appliquant le principe de superposition à l’ensemble des harmoniques. Notons que

l’équation électrique associée au modèle développé est utilisée pour adapter la tension de la

machine à celle du convertisseur en ajustant le nombre de spires des enroulements. Notons

aussi qu’un modèle électrique similaire peut être facilement déduit quand la machine

fonctionne en générateur [141].

Rh Ls,h

EhVh

Ih

Figure 4.1 : Modèle électrique monophasé équivalent de la machine pour l’harmonique de rang h

4.3 Modèle électrique équivalent de l’ensemble convertisseur-machine pour le cas d’une alimentation par convertisseur à commutation de tension

Dans cette partie, nous présentons le modèle électrique équivalent de l’ensemble

convertisseur-machine quand la machine sans encoches est alimentée par un onduleur de

tension. La résolution de ce modèle permet de déterminer la forme d’onde du courant dans

la machine pour accéder aux performances et de faire l’adaptation de la machine à son

Page 180: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 4 158

alimentation dépendamment de la tension du bus DC disponible. Le modèle est développé

pour les trois types d’onduleurs de tension mentionnés précédemment dans le chapitre 1 :

onduleur de type 120o à onde rectangulaire de courant, onduleur de type MLI à courant

sinusoïdal et onduleur de type 180o à onde pleine de tension.

Soulignons que le modèle électrique équivalent de l’ensemble convertisseur-machine

proposée pour l’onduleur de type MLI à courant sinusoïdal peut être facilement adapté et

appliqué si la machine fonctionne en alternateur et est couplée à un redresseur commandé à

MLI.

4.3.1 Cas d’une machine alimentée par onduleur de tension de type 120o

4.3.1.1 Description du système

L’onduleur de tension de type 120o à onde de courant rectangulaire est généralement utilisé

pour alimenter les moteurs synchrones à aimants permanents ("brushless") de petites

puissances (par exemple les perceuses, les ventilateurs d’équipement électroniques, etc.)

[142], [143]. Ces moteurs, souvent à pôles lisses et à force électromotrice de forme

trapézoïdale, sont plus économiques et leur architecture de commande est plus simple et de

faible coût surtout pour le capteur de position qui est généralement un capteur à effet Hall

[144]–[147]. L’alimentation de ce type de moteurs avec des formes d’ondes rectangulaires

de courant synchronisées avec les forces électromotrices permet d’obtenir un couple

constant d’ondulation pratiquement nulle (cf. Fig. 4.2). Ce type d’onduleur peut aussi être

utilisé pour alimenter des moteurs avec des fem sinusoïdales : dans ce cas, une ondulation

du couple apparaîtra.

Page 181: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 4 159

Couple

Courant

fem

ωtπ/6 5π/6

π2π

ωt

(a)

(b)

Figure 4.2 : (a) Formes d’ondes idéales de la fem (trapézoïdale) et du courant de phase d’un

moteur à aimants alimenté par onduleur de type 120o et (b) forme d’onde du couple

Pour les machines sans encoches à aimants permanents considérées dans cette thèse, la fem

est sinusoïdale dans le cas d’une machine à deux pôles avec des aimants aimantés

diamétralement ou dans le cas d’une machine avec des aimants de type Halbach. Par contre,

la fem n’est ni sinusoïdale ni trapézoïdale lorsqu’il s’agit des aimants aimantés radialement

(cf. Fig. 2.12). L’alimentation de la machine avec un onduleur 120o à onde rectangulaire de

courant produit inévitablement des ondulations de couple comme cela a été montré dans la

figure 2.14.

La figure 4.3 présente le schéma bloc simplifié de l’ensemble convertisseur-machine

considéré. Il est composé de la machine sans encoches alimentée par un onduleur de

tension de type 120o constitué de six transistors montés en antiparallèle avec des diodes.

L’onduleur est alimenté à partir d’une source de tension continue. La machine est

autopilotée grâce à l’utilisation d’un capteur de position qui permet de détecter la position

du rotor de façon à assurer un déphasage nul entre la fem et le courant d’une phase de la

machine. Généralement, ce capteur est de type à effet Hall qui fournit trois signaux de 180o

déphasés de 120o. À noter que la position du rotor peut aussi être détectée par d’autres

types de capteurs (par exemple : un capteur optique) ou estimée sans utilisation de capteur

("sensorless") [148]–[150]. Le bloc de commande permet de contrôler la commutation

électronique des interrupteurs suivant les signaux reçus du capteur de position et

éventuellement des asservissements de couple (régulateur de courant) et/ou de vitesse et de

position.

Page 182: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 4 160

Commande

Vdc

Capteur de position

MSE

Onduleur

Figure 4.3 : Schéma bloc simplifié de l’ensemble convertisseur-machine avec onduleur de tension

Pour ce type d’onduleur, plusieurs types de commandes sont considérés pour assurer un

courant de forme rectangulaire : commande 120o à onde entière de tension, commande 120o

avec contrôle du courant par MLI et commande 120o avec contrôle du courant par

comparateur à hystérésis.

• Commande 120o avec onde pleine de tension

Ce type de commande fixe le passage du courant dans les phases de la machine à des angles

de 120o. En effet, deux interrupteurs de l’onduleur conduisent à un instant donné en faisant

parcourir le courant dans deux phases. Chaque interrupteur conduit pendant une période de

120o et commute suivant les signaux envoyés par le capteur de position. Il existe un temps

mort de 60o qui sépare les commandes des interrupteurs constituant un même bras de

l’onduleur (cf. Fig. 4.4). La tension appliquée aux bornes de la machine n’est pas

totalement imposée par l’alimentation et dépend des conditions de fonctionnement [131],

[151], [152].

La figure 4.5 montre les formes d’ondes pratiques des tensions de phase et de ligne, du

courant et de la fem (tenant compte des harmoniques) relevées par simulation de la machine

MSE-1 alimentée par un onduleur 120o à onde pleine de tension. On remarque que la forme

d’onde de la tension n’est pas vraiment rectangulaire ni celle du courant. L’onde de tension

est modifiée par les forces électromotrices induites dans les trois phases de la machine. Elle

présente aussi des encoches dues à la commutation. Cela influence la forme du courant qui

est différente d’une onde rectangulaire. Le temps de montée et de descente du courant est

Page 183: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 4 161

influencé par l’inductance de la machine. Cependant, étant donné que les machines sans

encoches de petite puissance ont une résistance relativement plus importante et que leur

inductance est généralement faible à cause du large entrefer magnétique, nous faisons

l’hypothèse que les formes d’ondes de courant et de tension sont rectangulaires pour établir

le modèle électrique équivalent de ce type d’ensemble convertisseur-machine. L’intégration

d’un outil de simulation sans à priori dans l’environnement de conception décrit dans le

chapitre suivant permettra d’apporter les correctifs nécessaires à cette hypothèse

simplificatrice qui, dans les faits, est validée par les résultats (cf. tableau 5.4).

ωt

Vdc/2

-Vdc/2

1 1'2 2'

33'

1 1'2

3'

120o 60o

va ea

(a)

(b)

θ

Figure 4.4 : (a) Séquence de commande et (a) formes d’ondes d’un onduleur de type 120o à onde

pleine de tension (avec fem supposée sinusoïdale) [131]

Figure 4.5 : Formes d’ondes réelles des tensions et du courant de la machine MSE-1 alimentée par

un onduleur de tension de type 120o à onde pleine de tension (courant Ia × 2)

0.009 0.01 0.011 0.012 0.013 0.014 0.015-150

-100

-50

0

50

100

150

Temps [s]

Tens

ions

[V];

Cou

rant

[A]

Va fem

Uab

Ia (x2)

Page 184: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 4 162

• Commandes 120o avec régulation du courant par MLI et par hystérésis

Dans ces deux types de commande, le régulateur de courant dans une phase de la machine

agit sur la modulation de la tension appliquée par l’onduleur et utilise une référence de

courant de forme rectangulaire [144], [148]. On peut utiliser un régulateur agissant sur une

commande de type MLI avec un correcteur conventionnel ou un régulateur par mode de

glissement (régulateur à hystérésis) [131], [153].

La figure 4.6 montre les formes d’ondes du courant qui peuvent être obtenues avec un

régulateur à hystérésis. Le courant présente des ondulations dues à la modulation de la

tension et il a une forme sensiblement trapézoïdale à cause de l’inductance de la machine.

Les temps de montée et de descente du courant sont généralement faibles et peuvent être

négligés dans le cas des machines sans encoches à faible puissance du fait de la faible

constante de temps de l’induit. Le modèle électrique équivalent de ces ensembles

convertisseurs-machines est supposé identique à celui utilisé pour l’alimentation à onde

pleine de tension. Pour le dimensionnement au point de fonctionnement nominal, nous

faisons l’hypothèse que le courant idéal a une forme rectangulaire ainsi que la tension. Les

harmoniques de haut rang associés aux fréquences de modulation ne sont pas prises en

compte.

Bande d’hystérésis

ωtπ/6 5π/6 2π

π

iréf

i

Figure 4.6 : Forme d’onde du courant obtenu par un régulateur à hystérésis

4.3.1.2 Développement du modèle électrique équivalent

Le modèle électrique équivalent des ensembles convertisseurs-machines développé ici est

supposé identique pour les trois types de commandes précédentes : commandes 120o à onde

Page 185: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 4 163

pleine, à MLI et à hystérésis. Comme le courant est supposé de forme rectangulaire idéale

et qu’il est synchronisé avec la fem, l’angle de commande ψ entre le courant d’induit et la

fem est imposé àψ=0. La tension d’alimentation appliquée par l’onduleur à chaque phase

de la machine est supposée aussi de forme rectangulaire et d’amplitude crête Vdc/2.

Les harmoniques du courant d’induit peuvent être déterminées à partir des harmoniques de

la tension de phase et de la fem en résolvant l’équation (4.4) correspondant au modèle

électrique équivalent de la machine. Cependant le déphasage θ de la tension de phase par

rapport à la fem est inconnu. Dans ce cas, pour établir le modèle électrique équivalent, nous

proposons de calculer tout d’abord la valeur efficace du courant total Ieff directement à

partir de la densité efficace Jcu dans les conducteurs du bobinage. Cette densité de courant

sera imposée comme variable d’optimisation dans la procédure de conception en respectant

l’échauffement limite admissible de la machine. La densité Jcu est telle que :

2 2eff sp eff sp eff

cucu cu u e

I m N I m N IJ

s S K S= = = (4.5)

Donc, la valeur efficace du courant dans les conducteurs est :

2

u e cueff

sp

K S JIm N

= (4.6)

Nous calculons ensuite les harmoniques de courant par une décomposition en séries de

Fourier de la forme d’onde rectangulaire considérée. Ces harmoniques sont en phase avec

la fem (ϕh=0) et leurs valeurs efficaces en fonction de celle du fondamental sont telles que :

1 /hI I h= . Dans ce cas, la valeur efficace du courant total peut être exprimée par :

2 2

11 1

1 1

1 .n n

eff hh h

II I Ih h

α= =

= = =

∑ ∑ (4.7)

Le coefficient αh est introduit afin de tenir compte du nombre fini des harmoniques

considérés. Les valeurs maximales des harmoniques de courant considérés dans

l’établissement du modèle électrique équivalent (cf. équation (4.3)) peuvent être déduites

alors comme suit :

Page 186: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 4 164

12 2 22

eff u e cuh

h h sp

I K S JIIh h h m Nα α

= = =

(4.8)

Le courant continu du bus DC peut aussi être déterminé à partir de :

1

6dcII π

= (4.9)

Connaissant les harmoniques de courant et ceux de la fem, la valeur efficace du

fondamental de la tension d’alimentation d’une phase V1 peut être facilement déterminée à

partir du diagramme vectoriel de la figure 4.7 qui correspond à l’équation (4.4) et qui est

établi pour les valeurs fondamentales pour un angle ψ=0. Cette tension est :

( ) ( )221 1 1 ,1 1s sV E R I L Iω= + + (4.10)

La tension calculée doit être adaptée pour qu’elle soit égale à celle imposée par l’onduleur

de tension suivant la tension Vdc disponible dans le bus continu. Cela peut être effectué en

ajustant le nombre de spires Nsp. Ce nombre sera d’ailleurs une variable du problème

d’optimisation décrit au chapitre 5. Il sera soumis à la contrainte d’égalité suivante :

1 13 0.38982

dcimposée dc

VV V Vπ−= = = (4.11)

Il est important de noter que selon les conventions prises dans la modélisation analytique de

la machine, les anglesψ et θ considérés pour ce cas peuvent être exprimés en fonction des

angles des grandeurs électriques utilisés dans le modèle électrique comme suit : 1ψ ϕ= − et

1θ β= − .

Figure 4.7 : Diagramme vectoriel de la machine pour l’harmonique de rang 1 (fondamental)

Page 187: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 4 165

L’approche utilisée ici pour développer le modèle électrique équivalent de l’ensemble

convertisseur-machine et pour adapter la machine à l’onduleur est une approche simplifiée

suite aux hypothèses simplificatrices considérées : formes d’ondes rectangulaires du

courant et de la tension et utilisation des valeurs fondamentales pour l’adaptation de la

tension. Cela peut conduire à une mauvaise adaptation de la machine à son alimentation si

la tension Vdc est faible (Nsp faible). Pour remédier à ce problème, nous proposons dans le

chapitre 5 d’effectuer une simulation du modèle électrique du système sur Matlab/Simulink

après avoir obtenu une solution optimale de la procédure de conception de la machine. Cela

permettra de vérifier les valeurs des tensions et des courants obtenus, d’ajuster au besoin le

nombre de spires pour corriger les erreurs et réaliser ainsi une bonne adaptation.

4.3.2 Cas d’une machine alimentée par onduleur de tension à MLI à courant sinusoïdal

4.3.2.1 Description du système

Le schéma de principe et le fonctionnement de ce type d’ensemble convertisseur-machine

sont semblables à ceux de l’onduleur 120o avec régulation du courant de forme

rectangulaire par MLI (cf. Fig. 4.3). Il s’agit en fait des machines synchrones sans encoches

à aimants permanents autopilotées et alimentées en courants sinusoïdaux, et qui sont

généralement de petites et moyennes puissances. Le courant est régulé par une consigne de

forme sinusoïdale réglable en amplitude et en phase par rapport à la fem. Généralement, à

ce niveau de puissance, l’angle d’autopilotage ψ est réglé à 0 (ψ=0) afin d’obtenir le

maximum de couple au niveau de la machine. La tension de phase appliquée par l’onduleur

est modulée par le régulateur de courant et le système MLI de façon à imposer dans la

machine des courants quasi-sinusoïdaux avec un faible contenu harmonique. Les capteurs

de position utilisés dans ce type de montage doivent avoir une haute résolution, ce sont des

encodeurs absolus, des encodeurs incrémentaux ou des résolveurs. L’asservissement de la

vitesse de la machine peut être réalisé par une régulation en cascade avec la régulation de

courant. À noter qu’on peut aussi utiliser des régulateurs de courant à hystérésis si on tolère

une fréquence de modulation variable [151].

Page 188: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 4 166

4.3.2.2 Développement du modèle électrique équivalent

Le modèle électrique équivalent de l’ensemble convertisseur-machine avec un onduleur de

tension à MLI à courant sinusoïdal est identique à celui développé précédemment pour les

onduleurs 120o en considérant seulement les valeurs fondamentales des tensions et des

courants. Les grandeurs électriques sont considérées purement sinusoïdales et les

harmoniques de la fem, du courant et de la tension de phase peuvent alors être négligés.

L’adaptation de la tension de la machine à l’alimentation continue de l’onduleur peut être

effectuée à partir de l’expression (4.10) et la relation suivante en supposant que le rapport

de modulation est égal à 1 (ma=1) au point de fonctionnement nominal :

1 1 0.35362 2

dcimposée dc

VV V V−= = = (4.12)

4.3.3 Cas d’une machine alimentée par onduleur de tension de type 180o

à onde pleine

4.3.3.1 Description du système

Le schéma de principe de ce type d’ensemble convertisseur-machine est identique à celui

de la figure 4.3. Ce type de montage peut être utilisé pour alimenter les machines sans

encoches à aimants permanents de faibles puissances. Contrairement à l’onduleur 120o à

onde pleine de tension, trois interrupteurs conduisent à chaque instant en alimentant les 3

phases de la machine. Les deux interrupteurs du même bras de l’onduleur fonctionnent de

manière complémentaire et conduisent pendant 180o chacun. La commutation se fait

suivant les signaux envoyés par le capteur de position. La tension aux bornes de la machine

est imposée et ne dépend que de la commande [152], [154]. La figure 4.8 montre la

séquence de commande réalisée par ce type d’onduleur ainsi que les formes d’ondes de la

tension de phase et de la fem supposée sinusoïdale dans le cas des machines sans encoches.

Pour la régulation du couple, la tension appliquée à la machine peut être réglée en variant la

tension du bus DC par l’intermédiaire d’un autre convertisseur statique de type redresseur

ou hacheur [131].

Page 189: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 4 167

ωt

2Vdc/3Vdc/3

1 1'2 2'

33'

1 1'2

3'

180o

va

ea

(a)

(b)

32'

3

θ

Figure 4.8 : (a) Séquence de commande et (a) formes d’ondes d’un onduleur de type 180o à onde

pleine de tension (avec fem supposée sinusoïdale) [131]

4.3.3.2 Développement du modèle électrique équivalent

Pour établir ce modèle, nous devons tout d’abord déterminer les harmoniques de la tension

de phase imposée à la machine. Ces harmoniques peuvent être parfaitement définis à partir

du calcul de leurs modules complexes exprimés dans l’expression (4.3). En prenant la fem

comme origine de phase et en effectuant la décomposition en séries de Fourier complexes

de l’onde de tension de la figure 4.8, nous trouvons :

2

hjhh

VV ej

β−=

(4.13)

où :

( )4 1 cos 1 2sin sin

6 6 2dc

h

h

V h hV hh

h

π πππ

β θ

= − +

= −

(4.14)

Le calcul des harmoniques complexes du courant d’induit peut être effectué par la

résolution de l’équation (4.4). Il vient alors :

,

h hh

s s h

V EIR jh Lω

−=

+ (4.15)

Page 190: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 4 168

Le module et les angles des harmoniques de courant peuvent être déterminés facilement à

partir de cette dernière expression. Notons que le courant total calculé à partir de ce modèle

électrique équivalent doit respecter l’échauffement maximal admissible par la machine qui

sera considéré pendant le dimensionnement.

La figure 4.9 présente les formes d’ondes de la fem, du courant et des tensions de phase et

de ligne aux bornes de la machine sans encoches MSE-1 obtenues en utilisant la

modélisation analytique proposée pour une tension Vdc=100V. Ces courbes sont données

pour deux valeurs de l’angle θ en considérant les harmoniques de la fem issus du modèle de

calcul de champ du chapitre 2. Nous remarquons que la tension de phase obtenue est

différente de celle idéale de la figure 4.8. Cela est dû à la contre réaction des harmoniques

d’ordre 3 contenus dans les forces électromotrices de la machine. En effet, il faut ajouter à

chaque niveau de la tension idéale, le terme ( ) / 3a b ce e e+ + .

Figure 4.9 : Formes d’ondes des tensions et du courant de la machine MSE-1 alimentée par un

onduleur de tension de type 180o à onde pleine de tension pour θ =0o et θ=20o

Le dimensionnement de la machine sans encoches alimentée par un onduleur 180o sera

effectué pour un fonctionnement à couple maximal, c’est-à-dire que le fondamental de la

force électromotrice sera considéré en phase avec celui du courant : ψ=0 [151]. Cela nous

permettra de comparer les performances de cette machine avec celle alimentée par un

onduleur 120o dans les mêmes conditions de fonctionnement (cf. chapitre 6). Cependant,

l’angle ψ entre la fem et le courant est inconnu étant donné que ce dernier est une

conséquence directe de l’application d’une tension bien définie imposée par l’onduleur.

0 1 2 3 4 5 6x 10-3

-100

-50

0

50

100

Temps [s]

Tesn

ions

[V],

Cou

rant

[A] Uab

Va

fem

Ia

(a) θ=0o

0 1 2 3 4 5 6

x 10-3

-100

-50

0

50

100

Temps [s]

Tesn

ions

[V],

Cou

rant

[A] Uab

Va

Ia

fem

(b) θ=20o

Page 191: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 4 169

Pour résoudre ce problème, nous proposons d’effectuer le dimensionnement en prenant

l’angle θ (angle entre la tension de phase et la fem) comme variable d’optimisation qu’on

peut ajuster afin d’imposer un angle ψ nul (cf. chapitre 5). Pour cela, nous devons forcer

l’égalité des tensions suivantes déduites à partir des diagrammes vectoriels de la figure

4.10 :

( ) ( )221,1 1 1 1 ,1 1cos sins sV E R I E L Iψ ψ ω= + + + (4.16)

( ) ( )221,2 1 1 ,1 1s sV E R I L Iω= + + (4.17)

Suivant la tension continue Vdc disponible, l’adaptation de la tension aux bornes de la

machine à celle imposée par l’onduleur peut être effectuée en modifiant le nombre de spires

Nsp qui sera pris comme variable d’optimisation. La tension exprimée par la relation (4.16)

doit être contrainte à être identique à celle appliquée par l’onduleur :

1,1 12 0.4502imposée dc dcV V V V

π−= = = (4.18)

Figure 4.10 : Diagrammes vectoriels de la machine pour l’harmonique de rang 1 pour (a) ψ ≠ 0 et

(b) ψ = 0

4.4 Modèle électrique équivalent de l’ensemble convertisseur-machine pour le cas d’une alimentation par convertisseur à commutation de courant

Nous présentons, dans cette partie, le modèle électrique équivalent de l’ensemble

convertisseur-machine lorsque la machine sans encoches est couplée à un convertisseur à

Page 192: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 4 170

commutation de courant. Tel que précisé dans le chapitre 1, le convertisseur limité aux

commutateurs à commutation assistée est un convertisseur à thyristors fonctionnant en

redresseur ou en onduleur suivant que la machine fonctionne en moteur ou en générateur. Il

est important de rappeler que le modèle proposé dans cette partie est développé pour le cas

d’une machine fonctionnant en générateur qui débite sur un redresseur. Ce type de montage

est généralement utilisé dans les systèmes de génération à haute vitesse à turbines à gaz de

moyennes et de grandes puissances [5], [52]. Ces systèmes peuvent être embarqués dans

plusieurs applications comme les bateaux, les véhicules hybrides, les groupes électrogènes,

etc. [19], [20], [121]. La même méthodologie de modélisation proposée ici peut être

appliquée dans le cas d’un fonctionnement en moteur ou en générateur.

4.4.1 Description du système

La figure 4.11 présente le système de génération à haute vitesse considéré. Il utilise une

machine sans encoches à aimants permanents entraînée par une turbine à gaz et qui débite

sur un redresseur à six thyristors. Le redresseur fournit la puissance active à la charge à

travers un filtre LC et assure une tension continue et régulée à la sortie.

Rappelons que les différents modèles établis dans la thèse ont été généralisés en

considérant une machine sans encoches avec un stator en SMC et une frette conductrice (cf.

paragraphe 2.2.4). Cependant, nous considérons ici que la machine est munie d’une frette

non conductrice qui peut être de type fibre de carbone par exemple. En effet, généralement

les machines avec encoches à aimants permanents à haute vitesse débitant sur un redresseur

sont équipées d’une frette conductrice afin de diminuer les pertes au rotor et de faciliter la

commutation du courant dans les interrupteurs par réduction de l’inductance transitoire [5],

[21]. Toutefois, puisque les machines sans encoches ont une faible inductance comparée à

celle des machines avec encoches, la commutation peut être aussi effectuée sans

introduction de frette conductrice [141]. De plus, les pertes au rotor peuvent être diminuées

par une segmentation des aimants.

Page 193: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 4 171

Turbine à gaz Générateur Charge

Redresseur Filtre LC

θa

Figure 4.11 : Système de génération DC à haute vitesse avec redresseur à thyristors

Le dimensionnement du système de génération de la figure 4.11 est une tâche complexe à

cause du couplage fort existant entre les performances de la machine et celles du

convertisseur qui sont influencées par la commutation assistée du courant à haute

fréquence. Les formes d’ondes du courant d’induit et de la tension continue de sortie sont

fortement dépendantes de l’impédance transitoire de la machine. Cette impédance est

complexe dans le cas des machines à SMC et dépend de la fréquence (cf. paragraphe 2.8.2).

D’un côté, l’impédance transitoire a une influence importante sur la tension DC de sortie du

système de génération à cause des chutes de tension dans le redresseur. D’un autre côté, les

performances du générateur en termes de couple et de pertes dépendent fortement des

harmoniques du courant d’induit. Par conséquent, le couplage fort entre la machine et le

redresseur doit être pris en compte au niveau du modèle électrique équivalent de l’ensemble

convertisseur-machine, il sera résolu par une approche basée sur l’utilisation d’un

mécanisme de correction spécifique dans le processus de conception par optimisation

globale présenté au chapitre 5. À noter que le dimensionnement du système de génération

sera effectué pour un angle d’amorçage nul (θa=0) correspondant à un fonctionnement en

pleine charge.

4.4.2 Développement du modèle électrique équivalent

Le modèle électrique équivalent de l’ensemble convertisseur-machine est développé en

couplant le modèle du redresseur avec celui du générateur (cf. paragraphe 4.2). Le modèle

de la machine est établi en considérant une convention générateur où les harmoniques de la

fem sont pris en compte. Cependant, nous supposons que l’inductance harmonique de la

machine Ls,h correspondant à chaque harmonique de courant est constante dans le domaine

fréquentiel. Cette inductance est faiblement dépendante de la fréquence autant pour les

Page 194: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 4 172

machines de petites puissances (cf. Fig. 2.17) que pour celles de grandes puissances [141].

Par conséquent, le circuit électrique équivalent de la machine est supposé être composé

d’une source de tension non-sinusoïdale correspondant à la fem connectée en série avec

l’inductance et la résistance du stator.

Pour effectuer le couplage entre la machine et le redresseur et faire leur adaptation, on

utilise deux modèles électriques équivalents de l’ensemble convertisseur-machine : un

premier modèle analytique intégré dans le modèle global de dimensionnement de la

machine et qui ne tient pas parfaitement compte du phénomène de commutation; et un

deuxième modèle fin (modèle résolu par simulation sans à priori) utilisé pour corriger le

premier modèle. La correction est effectuée par couplage du modèle de dimensionnement

de la machine avec le modèle de simulation sans à priori du système de génération en

utilisant un mécanisme de correction spécifique pendant le processus d’optimisation (cf.

Fig. 5.11).

La figure 4.12 présente les entrées et sorties du modèle analytique de dimensionnement du

générateur. Les entrées du modèle sont : les dimensions géométriques, les paramètres

structurels (nombre de pôles, nombre d’encoches, etc.), la vitesse, le contenu harmonique

du courant d’induit (amplitudes et phases) et la valeur corrigée Kco(i)Vdo de la tension DC de

sortie Vdo spécifiée dans le cahier des charges. Le coefficient Kco(i) est un facteur de

correction variable utilisé pour implanter le mécanisme de correction. Les performances en

termes de couple, de pertes et de rendement, les paramètres du circuit électrique équivalent

de la machine, la tension continue de sortie Vdi calculée analytiquement sont les principales

sorties du modèle de dimensionnement. Notons que n’importe quelle forme d’onde de

courant peut être imposée à l’entrée de ce modèle en termes de fondamental et

d’harmoniques. À partir du courant imposé, le module complexe des harmoniques de la

tension aux bornes de la machine sont calculés en utilisant l’équation suivante pour une

convention générateur :

,h h s s h hV E R jh L Iω = − + (4.19)

Page 195: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 4 173

La tension continue de sortie Vdi est déterminée d’une façon simplifiée à partir du

fondamental de la tension de phase en négligeant la commutation et en considérant que

θa=0 :

13 6

diV Vπ

= (4.20)

La tension Vdi calculée par le modèle de dimensionnement doit respecter la condition

( )di co i doV K V≥ qui sera imposée comme contrainte d’optimisation au chapitre 5. Cette

condition est adaptée en ajustant le nombre de spires et les autres variables d’optimisation.

Paramètres du circuit équivalent (fem, résistance, inductance vs

fréquence )Valeur corrigée de la tension

DC de sortie (Kco(i)Vdo)

Dimensions géométriques du générateur

Paramètres structurels (nombre de pôles,…)

Contenu harmonique du courant d’induit (Ih, ϕh)

Pertes, rendement

CoupleModèle de dimensionnement analytique de la

machine

Tension DC de sortie calculée (Vdi)

Vitesse

Figure 4.12 : Entrées et sorties du modèle analytique de dimensionnement de la machine dans le

cas d’une alimentation en courant

Le modèle électrique équivalent sans à priori du système de génération total est présenté à

la figure 4.13. Il est composé du circuit électrique équivalent de la machine couplé au

circuit du redresseur. Les paramètres électriques de la machine (fem, Rs, Ls,1) sont

transférés à ce modèle à partir du modèle analytique de dimensionnement de la machine. Le

modèle électrique obtenu tient compte parfaitement de la commutation due à l’inductance

de la machine ainsi que des chutes de tension dans le redresseur. L’étage continu et la

charge du redresseur sont modélisés comme une source de courant continu constant Ido. Ce

courant est déduit du cahier des charges à partir de la tension continue de sortie Vdo et de la

puissance imposées. L’ondulation du courant de sortie du redresseur est supposée

négligeable grâce à un dimensionnement adapté du filtre LC.

Le circuit électrique de la figure 4.13 est simulé sans à priori dans Matlab/Simulink et une

analyse par FFT de la forme d’onde du courant d’induit est effectuée en régime permanent

Page 196: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 4 174

afin de déterminer le fondamental et les harmoniques de ce courant. Les variables de sortie

de ce modèle sont les harmoniques du courant (modules et phases) et la tension de sortie du

redresseur simulée Vdsim qui tient compte de la chute de tension due à la commutation du

courant. Ces variables sont utilisées pour mettre au point le mécanisme de correction

permettant le couplage entre le modèle de dimensionnement de la machine et le modèle

sans à priori de l’ensemble convertisseur-machine.

fem (avec

harmoniques)

Résistance Rs

Inductance Ls1Tension DC de sortie

simulée (Vdsim)

Contenu harmonique du courant d’induit (Ih, ϕh)Ido

Figure 4.13 : Entrées et sorties du modèle électrique équivalent du système de génération

Pendant le processus d’optimisation de la machine, nous pouvons effectuer le couplage des

deux modèles et simuler sans à priori le circuit électrique du système de génération à

chaque itération des variables d’optimisation. Comme le temps de calcul peut être

prohibitif, nous proposons alors d’effectuer ce couplage à chaque solution optimale

intermédiaire de la procédure d’optimisation. Pour chaque solution optimale, le contenu

harmonique du courant est déterminé et un nouveau facteur de correction Kco(i+1) est calculé

par la formule (4.21). Ces grandeurs sont par la suite réinjectées dans le modèle analytique

de dimensionnement de la machine pour effectuer une nouvelle optimisation.

( 1)di

co idsim

VK

V+ = (4.21)

L’intégration du mécanisme de correction proposé au niveau de la procédure de conception

et d’optimisation globale de la machine est expliquée en détail dans le chapitre 5.

4.5 Conclusion

Dans ce chapitre, nous avons présenté le développement du modèle électrique équivalent de

régime permanent de l’ensemble convertisseur statique-machine sans encoches en tenant

compte des interactions entre les deux dispositifs et en considérant deux types

Page 197: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 4 175

d’alimentations : alimentation à commutation de tension et alimentation à commutation de

courant. Dans une première partie, un modèle électrique équivalent harmonique de la

machine a été proposé. Il décrit le fonctionnement électrique de la machine pour chaque

harmonique de temps de rang h et fait intervenir les paramètres électriques liés aux

caractéristiques dimensionnelles et constitutives de la machine. Ce modèle a été couplé par

la suite à celui du convertisseur statique pour constituer un modèle électrique global du

système permettant, grâce à sa résolution, d’évaluer d’une manière plus précise les

performances globales et d’effectuer l’adaptation machine-convertisseur.

Pour l’alimentation en tension, plusieurs types d’onduleurs ont été considérés dans

l’établissement du modèle électrique global de l’ensemble convertisseur-machine :

onduleurs de type 120o à forme d’onde rectangulaire de courant, onduleur de type MLI à

courant sinusoïdal et onduleur de type 180o à onde pleine de tension. Dans le cas d’une

alimentation par onduleur de type 120o (avec commandes 120o à onde pleine, à MLI et à

hystérésis), quelques hypothèse simplificatrices ont été adoptées pour l’établissement du

modèle électrique global. Nous avons alors proposé de corriger les erreurs dues à ces

hypothèses par une simulation sans à priori du modèle électrique sur Matlab/Simulink après

avoir obtenu une solution optimale de la procédure de conception de la machine.

Un modèle électrique équivalent de l’ensemble convertisseur-machine a été aussi établi

pour le cas d’une alimentation à commutation assistée de courant. Le couplage fort entre les

performances de la machine et celle du convertisseur dû au mécanisme de commutation est

résolu en proposant un mécanisme de correction spécifique qui sera intégré dans la

procédure de conception par optimisation de la machine présentée au chapitre 5. Notons

que cette approche de modélisation par correction proposée peut aussi être facilement

adaptée et utilisée pour le cas d’une machine alimentée par un onduleur de tension de type

120o. Cela permet d’obtenir les formes d’ondes réelles du courant et de la tension et de

corriger efficacement les hypothèses simplificatrices adoptées lors du développement du

modèle électrique équivalent du système.

Page 198: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Equation Chapter 5 Section 1

CHAPITRE V

5 DÉVELOPPEMENT DES PROCÉDURES DE

CONCEPTION ET D’OPTIMISATION GLOBALE

DES MACHINES SANS ENCOCHES À HAUTE

VITESSE

5.1 Introduction

Dans ce chapitre, nous présentons le développement et la mise en œuvre de la méthode de

conception optimale des machines sans encoches à aimants permanents à haute vitesse pour

les deux types d’alimentations par convertisseurs statiques considérés précédemment :

alimentation en tension et alimentation en courant. Cette méthode est basée sur le concept

de l’optimisation globale et utilise un modèle de dimensionnement global de la machine qui

intègre les modèles dimensionnels électromagnétique, thermique et mécanique pour évaluer

les performances et les contraintes spécifiées dans le cahier des charges. Le processus de

dimensionnement de la machine est effectué pour le point de fonctionnement nominal de

régime permanent et tient compte des courants induits dans les parties massives

conductrices de la machine et de son couplage avec le convertisseur statique.

Dans un premier temps, nous présentons le processus de conception général qui est utilisé

pour effectuer le dimensionnement des machines sans encoches. Ensuite, nous présentons

l’environnement de CAO qui intègre la procédure d’optimisation globale générale adoptée

en décrivant les différentes variables dimensionnelles, les objectifs et les contraintes. Les

outils de modélisation établis au cours des chapitres précédents (modèle électromagnétique,

modèle de calcul des pertes, modèle électrique équivalent de l’ensemble convertisseur-

Page 199: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 177

machine) sont complétés par la suite en développant les équations de dimensionnement

électromagnétique, thermique et mécanique de la machine pour les deux types de rotor :

interne et externe. Cela nous permet d’établir un modèle de dimensionnement global que

nous formulons sous forme d’un problème d’optimisation non linéaire avec contraintes. Les

procédures de conception et d’optimisation sont ensuite décrites en détail pour les deux

types d’alimentations par convertisseurs statiques (en tension et en courant) où le

mécanisme de correction des pertes par courants de Foucault décrit dans le chapitre 3 pour

les stators en SMC est intégré dans le même environnement de CAO. Ce mécanisme

permet de tenir compte des effets 3D sur les pertes et d’améliorer la précision et la

convergence de la procédure générale itérative de conception optimale. Le mécanisme de

correction du couplage machine-convertisseur décrit dans le chapitre 4 est aussi intégré

lorsqu’il s’agit d’une alimentation en courant. Finalement, la méthode de conception

proposée est validée en dimensionnant deux moteurs sans encoches à deux pôles et à quatre

pôles à rotors internes avec des stators en SMC pour un cahier des charges d’outillage à

motorisation électrique.

5.2 Processus de conception général

Dans un processus de conception des machines électriques, l’objectif est de concevoir un

système optimal au sens du coût et des performances en respectant les spécifications du

cahier des charges de l’application. Ce processus est formulé comme un problème

d’optimisation globale qui maximise une fonction objectif de performances tout en

respectant les contraintes imposées par les spécifications. Pour garantir l’optimalité de cette

solution, l’approche de conception doit tenir compte de toutes les performances et

contraintes magnétiques, électriques, thermiques et mécaniques qui régissent le

fonctionnement de la machine. Dans le cas des machines sans encoches à haute vitesse, une

attention particulière doit être portée au dimensionnement mécanique du rotor, à

l’adaptation de la machine à son alimentation et à la minimisation des pertes.

Pour le dimensionnement des machines sans encoches considérées dans la thèse, le

processus de conception et d’optimisation globale adopté comporte plusieurs étapes (cf.

Fig. 5.1) :

Page 200: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 178

• Définition du cahier des charges à partir d’une analyse de l’application à haute

vitesse considérée et de son environnement : cela permet de déterminer l’ensemble

des performances (couple, puissance, masse, rendement, etc.) et des contraintes

(encombrement, échauffement, saturation, mode de refroidissement, etc.) qui

doivent être satisfaites au cours de la conception des machines. L’ensemble des

spécifications du cahier des charges doit être présenté dans un formalisme

compatible avec une méthode d’optimisation non linéaire avec contraintes ;

• Choix d’une structure de l’ensemble convertisseur-machine dépendamment de

l’application et de son cahier des charges : ce choix est réalisé à partir de la liste des

machines sans encoches considérées dans la thèse (machines fonctionnant en

moteur ou en générateur, à rotor interne ou externe, à frette conductrice ou non

conductrice, à stator en SMC ou en fer laminé) ainsi que celle des convertisseurs

statiques qui y sont associés (onduleurs ou redresseurs, à commutation de courant

ou de tension). Quelques paramètres et caractéristiques structurels sont aussi fixés

dans cette étape comme par exemple le nombre de pôles, le nombre d’encoches, les

caractéristiques des aimants, la configuration du bobinage, etc. ;

• Développement des différents modèles électromagnétique, thermique et mécanique

afin de constituer un modèle de dimensionnement global de la machine. Notons que

cette étape très importante a été effectuée et détaillée dans les chapitres précédents

et qu’elle sera complétée dans ce chapitre en établissant les équations de

dimensionnement (cf. partie 5.4) ;

• Dimensionnement itératif de la machine en déterminant l’ensemble des

caractéristiques dimensionnelles et constitutives de la structure pour chaque vecteur

de variables d’état de dimensionnement ;

• Expérimentation simulée pour analyser et éventuellement évaluer à chaque itération

les performances et les contraintes de conception à partir du modèle de

dimensionnement incluant le modèle électrique équivalent de l’ensemble

convertisseur-machine ;

• Utilisation d’une procédure d’optimisation globale incluant le mécanisme de

correction des pertes par courant de Foucault par calcul numérique du champ en 3D

Page 201: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 179

et éventuellement le mécanisme de correction permettant de résoudre le couplage

fort entre les performances de la machine et celle du convertisseur statique décrit

dans le chapitre 4 dans le cas d’une alimentation en courant. Ce processus permet de

trouver une solution optimale suivant les objectifs et les contraintes du cahier des

charges ;

• Validation, réalisation et essai du prototype optimal de la machine.

Définition du cahier des charges

Choix d’une structure machine-convertisseur

Création des modèles machine-convertisseur

Dimensionnement

Expérimentation simulée (évaluation des performances

et des contraintes)

Objectifs atteints?

Réalisation et essai du prototype optimal

Optimisation

Oui

Non

Figure 5.1 : Processus de conception général des machines sans encoches

L’objectif principal de la thèse est de développer un ensemble d’outils intégrés dans un

environnement de CAO qui permet d’optimiser le dimensionnement des machines sans

encoches à aimants permanents à haute vitesse. Tous les outils de cet environnement

permettant de réaliser les étapes du processus de conception et d’optimisation globale ont

été présentées, développées et mis en œuvre dans les chapitres précédents, ils seront

complétés dans ce chapitre.

Page 202: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 180

5.3 Environnement de CAO avec l’optimisation globale

La structure et les différentes parties de l’environnement de CAO utilisé pour la conception

des machines sans encoches à haute vitesse sont présentées dans la figure 5.2. Cet

environnement est constitué principalement du modèle de dimensionnement analytique

global de la machine, d’une procédure d’optimisation non linéaire avec contraintes et du

mécanisme de correction des pertes par courants de Foucault dans le stator en SMC par

calcul numérique du champ en 3D pour tenir compte des effets de bord. Lorsque la machine

est connectée à un convertisseur à commutation de courant (onduleur ou redresseur), l’outil

de simulation sans à priori du modèle électrique équivalent de l’ensemble convertisseur-

machine et le mécanisme de correction permettant d’effectuer le couplage fort entre la

machine et son alimentation sont intégrés dans le même environnement de CAO. Tous les

différents outils de cet environnement sont implantés dans Matlab/Simulink. Cet outil de

CAO est utilisé d’une façon itérative afin de trouver des solutions optimales de

dimensionnement des machines sans encoches à haute vitesse. Le formalisme du problème

d’optimisation et le couplage entre les différentes parties de cet outil de CAO sont effectués

de manière à augmenter l’efficacité de l’outil en termes de précision et de temps de calcul.

Outil d’optimisation(Matlab Optimization Toolbox)

-Variables d’optimisation -Fonction objectif -Contraintes non linéaires

Modèle analytique de dimensionnement global de

la machine (Matlab)

Simulation en calcul numérique du champ en 3D

(Flux3D)+

Mécanisme de correction des pertes par courant de Foucault

Simulation sans à priori du modèle électrique équivalent

(SimPowerSystem) +

Mécanisme de correction de couplage convertisseur-machine

Figure 5.2 : Structure de l’environnement de CAO des machines sans encoches à haute vitesse

• Modèle de dimensionnement global

Page 203: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 181

Le modèle de dimensionnement analytique global de la machine représente le cœur de

l’outil de CAO. Il regroupe les différents modèles dimensionnels électromagnétique,

thermique et mécanique de la machine ainsi que le modèle électrique équivalent analytique

de l’ensemble convertisseur-machine. La figure 5.3 présente les entrées et les sorties de ce

modèle dans le cas d’une alimentation en tension de la machine. Notons que dans le cas

d’une alimentation en courant, les entrées et sorties du modèle de dimensionnement ont été

fournies au paragraphe 4.4.2 du chapitre 4.

Pour l’alimentation en tension, le modèle de dimensionnement a pour entrées les

dimensions géométriques de la machine, les paramètres structurels liés aux caractéristiques

du bobinage, des aimants et des matériaux de la machine, la vitesse de fonctionnement et

les caractéristiques du convertisseur statique (tension de l’étage continu maximale). Ce

modèle permet, à partir d’un vecteur de variables dimensionnelles, d’évaluer les

performances de la machine et les différentes contraintes liées au cahier des charges

(contraintes mécaniques, thermiques, électriques et magnétiques). Les sorties du modèle

sont principalement : le couple, les pertes, le rendement, les paramètres du circuit électrique

équivalent de la machine, la masse, les inductions magnétiques, les tensions et les courants.

Ces variables de sortie sont utilisées pour évaluer une fonction objectif qui quantifie les

performances et diverses fonctions contraintes. La recherche des valeurs optimales des

variables dimensionnelles qui maximisent la fonction objectif en respectant les valeurs des

fonctions contraintes est assurée par une procédure d’optimisation non-linéaire avec

contraintes. Avec cette approche, qui prend en compte le couplage des différents modèles

de dimensionnement de l’ensemble convertisseur-machine, on réalise une optimisation

globale du système.

Figure 5.3 : Entrées et sorties du modèle analytique de dimensionnement de la machine dans le

cas d’une alimentation en tension

Page 204: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 182

• Procédure d’optimisation non linéaire avec contraintes

Le problème de conception des machines électriques est un problème ouvert. Les

spécifications du cahier des charges conduisent souvent à un système ayant plus de

variables que d’équations en raison d’un manque de contraintes. La résolution du problème

de conception comporte en général une multitude de solutions. Il convient alors de vérifier

et de comparer les performances des différentes solutions possibles et de retenir la plus

intéressante au sens d’une fonction objectif définie par le concepteur.

Il existe plusieurs algorithmes d’optimisation non linéaire qui peuvent être utilisés dans la

littérature. Dans le cadre de cette thèse, nous avons choisi la méthode de la

«Programmation Quadratique Séquentielle» basée sur le calcul du gradient et de la matrice

hessienne du Lagrangien. C’est une méthode déterministe directe avec contraintes non

linéaires implantée dans le module Optimization Toolbox de Matlab sous la forme d’une

fonction appelée «fmincon».

La définition du problème d’optimisation consiste à déterminer les objectifs recherchés, les

variables d’optimisation et les contraintes en fonction du cahier des charges.

Dépendamment de l’application et du type d’ensemble convertisseur-machine, plusieurs

objectifs peuvent être minimisés ou maximisés pour le point de fonctionnement de régime

permanent :

• Maximisation du couple ou de la puissance ;

• Maximisation du rendement ou minimisation des pertes ;

• Minimisation du poids total ou du coût ;

• Maximisation d’une fonction objectif «hybride» : puissance massique, couple

massique, etc.

Comme la méthode d’optimisation considérée est mono-objectif et que les objectifs

précédents sont généralement spécifiés dans le cahier des charges des applications à haute

vitesse, un de ces critères peut être choisi comme fonction objectif principale et les autres

peuvent être mis sous forme de contraintes. C’est au niveau de la formulation du problème

Page 205: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 183

d’optimisation que l’expertise du concepteur est mise à profit. L’environnement de CAO

mis au point permet à celui-ci de formuler facilement différents problèmes d’optimisation.

Les variables d’optimisation sont légèrement différentes suivant le type de machine sans

encoches (à rotor interne ou externe) et le type de convertisseur statique. Les principales

variables de dimensionnement utilisées sont :

• Le diamètre interne de la culasse du rotor (Dri) pour le cas d’une machine à rotor

interne ou le diamètre interne de la culasse du stator (Dsi) pour une machine à rotor

externe ;

• Les épaisseurs des différentes zones constitutives de la machine : épaisseurs de la

culasse du rotor (eculr), des aimants permanents (la), de l’entrefer (e), du bobinage

(hb) et de la culasse du stator (eculs). Le fait de commencer par le diamètre interne le

plus proche du centre de la machine (le diamètre le plus petit de la machine) et de

considérer les épaisseurs des différentes parties de la machine permet d’assurer une

grande stabilité de l’algorithme d’optimisation en proposant dans tous les cas une

machine réalisable ;

• Le rapport entre la largeur des aimants et le pas polaire β (ouverture des aimants) ;

• La longueur axiale active de la machine L ;

• Le nombre de spires des enroulements (Nsp). Ce paramètre est utilisé comme

variable d’optimisation puisqu’il intervient directement dans le calcul des pertes

supplémentaires dues à l’effet de peau et de proximité dans les conducteurs du

bobinage de la machine. Il sert aussi à effectuer l’adaptation de tension de la

machine à son alimentation.

Comme cela a été expliqué au chapitre 4, d’autres variables d’optimisation doivent être

ajoutées. Dans le cas d’une alimentation par onduleur de tension de type 120o ou de type

MLI à courant sinusoïdal, la densité efficace Jcu dans les conducteurs du bobinage est

imposée comme variable d’optimisation, tandis que dans le cas d’une alimentation par

onduleur de type 180o à onde pleine de tension, l’angle θ entre la tension de phase et la fem

est pris comme variable d’optimisation afin d’imposer un angle ψ nul.

Page 206: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 184

Suivant le cahier des charges et le type de convertisseur statique utilisé, différentes

contraintes peuvent être définies et appliquées :

• Contraintes géométriques (encombrement maximal) ;

• Contraintes thermiques qui limitent l’échauffement maximal de la machine suivant

le mode de refroidissement utilisé ;

• Contraintes magnétiques (saturation et démagnétisation des aimants permanents) ;

• Contraintes mécaniques qui assurent l’intégrité mécanique du rotor et de la frette

pour les hautes vitesses ;

• Contraintes électriques (adaptation de la tension de la machine à celle du

convertisseur) ;

• Contraintes supplémentaires permettant de résoudre un problème de type multi-

objectif.

Notons que les variables d’optimisation, la fonction objectif et les différentes contraintes du

problème d’optimisation seront détaillées dans la partie 5.5 pour chaque type

d’alimentation.

• Mécanisme de correction des pertes par courants de Foucault

Dans l’environnement de CAO, la procédure d’optimisation est associée au mécanisme

itératif de correction des pertes par courant de Foucault induites dans la culasse du stator en

SMC et qui sont calculées en 2D. Comme il a été mentionné au paragraphe 3.7.2, des

simulations en calcul de champ par éléments finis en 3D en magnétodynamique en

instantané ou en complexe peuvent être effectuées pour déterminer des facteurs de

correction (Kp ou Kc) qui permettent de corriger les pertes en tenant compte des effets 3D.

Pour tirer avantage de la rapidité du modèle analytique de dimensionnement et de la

précision du calcul du champ, le mécanisme itératif de correction est appliqué en dehors de

la boucle d’optimisation (cf. partie 5.5). Cela permet de diminuer la durée d’exécution du

processus global d’optimisation en assurant une bonne précision au niveau du calcul des

pertes. Notons que le couple de freinage dû à l’interaction entre les aimants et les courants

Page 207: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 185

de Foucault induits dans le stator en SMC est aussi corrigé en utilisant le même facteur de

correction des pertes.

• Mécanisme de correction pour le couplage machine-convertisseur de courant

Le mécanisme de correction permettant le couplage entre le modèle de dimensionnement de

la machine sans encoches et le modèle électrique de simulation sans à priori de l’ensemble

convertisseur-machine pour le cas d’un convertisseur à commutation de courant est déjà

décrit dans le chapitre 4. Son intégration détaillée au niveau de la procédure de conception

et d’optimisation est expliquée dans la partie 5.5 de ce chapitre.

5.4 Modèle de dimensionnement de la machine

Dans cette partie, nous présentons les différentes équations de dimensionnement

électromagnétique, thermique et mécanique des machines sans encoches avec rotors interne

et externe. Ces équations sont ajoutées aux différents outils de modélisation développés

dans les chapitres 2, 3 et 4 pour établir le modèle de dimensionnement. Elles sont

exprimées en fonction des variables dimensionnelles du problème d’optimisation et des

entrées du modèle de dimensionnement présentées dans la figure 5.3. Elles permettent de

dimensionner le circuit électromagnétique de la machine et d’exprimer les contraintes au

niveau de la saturation, de la démagnétisation des aimants, de l’échauffement maximal et

des contraintes mécaniques dues à la haute vitesse.

5.4.1 Dimensionnement électromagnétique

Le dimensionnement électromagnétique de la machine consiste à dimensionner les

différentes parties du stator et du rotor en évitant la saturation des matériaux magnétiques et

la démagnétisation des aimants et en adaptant la tension de la machine à celle imposée par

le convertisseur. Cela est effectué suivant les spécifications du cahier des charges. Dans le

cas d’une machine fonctionnant en alternateur, un courant de court-circuit supérieur au

courant nominal doit aussi être assuré. La figure 5.4 présente la structure de la machine

sans encoches pour les deux types de rotor (interne et externe) avec les différentes

dimensions. Ces structures sont utilisées pour établir le dimensionnement

Page 208: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 186

électromagnétique où le stator peut être en SMC ou en fer laminé. À cause de l’absence des

dents, les conducteurs du bobinage peuvent occuper tout l’espace disponible. Cependant,

nous pouvons remarquer dans la figure 5.4 qu’un espace est ajouté entre les conducteurs de

deux encoches adjacentes. Cet espace est généralement occupé par le support du bobinage

et par l’isolation entre les phases et qui est caractérisé ici par le coefficient d’ouverture des

encoches (ke).

Nous pouvons aussi remarquer qu’une frette d’épaisseur ec est considérée même dans la

structure de la machine à rotor externe. Cette frette conductrice, qui n’a aucun rôle au

niveau du maintien des aimants, peut être éventuellement utilisée dans cette structure suite

à son utilité au niveau des performances électromagnétiques (cf. chapitre 1).

Rri=Dri/2

eclur

eclus

hb

ecla

e

r3=Dco/2

r6=Dso/2

r5=Dsi/2

r4=Db/2

r1=Dro/2 r2=Dm/2

βπ/p

(a)

Rsi=Dsi/2

eclur

eclus

hb

ecla

e

r3=Dci/2

r6=Dro/2

r5=Dri/2

r4=Dm/2

r1=Dso/2 r2=Db/2

βπ/p

(b) Figure 5.4 : Structure de la machine sans encoches et définition des dimensions pour (a) rotor

interne et (b) rotor externe

5.4.1.1 Dimensionnement du stator et du rotor

Les différents diamètres de la structure de la machine peuvent être déterminés à partir des

variables de dimensionnement géométriques. Pour une machine à rotor interne ou externe,

ces diamètres sont calculés comme suit :

Page 209: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 187

• Pour une machine à rotor interne :

222222

ro ri culr

m ro a

co m c

b co

si b b

so si culs

D D eD D lD D eD D eD D hD D e

= + = + = + = + = +

= +

(5.1)

• Pour une machine à rotor externe :

222222

so si culs

b so b

ci b

m ci c

ri m a

ro ri culr

D D eD D hD D eD D eD D lD D e

= + = + = + = + = +

= +

(5.2)

Le calcul de la section totale du cuivre Scu en fonction du coefficient de remplissage des

encoches Ku et de la section totale d’encochage Se est déjà donné par l’expression (2.117).

Pour un rotor interne, la section Se est déterminée comme suit (une expression similaire est

utilisée pour le rotor externe) :

2 2

4si b cu

e eu

D D SS kK

π−= = (5.3)

5.4.1.2 Prise en compte de la saturation

Dans la procédure d’optimisation, les épaisseurs des culasses du rotor et du stator (eculr et

eculs) sont prises comme variables d’état du problème d’optimisation. Elles doivent être

contrôlées afin d’éviter la saturation des matériaux magnétiques au niveau du rotor et du

stator. Cela revient à limiter les inductions moyennes maximales (Bculrmax et Bculsmax) dans

les deux culasses à celles imposées par le cahier des charges (contraintes de saturation).

Dans le cas d’un rotor interne, l’induction moyenne Bculr(t) au niveau de la culasse du rotor

peut être calculée à partir du flux traversant la section latérale (S1) de la culasse au niveau

de l’angle θ2 (cf. Fig. 5.5). Ce flux est donné par :

Page 210: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 188

( )1( ) ( ) ( )culr culr ro ri culr culrt B t R R L B t e Lφ = − = (5.4)

Le flux φclur1(t) est égal à celui qui traverse la section circonférentielle (S2) d’un demi-pôle

au niveau du rayon externe du rotor Rro (Rro=Dro/2=r1). Ce dernier flux (noté φclur2(t)) peut

être déterminé à partir du potentiel vecteur total exprimé dans la zone des aimants (i=1) en

utilisant les angles θ1 et θ2 de la figure 5.5 où 2 1 / (2 )pθ θ π= + [107] :

( )(1) (1)2 1 2 1 1( ) ( , , ) ( , , )A lculr tot tot tott d A r t A r t Lφ θ θ= = −∫

(5.5)

π/2p

θ1

θ2

Rro

Rri

(S1)

(S2)

Figure 5.5 : Structure du rotor interne de la machine et définition des angles θ1 et θ2

En utilisant l’expression du potentiel vecteur total (équation (2.97)) et celles des potentiels

vecteurs à vide et de réaction d’induit (équations (2.95) et (2.96)) exprimées dans le

référentiel du stator, l’expression du flux est alors :

( )

( )

11

11

..2(1)

2 , 1

. .(1) 2, , 1 ,

( ) ( )

( )h

h

jkp tjkp tp

culr m kk

j kp k hp t j kp hp ts k h k h

k h

t L R r e e

L R r J e e

πθθ

πθ ϕ θ ϕ

φ +∞ + −Ω −Ω

=−∞

+∞ +∞ + + Ω − + Ω −

=−∞ =−∞

= −

+ −

∑ ∑

(5.6)

Le flux φclur2(t) est constitué d’une composante moyenne correspondant aux combinaisons

des harmoniques de temps et d’espace qui sont synchrones avec le rotor (k+h=0) et d’une

composante alternative. Sachant que dans le référentiel du stator, l’angle θ1 est tel que

1 tθ = Ω et en négligeant les termes alternatifs, l’expression du flux devient :

Page 211: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 189

(1) (1) 222 , 1 , , 1 ,

1 1( ) 2 Real ( ) 1 ( )

hh

j hjk jculr m k s h h h h

k ht L R r e R r J e e

ππ ϕϕφ

+∞ +∞ +

= =

= − − − ∑ ∑

(5.7)

En égalisant les expressions des deux flux (équations (5.4) et (5.7)), l’induction moyenne

Bculr(t) dans la culasse du rotor peut être déterminée par :

(1) (1) 22, 1 , , 1 ,

1 1

2( ) Real ( ) 1 ( )h

hj hjk j

culr m k s h h h hk hculr

B t R r e R r J e ee

ππ ϕϕ

+∞ +∞ +

= =

= − − − ∑ ∑

(5.8)

Le choix de l’épaisseur de la culasse du rotor doit respecter la contrainte de saturation la

plus contraignante lorsque la réaction d’induit est longitudinale et magnétisante. Ce cas

correspond à un calage du fondamental de courant dans le du stator égal à 1 / 2ϕ π= − . Les

déphasages des autres harmoniques peuvent être déterminés à partir de celui du

fondamental. En remplaçant ces angles dans l’expression (5.8), l’induction moyenne

maximale (Bculrmax) peut être facilement calculée. Elle doit être limitée à l’induction

maximale (Bculrmax0) spécifiée dans le cahier des charges :

max max 0culr culrB B≤ (5.9)

D’une manière similaire, l’induction Bculsmax dans la culasse du stator peut aussi être

déterminée à partir de l’expression (5.8) en considérant les constantes des potentiels

vecteurs à vide et de réaction d’induit dans la zone du bobinage (i=4). Notons que les

mêmes expressions développées ici peuvent être utilisées dans le cas d’un rotor externe.

5.4.1.3 Prise en compte du problème de démagnétisation des aimants

Dans les machines sans encoches à aimants permanents, il peut y avoir un risque de

démagnétisation irréversible des aimants lorsqu’un courant d’induit important est appliqué.

Un champ de réaction d’induit excessif produit par le courant peut forcer le point de

fonctionnement des aimants à dépasser le coude de la courbe de démagnétisation B(H) (cf.

Fig. 5.6). Cela peut conduire à une désaimantation des aimants surtout pour des

températures d’aimants très élevées. Il existe une valeur minimale de l’induction (BAPmin)

correspondant à une épaisseur minimale des aimants en dessous de laquelle il y aura

désaimantation irréversible. Lors du dimensionnement des machines sans encoches, ce

Page 212: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 190

phénomène doit être pris en considération pour les valeurs les plus élevées du courant et de

la température des aimants.

BAPmin

HAPmin H

B, Mi

Br, M

BP

HP

Droite de charge

Figure 5.6 : Caractéristiques de démagnétisation d’un aimant permanent

La contrainte de démagnétisation est prise en compte en considérant l’induction radiale

totale (Btot,r) calculée au niveau de l’angle θ1 (cf. Fig. 5.5) lorsque la réaction d’induit est

longitudinale démagnétisante. Cela correspond à un calage des courants d’induit tel que

1 / 2ϕ π= (pour le fondamental). Cette contrainte, correspondant à l’expression suivante

(pour une machine à rotor interne), doit être vérifiée aux rayons interne Rro et externe Rm

des aimants. La démagnétisation est plus importante au niveau du rayon externe des

aimants pour les machines sans encoches à rotor intérieur et au niveau du rayon interne des

aimants pour les machines à rotor extérieur.

2(1), 1 min

1

( , ) avec : mtot r AP

ro

r r RB r B

r r Rθ

= =≥ = =

(5.10)

L’induction radiale totale dans la zone des aimants peut être calculée à partir des inductions

à vide et de réaction d’induit déduites de la modélisation électromagnétique effectuée au

chapitre 2. Dans un référentiel lié au stator, cette induction est exprimée par :

(1) (1)

, ,(1) (1) (1), , ,

( , , ) ( , , )1 1( , , ) ( , , ) ( , , ) m r s s r stot r s m r s s r s

s s

A r t A r tB r t B r t B r t

r rθ θ

θ θ θθ θ

∂ ∂= + = +

∂ ∂ (5.11)

Page 213: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 191

C’est-à-dire :

( )

( ) ( )

1

1

.(1) (1) 1 (1) 1, 1 , ,

.(1) 1 (1) 1, , , , ,

( )( , , ) .

h

jkp tktot r m k m k

k

j kp hp ts k h s k h k h

k h

S rB r t jkp A r B r er

jkp A r B r J e

θα α

θ ϕα α

θ+∞

−Ω− − −

=−∞

+∞ +∞+ Ω −− − −

=−∞ =−∞

= + +

+ +

∑ ∑

(5.12)

La démagnétisation du champ magnétique à vide n’est effective que pour les combinaisons

des harmoniques de temps et d’espace du champ de réaction d’induit qui sont synchrones

avec le rotor (k+h=0). Pour 1 tθ = Ω , l’induction radiale totale dans les aimants

devient indépendante du temps :

( )

(1) 1 (1) 1, ,

1 2(1), 1

1(1) 1 (1) 1, , , , ,

1

( )

( , ) 2 real , avec :h

km k m k

k mtot r

rojs h h s h h h h

h

S rjkp A r B rr r Rr

B rr r R

jhp A r B r J e

α α

ϕα α

θ

+∞− − −

=

+∞− − −

=

+ + = = = = =− +

(5.13)

Notons qu’un coefficient de sécurité KsécB a été introduit au niveau de l’induction de

réaction d’induit Bs,r afin d’assurer un fonctionnement sécuritaire de la machine. Les

relations (5.10) et (5.13) permettent de définir implicitement un point de fonctionnement

sur la droite de recul qui permet d’éviter la démagnétisation des aimants permanents.

5.4.1.4 Adaptation du nombre de spires

Lors du dimensionnement des machines sans encoches, le nombre de spires des

enroulements, qui est pris comme variable d’optimisation, doit être ajusté afin d’adapter la

tension de la machine à celle imposée par le convertisseur statique suivant la tension

disponible dans l’étage continu. Le nombre de spires influence à la fois les paramètres du

circuit électrique équivalent de la machine (donc la tension de la machine) et les pertes par

effet de peau et de proximité dans les conducteurs du bobinage. Un meilleur ajustement de

ce paramètre doit être réalisé à cause de l’influence importante des effets du

fonctionnement à haute vitesse [1].

Les équations permettant d’effectuer l’adaptation de la tension de la machine sont déjà

données au chapitre 4 pour tous les types de convertisseurs statiques considérés dans la

Page 214: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 192

thèse. Cela a été effectué lors de l’établissement du modèle électrique équivalent de chaque

ensemble convertisseur-machine.

5.4.1.5 Prise en compte du problème du courant de court-circuit

Lorsque la machine sans encoches fonctionne en alternateur, elle doit être capable de

fournir son courant nominal avec une tension de sortie acceptable. Elle doit être alors

dimensionnée pour fournir un courant de court-circuit efficace Ieff,cc supérieur au courant

nominal Ieff,n correspondant à l’échauffement maximal admissible en régime permanent.

Cela revient à adapter le rapport φm/Lsc,1 pendant le dimensionnement en respectant la

contrainte suivante :

, ,,1

meff cc eff n

sc

I ILφ

= ≥ (5.14)

où φm est la valeur efficace du flux à vide et Lsc,1 est l’inductance de la machine considérée

seulement pour le fondamental.

L’association de la machine à un convertisseur à commutation de courant (redresseur à

thyristors) réduit le courant de court-circuit à la sortie du redresseur à cause de la

commutation. Le courant de court-circuit doit être alors vérifié pour l’ensemble

convertisseur-machine. Cela peut être effectué à partir de la simulation sans à priori du

modèle électrique équivalent du système une fois que le processus d’optimisation est

terminé.

5.4.2 Dimensionnement thermique

Le dimensionnement thermique occupe une place importante dans le processus de

conception des machines à aimants fonctionnant à des vitesses très élevées. À cause de la

haute vitesse et de la haute fréquence des grandeurs électriques, les pertes dans la machine

peuvent être significatives que ce soit au niveau du stator ou du rotor et peuvent conduire à

un échauffement excessif. Cela conduit à imposer, lors du dimensionnement de la machine,

une contrainte thermique qui permet de respecter l’échauffement maximal admissible et

d’assurer un fonctionnement sécuritaire.

Page 215: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 193

Pour les machines sans encoches considérées dans cette thèse, le dimensionnement

thermique est effectué en limitant les pertes totales générées Pertot à celles imposées par le

cahier des charges Pertot0 et en considérant qu’un système de refroidissement efficace est

utilisé pour évacuer ces pertes. La contrainte thermique correspondante est alors :

0ertot ertotP P≤ (5.15)

Le fait d’imposer une valeur limite aux pertes totales signifie que le rendement est aussi

imposé. Cette valeur limite des pertes imposées dans le cahier des charges est choisie

dépendamment du type de classe d’isolation considéré pour le bobinage, du système de

refroidissement utilisé et des données expertes qui peuvent être recueilles à partir d’un

prototype déjà existant. Les pertes totales dans la machine Pertot sont la somme des diverses

pertes calculées au chapitre 3 :

• Pertes Joule au stator (PJ) : pertes Joule correspondant à la résistance continue du

bobinage (PJ0) et pertes supplémentaires dues à l’effet de peau et de proximité

(PJext) ;

• Pertes magnétiques au stator (Pmag) : pertes d’hystérésis (Ph) et pertes par courants

de Foucault (Pcf) ;

• Pertes Joule au rotor (Pr) : pertes par courants de Foucault dans les aimants (Pm) et

pertes dans la frette conductrice (Pc) ;

• Pertes mécaniques (Pméc) : pertes aérodynamiques (Paero) et pertes par frottement

dans les roulements (Proul).

Le rendement de la machine sans encoches pour un fonctionnement en moteur est calculé à

partir de l’expression suivante (une expression similaire peut être déduite dans le cas d’une

machine fonctionnant en alternateur) :

u

u ertot

TT P

η Ω=

Ω + (5.16)

Le couple Tu est le couple utile disponible sur l’arbre du moteur qui tient compte du couple

électromagnétique (Tem), du couple correspondant aux pertes d’hystérésis (Th) et du couple

dû aux pertes mécaniques (Tméc) : u em h mécT T T T= − − .

Page 216: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 194

5.4.3 Dimensionnement mécanique

À cause de la haute vitesse de fonctionnement, la conception optimale des machines sans

encoches exige, non seulement un bon dimensionnement électromagnétique et thermique,

mais aussi un dimensionnement mécanique efficace au niveau du rotor. Ce

dimensionnement conduit à des limitations sur les dimensions de la machine (diamètre

externe du rotor et épaisseur de la frette) et a des conséquences directes sur les

performances électromagnétiques [1].

Pour des vitesses très élevées, la culasse du rotor et la frette de maintien des aimants

subissent un stress mécanique très important dû aux forces centrifuges. Les contraintes

mécaniques correspondant à ce stress doivent être évaluées afin de définir un rayon

maximal de la culasse du rotor et une épaisseur minimale de la frette qui permettent

d’éviter la destruction de la structure et d’assurer un fonctionnent sécuritaire.

5.4.3.1 Dimensionnement mécanique du rotor

Le dimensionnement mécanique du rotor consiste à définir un diamètre maximal de la

culasse du rotor à ne pas dépasser pendant le processus de dimensionnement pour limiter le

stress mécanique. Cela permet de limiter la vitesse périphérique du rotor, la force centrifuge

résultante ainsi que la contrainte mécanique de traction dans le rotor de telle façon qu’elle

soit inférieure à la contrainte d’élasticité limite admissible du matériau du rotor (résistance

à la rupture) [155], [156]. Le calcul du diamètre maximal de la culasse du rotor doit être

effectué pour les deux types de rotor (interne et externe) puisque le dimensionnement est

différent d’un cas à un autre.

• Machine à rotor interne

Si on considère un élément de la culasse du rotor de masse dm, d’angle dθ, de vitesse

périphérique v et de masse volumique ρr (cf. Fig. 5.7), la force centrifuge agissant sur celui-

ci est donnée par :

2 2

2 2c r culr r culr

v vdF dm R dm R d e L d e L vR R

ρ θ ρ θ= Ω = = = (5.17)

Page 217: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 195

Cet élément est soumis à deux autres forces de résistance N dues à la contrainte de traction

tangentielle σtr exercée sur les deux surfaces latérales S orientées dans la direction

tangentielle. En considérant que la contrainte est uniforme sur les deux surfaces, les forces

N sont exprimées par :

tr tr culrN S e Lσ σ= = (5.18)

L’équation d’équilibre des forces totales agissant sur l’élément de la culasse du rotor peut

être écrite comme suit :

( )2 sin / 2cdF N d N dθ θ= ≈ (5.19)

Le remplacement des forces dFc et N par leurs expressions respectives permet de trouver la

vitesse périphérique au niveau du rotor :

tr

r

v σρ

= (5.20)

Cette vitesse doit être limitée à la vitesse périphérique maximale correspondant à la

contrainte maximale admissible de résistance à la traction σtr-adm du matériau constitutif du

rotor :

maxtr adm

r

v v σρ−≤ = (5.21)

Pour une culasse du rotor réalisée en acier (σtr-adm= 600 N/mm2, ρr =7600 kg/m3) par

exemple, la vitesse périphérique maximale théorique à ne pas dépasser est 280 m/s. Cette

vitesse permet de fixer une valeur maximale limite au rayon externe du rotor Rro pour une

vitesse de rotation Ω donnée. Cela correspond à la contrainte mécanique suivante, qui doit

être considérée au niveau de la procédure d’optimisation, avec un coefficient de sécurité

supplémentaire (Ksécσr<1) :

max1 séc r tr adm

ro ror

KR R σ σ

ρ−≤ =

Ω (5.22)

Page 218: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 196

NN

dFc=dmRΩ2

eclur

Rri

Rro

R

Figure 5.7 : Forces mécaniques agissant sur un élément de la culasse du rotor (rotor interne)

• Machine à rotor externe

Dans le cas d’une machine à rotor externe, une autre force entre en jeu ; elle est due à la

pression exercée par les aimants permanents sur la culasse du rotor à cause des forces

centrifuges (cf. Fig. 5.8). Cette pression (Pa) est exprimée par :

22

a aa

ri ri

p F p FPR L R Lπ π

= = (5.23)

où Fa est la force centrifuge exercée par un seul aimant de masse map et de masse

volumique ρap sur la culasse du rotor. Elle est définie par :

( )

2 2

2 2

2

2

m ria ap ap

ap ap ri m

R RF m R m

m R R Lp

πρ β

+ = Ω = Ω = −

(5.24)

Pour un élément de la culasse du rotor, la force de pression due aux aimants s’ajoute aux

autres forces décrites précédemment dans le cas du rotor interne (dFc et N). Cette force,

supposée uniforme, s’écrit comme suit :

a a a ridF P dS P R d Lθ= = (5.25)

En utilisant l’équation d’équilibre des forces ( c adF dF N dθ+ = ) et les expressions (5.17)

et (5.18), la vitesse périphérique du rotor peut être facilement déduite comme suit :

Page 219: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 197

, avec :tr tap a ritap

r culr

P Rve

σ σσ

ρ−

= = (5.26)

Dans ce cas, la contrainte mécanique qui limite le rayon externe du rotor, la vitesse

périphérique et la contrainte de traction admissible est similaire à celle établie

précédemment. Elle s’exprime par :

max1 séc r tr adm tap

ro ror

KR R σ σ σ

ρ− −

≤ =Ω

(5.27)

Figure 5.8 : Force centrifuge due aux aimants agissant sur la culasse du rotor (rotor externe)

5.4.3.2 Dimensionnement mécanique de la frette

Pour une machine à rotor interne, les aimants permanents sont maintenus en place en

utilisant une frette mécanique qui augmente aussi la rigidité du rotor en haute vitesse. Les

aimants appliquent sur la frette une certaine pression qui conduit à une contrainte de

traction proportionnelle au carré de la vitesse de rotation. Cette contrainte ne doit pas

dépasser la contrainte de traction limite admissible par le matériau de la frette afin de

garantir un fonctionnement sécuritaire [157], [158]. Le dimensionnement de la frette

consiste alors à respecter cette contrainte en imposant une certaine valeur minimale pour

son épaisseur.

La pression Pac appliquée par les aimants permanents sur la frette peut être déterminée par

une expression similaire à celle établie précédemment (cf. équation (5.23)) en supposant

que les forces sont uniformément réparties [157] :

Page 220: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 198

22

ac acac

m m

p F p FPR L R Lπ π

= = (5.28)

Fac est la force centrifuge exercée sur la frette par un seul aimant (cf. Fig. 5.9) :

( )

2 2

2 2

2

2

ro mac ap ap

ap ap m ro

R RF m R m

m R R Lp

πρ β

+ = Ω = Ω = −

(5.29)

Figure 5.9 : Force centrifuge due aux aimants agissant sur la frette (rotor interne)

D’autre part, la contrainte de traction σtc à laquelle est soumise la frette peut être déduite à

partir de la pression Pac exercée par les aimants :

m actc ac

c c

R p FPe e L

σπ

= = (5.30)

Nous disposons désormais d’une relation lie entre l’épaisseur de la frette et la contrainte à

laquelle elle est soumise. Cette contrainte doit être limitée à celle imposée par le cahier des

charges et qui correspond à la contrainte maximale admissible σtc-adm du matériau de la

frette ( tc tc admσ σ −≤ ). Dans ce cas, l’épaisseur de la frette est aussi limitée à une valeur

minimale suivant l’équation qui suit où un coefficient de sécurité (Ksécσc<1) est introduit :

minac

c cséc c tc adm

p Fe eL K σπ σ −

≥ = (5.31)

Page 221: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 199

Notons que dans la procédure d’optimisation, l’épaisseur de la frette ec est considérée

comme une variable structurelle et non comme une variable d’optimisation. Toutefois, cette

épaisseur est limitée par une contrainte mécanique calculée à l’aide de l’équation

précédente.

5.5 Procédures détaillées de conception et d’optimisation

Dans cette partie, nous présentons les procédures détaillées de conception et d’optimisation

globales des machines sans encoches à haute vitesse suivant le type de convertisseur

statique utilisé pour alimenter ces machines : alimentation par convertisseur de tension et

alimentation par convertisseur de courant.

5.5.1 Cas d’une alimentation par convertisseur de tension

Dans le cas d’une alimentation par onduleur de tension, les différentes étapes de la méthode

de conception par optimisation globale des machines sans encoches sont décrites dans

l’organigramme de la figure 5.10. Cette méthode est basée sur l’utilisation des éléments de

l’environnement de CAO décrit précédemment et qui intègre le modèle de

dimensionnement analytique global de la machine, un algorithme d’optimisation non

linéaire avec contraintes et le mécanisme de correction itératif des pertes par courants de

Foucault par calcul du champ par éléments finis en 3D. La méthode de conception est

valable pour les trois types d’onduleurs de tension décrits au chapitre 4 : onduleur de type

120o, onduleur de type MLI à courant sinusoïdal et onduleur de type 180o à onde pleine de

tension. Le mécanisme de correction des pertes par courants de Foucault est ajouté dans le

cas où le stator de la machine considérée est réalisé en SMC. Le dimensionnement des

machines sans encoches est effectué pour le point de fonctionnement nominal de régime

permanent en considérant que le courant est en phase avec la fem (ψ=0) et cela pour les

trois types d’onduleurs considérés.

Page 222: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 200

Analyse du cahier des charges

Choix de la structure machine-convertisseur

Optimisation non linéaire avec contraintes

Convergence?

Solution optimale finale

Oui

Non

Solution optimale trouvée

Simulation par calcul numérique du champ

en 3D

Mécanisme de correction des pertes par courants de FoucaultNouveau facteur de correction des

pertes K(i+1)

Modèle de dimensionnement analytique global

Modèle de dimensionnement analytique de la

machine

Initialisation

Figure 5.10 : Méthode de conception et d’optimisation globale des machines sans encoches avec

mécanisme de correction des pertes par courants de Foucault (cas des onduleurs de tension)

À partir du cahier des charges de l’application à haute vitesse considérée, les principales

spécifications, les paramètres définissant la structure de la machine sans encoches choisie

ainsi que les paramètres de dimensionnement fixés sont spécifiés dans les deux premières

étapes de la procédure de conception, soit le couple utile demandé, la vitesse, la tension de

l’étage continu, le nombre de pôles et d’encoches, les dimensions externes maximales

(encombrement), l’entrefer mécanique minimal, l’épaisseur de la frette, la structure et les

caractéristiques du bobinage et des aimants, le facteur de remplissage ainsi que les

Page 223: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 201

paramètres des différents matériaux utilisés. Dans l’étape d’initialisation, le facteur de

correction des pertes par courants de Foucault est fixé à 1 (K(i=1)=1). Ce facteur peut être

égal soit à Kp ou Kc dépendamment du type du calcul numérique du champ en 3D utilisé (en

magnétodynamique en instantané ou en complexe). Les valeurs initiales des variables

d’optimisation sont aussi fixées dans cette étape.

Le modèle de dimensionnement analytique de la machine sans encoches présenté dans la

figure 5.3 est ensuite associé à l’algorithme d’optimisation non linéaire avec contraintes

pour trouver une solution de conception optimale. Il est utilisé pour déterminer les

différentes performances spécifiées dans le cahier des charges ainsi que les contraintes à

respecter pour un facteur de correction des pertes par courants de Foucault donné. La

fonction objectif du problème d’optimisation choisie est la maximisation du rapport entre le

couple et la longueur de la machine. La maximisation du couple ou celle du couple

massique de la machine peuvent aussi être considérées comme fonctions objectifs.

Tel que décrit précédemment, les variables d’optimisation et les contraintes du problème

d’optimisation diffèrent légèrement selon le type de rotor de la machine considérée (rotor

interne ou externe) et du type d’onduleur de tension qui l’alimente. Pour un onduleur de

tension de type 120o ou de type MLI à courant sinusoïdal, les variables d’optimisation

sont : le diamètre interne du rotor (Dri) ou du stator (Dsi) selon le type de rotor considéré,

les épaisseurs de la culasse du rotor (eculr), des aimants permanents (la), de l’entrefer (e), du

bobinage (hb) et de la culasse du stator (eculs), l’ouverture des aimants (β), la longueur

axiale active de la machine (L), le nombre de spires par phase (Nsp) et la densité de courant

dans les conducteurs (Jcu). Cependant, les différentes contraintes considérées dans le cas de

ces deux types d’onduleurs sont :

• Contraintes sur les variables d’optimisation définissant les valeurs maximales et

minimales à respecter ;

• Contraintes d’encombrement qui fixent l’espace maximal disponible ;

• Contrainte thermique fixant les pertes dans la machine suivant les performances du

système de refroidissement utilisé : 0ertot ertotP P≤ ;

Page 224: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 202

• Contraintes mécaniques qui imposent le rayon maximal de la culasse du rotor et

l’épaisseur minimale de la frette de maintien des aimants : maxro roR R≤ et minc ce e≥ ;

• Contraintes de saturation dans les culasses du stator et du rotor : max max 0culs culsB B≤

et max max 0culr culrB B≤ ;

• Contraintes de démagnétisation des aimants permanents vérifiées aux rayons interne

et externe des aimants : (1), 1 min( , )tot r APB r Bθ ≥ ;

• Contrainte d’adaptation de la tension de la machine à celle imposée par l’onduleur :

1 1 .imposée dcV V K V−= = (cf. équations (4.10), (4.11) et (4.12)) ;

• Contrainte permettant d’imposer le couple utile demandé de la machine.

Pour un onduleur de type 180o à onde pleine de tension, les mêmes variables d’optimisation

précédentes sont utilisées sauf la densité de courant Jcu qui est remplacée par l’angle θ entre

la tension de phase de la machine et la fem. Cette dernière variable d’optimisation permet

d’imposer un angle ψ nul. Toutes les contraintes précédentes sont aussi utilisées. On y

ajoute une autre contrainte permettant d’imposer un angle ψ nul : 1,1 1,2V V= et

1,1 1 .imposée dcV V K V−= = (cf. équations (4.16), (4.17) et (4.18)).

Pour tenir compte des effets 3D sur les pertes par courants de Foucault générées dans la

culasse du stator en SMC des machines sans encoches, le mécanisme de correction de ces

pertes décrit précédemment est introduit (cf. Fig. 5.10). Ce mécanisme permet de corriger

les erreurs du modèle 2D de calcul des pertes par courants de Foucault en charge implanté

dans le modèle de dimensionnement analytique de la machine. En fait, pour chaque

solution optimale intermédiaire du processus de conception, des simulations en calcul du

champ par éléments finis en 3D en magnétodynamique en instantané ou en complexe sont

effectuées pour quantifier les effets 3D sur les pertes par courants de Foucault à vide. Un

nouveau facteur de correction K(i+1) est alors déterminé suivant la méthode décrite dans le

chapitre 3 (cf. Fig. 3.11 et Fig. 3.13). Ce facteur est implanté dans le modèle de

dimensionnement analytique global avant la prochaine itération (i+1) de la procédure de

Page 225: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 203

conception et d’optimisation afin de corriger les pertes par courants de Foucault en charge

calculées en 2D comme le montre l’équation suivante :

( 1) 2 ( 1).cf i cf D iP K P+ − += (5.32)

Le nouveau facteur de correction K(i+1) est calculé suivant la procédure présentée au

chapitre 3 en utilisant les résultats de l’itération i du processus de conception (on utilise les

pertes par courants de Foucault à vide en 2D et en 3D) :

, 3 ( )( 1)

, 2 ( )

cf m D ii

cf m D i

PK

P−

+−

= (5.33)

Ce processus de conception par optimisation utilisant le mécanisme de correction des pertes

est répété d’une façon itérative jusqu’à ce qu’une solution de dimensionnement optimale

finale soit trouvée ; c’est-à-dire lorsque toutes les dimensions et les caractéristiques de la

machine obtenue sont identiques à celles de la solution optimale précédente. À noter que la

convergence de ce processus de conception est en général atteinte après un faible nombre

d’itérations et de simulations en calcul de champ par éléments finis en 3D comme cela est

montré dans la partie 5.6.

Lorsque la machine est couplée à un redresseur actif de type MLI et fonctionne en

alternateur, la même méthodologie de conception proposée dans le cas d’un onduleur à

MLI peut être utilisée.

5.5.2 Cas d’une alimentation par convertisseur de courant

Lorsque la machine sans encoches est couplée à un convertisseur à commutation de courant

(onduleur ou redresseur), la méthode de conception optimale est similaire à celle utilisée

dans le cas d’une alimentation par convertisseur de tension. Cette méthode est décrite ici en

considérant le système de génération à haute vitesse considéré dans la partie 4.4 du chapitre

4 où la machine sans encoches, munie d’une frette non conductrice, fonctionne en

alternateur et débite sur un redresseur à thyristors. La même méthodologie de conception

peut aussi être utilisée lorsque la machine est alimentée par un onduleur à thyristors pour un

fonctionnement en moteur. La méthode de conception se base sur l’association du modèle

de dimensionnement analytique global de la machine (cf. Fig. 4.13), du modèle électrique

Page 226: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 204

de simulation sans à priori de l’ensemble convertisseur-machine (cf. Fig. 4.14), d’un

algorithme d’optimisation non linéaire avec contraintes et éventuellement du calcul

numérique du champ en 3D et du mécanisme de correction des pertes par courants de

Foucault pour tenir compte des effets de bord (cas d’une culasse du stator réalisée en

SMC). Le couplage entre le modèle de dimensionnement de la machine et le modèle

électrique équivalent de l’ensemble convertisseur-machine est réalisé en introduisant l’autre

mécanisme de correction décrit dans la partie 4.4.

La figure 5.11 montre les différentes étapes de la procédure de conception et d’optimisation

incluant le mécanisme de correction itératif du couplage entre le modèle de

dimensionnement et le modèle équivalent du système de génération mais sans introduction

du mécanisme de correction des pertes par courant de Foucault. Dans les deux premières

étapes, les principales spécifications du cahier des charges du système de génération ainsi

que les caractéristiques de la structure de la machine considérée sont définies : puissance de

sortie du redresseur (Pout), vitesse de rotation de la machine (Ω), tension de l’étage continu

de sortie du redresseur (Vdo), encombrement, caractéristiques des aimants et du bobinage,

nombre de pôles et d’encoches, épaisseur de la frette, facteur de remplissage des encoches

et paramètres des matériaux. Dans l’étape d’initialisation, les amplitudes et les phases des

harmoniques du courant d’induit de la machine sont considérées égales à celles d’une

forme d’onde rectangulaire avec une amplitude de courant continu Ido en supposant que la

commutation du courant dans les interrupteurs du redresseur est instantanée. Le facteur de

correction permettant d’implanter le mécanisme de correction du couplage machine-

redresseur et de corriger la tension continue imposée est fixé à 1 (Kco(i=1)=1).

Page 227: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 205

Simulation du circuit équivalent de l’ensemble convertisseur-machine

Analyse du cahier des charges

Choix de la structure machine-convertisseur

Optimisation non linéaire avec contraintes

Convergence?

Solution optimale finale

Oui

Non

Solution optimale trouvée

Modèle de dimensionnement analytique global

Modèle de dimensionnement analytique de la

machine

Initialisation

Mécanisme de correction du couplage machine-convertisseur

Actualisation du contenu harmonique du courant & facteur

de correction Kco(i+1)

Figure 5.11 : Méthode de conception et d’optimisation globale des machines sans encoches avec mécanisme de correction du couplage machine-convertisseur (cas des convertisseurs de courant)

Après l’étape d’initialisation, le dimensionnement de la machine est effectué par une

résolution du problème d’optimisation globale non linéaire avec contraintes pour un

contenu harmonique du courant d’induit et un facteur de correction donnés. Dans ce cas, la

fonction objectif peut être la minimisation du poids total de la machine. Une pondération

entre les poids des principaux matériaux utilisés peut aussi être utilisée pour calculer la

fonction objectif comme proposé dans la partie 6.5. Les variables d’optimisation

Page 228: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 206

considérées sont identiques à celles utilisées dans le cas d’une machine alimentée en

tension par un onduleur de type 120o à l’exception de la densité de courant Jcu qui est

supprimée étant donné que la tension Vdo et le courant Ido sont imposés à la sortie du

redresseur : Dri ou Dsi, eculr, la, e, hb, eculs, β, L, et Nsp. De la même façon, les contraintes du

problème d’optimisation sont similaires à celles déjà données dans le cas de l’onduleur de

tension, mais sans considération des deux dernières contraintes permettant l’adaptation de

la tension et l’imposition de la valeur du couple : contraintes sur les variables

d’optimisation, encombrement, contraintes thermiques, mécaniques, de saturation et de

démagnétisation des aimants. À ces différentes contraintes, nous ajoutons aussi les

contraintes suivantes :

• Contrainte concernant le courant de court-circuit : , ,1 ,/eff cc m sc eff nI L Iφ= ≥ ;

• Contrainte sur la tension du bus DC qui permet de mettre en œuvre le mécanisme de

correction du couplage machine-redresseur et d’adapter simultanément la tension de

la machine à celle de sortie du redresseur. Dans cette contrainte, la tension Vdi

calculée par le modèle de dimensionnement global de la machine doit vérifier la

relation suivante : ( )di co i doV K V≥ (cf. paragraphe 4.4.2) ;

• Contrainte permettant d’imposer la puissance demandée à la sortie du redresseur.

Pour chaque solution intermédiaire du problème d’optimisation, les paramètres du circuit

électrique équivalent de la machine son transférés au modèle électrique de simulation sans

à priori de l’ensemble convertisseur-machine et une simulation du circuit est effectuée. À

partir des résultats de cette simulation, des nouvelles valeurs d’amplitudes et de phases des

harmoniques du courant d’induit ainsi que de la tension continue de sortie du redresseur

simulée Vdsim tenant compte de la commutation du courant sont déterminées.

Après cette étape, le mécanisme de correction assurant le couplage entre le modèle

analytique de dimensionnement de la machine et le modèle électrique équivalent du

système de génération est implanté. Le nouveau contenu harmonique du courant est

réinjecté dans le modèle de dimensionnement de la machine et la contrainte sur la tension

continue de sortie du redresseur (Kco(i)Vdo) est actualisée en injectant une nouvelle valeur du

facteur de correction Kco(i+1). Ce dernier est calculé en faisant intervenir la tension calculée

Page 229: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 207

Vdi et la tension simulée Vdsim suivant l’expression (4.21). Une nouvelle exécution du

problème d’optimisation non linéaire avec contraintes est alors effectuée. Ce processus est

répété jusqu’à ce qu’une solution optimale stable soit obtenue ; c’est-à-dire lorsque la

tension de sortie du redresseur simulée est égale à celle imposée par le cahier des charges

(Vdsim=Vdo), le facteur de correction est stable (Kco(i+1)=Kco(i)) et toutes les caractéristiques

de la machine sont identiques à celles de la solution optimale précédente. La convergence

de ce processus de conception vers une solution optimale finale peut être réalisée avec un

nombre limité d’itération qui utilise le mécanisme de correction du couplage machine-

convertisseur (cf. partie 6.5 du chapitre 6).

Dans le cas où la culasse de la machine sans encoches est réalisée en SMC et que la

longueur de cette dernière n’est pas assez importante par rapport au pas polaire, le

mécanisme de correction des pertes par courants de Foucault précédent peut être ajouté au

processus de conception de la figure 5.11 afin de tenir compte des effets 3D. La figure 5.12

présente l’organigramme du processus de conception par optimisation proposé incluant les

deux mécanismes de correction. Comme nous pouvons le remarquer, le mécanisme de

correction des pertes est appliqué après chaque solution optimale du processus de

conception précédent qui utilise le mécanisme de correction du couplage machine-

convertisseur (cf. Fig. 5.11). Cependant, le contenu harmonique initial du courant de la

prochaine itération (j+1) sur le mécanisme de correction des pertes ainsi que le facteur de

correction Kco(i=1, j+1) sont pris égaux à ceux de l’itération précédente (j) (cf. tableau 6.11).

Cette méthode permet d’assurer une convergence efficace du processus de conception

global tout en garantissant un meilleur compromis entre la précision et le temps de calcul

étant donné que le mécanisme de correction des pertes est appliqué après celui du couplage

machine-convertisseur.

Page 230: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 208

Convergence?

Solution optimale finale

Oui

Solution optimale trouvée

Simulation par calcul numérique du champ

en 3D

Simulation du circuit équivalent de l’ensemble convertisseur-machine

Analyse du cahier des charges

Choix de la structure machine-convertisseur

Optimisation non linéaire avec contraintes

Convergence?

Oui

Non

Solution optimale trouvée

Modèle de dimensionnement analytique global

Modèle de dimensionnement analytique de la

machine

Initialisation

Mécanisme de correction du couplage machine-convertisseur

Actualisation du contenu harmonique du courant & facteur

de correction Kco(i+1,j)

Mécanisme de correction des pertes par courants

de FoucaultNouveau facteur de

correction des pertes K(j+1)

Non

Figure 5.12 : Méthode de conception et d’optimisation globale des machines sans encoches avec

mécanisme de correction du couplage machine-convertisseur et mécanisme de correction des pertes par courants de Foucault (cas des convertisseurs de courant)

Page 231: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 209

Si la machine sans encoches est munie d’une frette conductrice autour des aimants du rotor,

l’épaisseur de cette dernière peut être optimisée lors du processus de conception afin

d’améliorer la commutation du courant, d’assurer une meilleure adaptation du convertisseur

à la machine et d’optimiser les performances globales de l’ensemble convertisseur-machine

(cf. partie 3.4). Toutefois, le modèle électrique équivalent de la machine connecté au

modèle du redresseur doit être adapté afin de tenir compte de l’effet de la frette conductrice

en introduisant le circuit amortisseur qu’elle représente [5].

5.6 Exemple d’application de la procédure de conception et d’optimisation

Nous présentons ici un exemple de validation de la procédure de conception et

d’optimisation proposée précédemment pour le cas d’une alimentation en tension. Cette

validation est illustrée par une analyse comparative des dimensionnements de deux moteurs

triphasés sans encoches à haute vitesse équipés avec des stators en SMC et des rotors

internes à aimants permanents à 2 pôles et à 4 pôles. Les deux moteurs sont alimentés par

des onduleurs de tension de type 120o avec des formes d’ondes des courants rectangulaires

(à onde entière de tension) et sont dimensionnés pour une application d’outillage électrique.

L’approche de conception est effectuée en incluant le mécanisme de correction des pertes

par courants de Foucault par calcul numérique du champ en 3D, en complexe, en régime

permanent, sans rotation des aimants. En plus de valider la procédure de conception, cette

étude permet aussi d’analyser son efficacité en termes de convergence, de précision et de

temps de calcul.

5.6.1 Cahier des charges et paramètres de dimensionnement

Les tableaux 5.1 et 5.2 présentent la liste des spécifications et des contraintes imposées par

le cahier des charges, les différents paramètres de dimensionnement et les caractéristiques

des matériaux. Les moteurs à dimensionner doivent être capables de fournir une puissance

de 500 W à une vitesse de rotation de 20000 rpm pour une tension continue alimentant

l’onduleur égale à 100 V. Les pertes maximales au niveau des machines sont limitées en

considérant qu’un refroidissement par ventilation forcée est utilisé et que la classe

Page 232: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 210

d’isolation des conducteurs considérés est de type F (155oC). Les deux moteurs sont

dimensionnés pour un encombrement fixé. Ils possèdent respectivement des bobinages à

pas diamétral à 6 encoches et à 12 encoches sans utilisation de fils de Litz. Le matériau

SMC considéré pour réaliser les stators est caractérisé par une perméabilité de 200 et une

conductivité de 3400 s/m (Mat-1). Ces valeurs correspondent aux caractéristiques d’un

matériau moins conducteur. De plus, la saturation dans ce matériau et dans les autres

matériaux magnétiques est considérée négligeable étant donné que les machines sans

encoches à haute vitesse ont généralement de faibles niveaux d’inductions.

Les rotors des deux machines comportent des aimants permanents de type NdFeB à

aimantation radiale entourés par des frettes amagnétiques non conductrices de type fibre de

carbone. Les caractéristiques des aimants sont données dans le tableau 5.2. La valeur de

l’induction minimale de démagnétisation BAPmin correspondant au coude de la

caractéristique B(H) est considérée pour une température de 120oC et vaut 0.2 T. Le

coefficient de sécurité KsécB considéré pour le calcul de la démagnétisation des aimants est

pris égal à 2. Cela signifie que les moteurs dimensionnés peuvent avoir une capacité de

surcharge mécanique transitoire de 50% sans risque de démagnétisation. D’un autre côté,

suite aux recommandations du paragraphe 3.4.4, les aimants permanents sont considérés

segmentés en 4 petits blocs par pôle afin de réduire les pertes par courants de Foucault

induites dans ces aimants. De plus, dans ce dimensionnement, l’effet de la température sur

l’aimantation des aimants est pris en compte. Par contre, les pertes par frottement dans les

roulements ne sont pas prises en compte.

Paramètre Valeur Puissance nominale 500 W Vitesse nominale N 20000 rpm Couple nominal 0.24 Nm Diamètre externe maximal Dmax 48 mm Longueur axiale maximale du stator Lmax 37 mm Pertes maximales Pertot0 65 W Tension du bus continu Vdc 100 V Induction maximale dans la culasse du stator Bculsmax0 1.2 T Induction maximale dans la culasse du rotor Bculrmax0 1.4 T

Tableau 5.1 : Spécifications et contraintes du cahier des charges d’une application d’outillage électrique

Page 233: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 211

Paramètre Valeur Nombre de pôles 2p 2 ou 4 Nombre d’encoches 6 ou 12 Coefficient de remplissage des encoches Ku 0.3 Entrefer mécanique minimal 1 mm Épaisseur de la frette ec 0.5 mm Aimantation rémanente des aimants à 120oC (NdFeB) 1.2 T Perméabilité des aimants µrm 1.05 Conductivité des aimants σm 6.25×105 s/m Induction de démagnétisation des aimants BAPmin à 120oC 0.2 T Perméabilité du matériau SMC µrs 200 Conductivité du matériau SMC σs 3400 s/m Coefficients des pertes d’hystérésis du matériau SMC (Cm et x) Cm=0.15 ; x=1.55 Contrainte de traction limite du matériau du rotor (acier) 600 N/mm2 Contrainte de traction limite du matériau de la frette (fibre de carbone de type T700SC) 4900 N/mm2

Tableau 5.2 : Paramètres de dimensionnement et caractéristiques des matériaux

5.6.2 Validation et analyse des résultats

L’application du processus de conception par optimisation itératif de la figure 5.10 a permis

de dimensionner les deux moteurs sans encoches pour le cahier des charges spécifié. La

même valeur du couple à développer et les mêmes pertes totales dissipées sont imposées

dans les deux dimensionnements. Trois itérations sur le mécanisme de correction des pertes

par courants de Foucault dans le stator en SMC et quatre exécutions du problème

d’optimisation ont été suffisantes pour trouver des solutions optimales finales pour les deux

moteurs. Cela démontre qu’un faible nombre de simulations par calcul numérique du

champ en 3D a été utilisé pour obtenir la convergence du processus de conception. Le

tableau 5.3 présente l’évolution des facteurs de correction des pertes par courants de

Foucault dans les stators en SMC des deux moteurs pendant le processus itératif. Les

solutions optimales finales sont atteintes lorsque les caractéristiques de celles-ci sont

identiques à celles des solutions précédentes et que les facteurs de correction convergent

vers des valeurs stables. Ces deux facteurs valent respectivement 0.3368 pour le moteur à 2

pôles et 0.3505 pour celui à 4 pôles. Cela signifie que les pertes par courants de Foucault

Page 234: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 212

effectivement dissipées dans les culasses des stators des deux machines sont

approximativement trois fois inférieures à celles calculées en 2D. D’où l’importance de

tenir compte de l’influence des effets 3D sur les pertes au niveau du dimensionnement de

ce type de machine. D’un autre côté, l’utilisation du calcul numérique du champ en 3D en

complexe en régime permanent au lieu d’utiliser la magnétodynamique avec une méthode

de pas à pas dans le temps a permis de minimiser considérablement le temps d’exécution du

processus de conception en assurant une meilleure précision.

i=1 i=2 i=3 i=4

Moteur à 2 pôles

K(i) 1 0.33925 0.33696 0.33680 K(i+1) 0.33925 0.33696 0.33680 0.33680

Moteur à 4 pôles

K(i) 1 0.35349 0.35053 0.35052 K(i+1) 0.35349 0.35053 0.35052 0.35052

Tableau 5.3 : Évolution des facteurs de correction des pertes pour les deux moteurs

Comme cela a été mentionné au chapitre 4, il est intéressant de noter qu’après le

dimensionnement et l’optimisation de chaque machine, une simulation du modèle

électrique équivalent sans à priori de l’ensemble convertisseur-machine sur

Matlab/Simulink a été effectuée en utilisant le module SimPowerSystem. Cette simulation

tient compte des commutations des interrupteurs de l’onduleur commandés suivant les

signaux envoyés par un capteur à effet Hall. Elle permet de comparer les valeurs des

tensions, des courants et du couple électromagnétique du modèle simulé avec celles

obtenues à partir du modèle électrique analytique intégré dans le modèle de

dimensionnement de la machine et d’ajuster, si nécessaire, le nombre de spires des

enroulements pour corriger les erreurs entre les deux modèles. Cela permet d’atteindre le

bon point de fonctionnement et d’assurer une meilleure adaptation de la machine à son

alimentation en s’affranchissant de l’influence des hypothèses simplificatrices adoptées

(formes d’ondes rectangulaires du courant et de la tension).

Le tableau 5.4 présente une comparaison entre les valeurs des tensions, des courants et des

couples électromagnétiques obtenus à partir des deux modèles électriques précédents dans

le cas du moteur sans encoches à 2 pôles. Comme nous pouvons le remarquer, nous

n’avions pas besoin d’ajuster le nombre de spires puisque les résultats donnés par le modèle

Page 235: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 213

analytique et ceux obtenus par la simulation sont très proches. Cela est dû au fait que la

machine considérée est de faible puissance et qu’elle présente un comportement plus

résistif (avec une faible inductance). La même remarque a été constatée dans le cas du

moteur à 4 pôles.

Veff [V] V1 [V] Ieff [A] I1 [A] Tem [Nm] Modèle analytique 41.36 38.98 5.06 4.86 0.2458 Modèle simulé 42.27 39.70 5.05 4.83 0.2452

Tableau 5.4 : Valeurs efficaces des tensions et des courants (valeurs totales et fondamentales) et couples électromagnétiques obtenus par les deux modèles électriques équivalents : analytique et

simulé (pour le moteur à 2 pôles)

La figure 5.13 présente les structures optimales finales des deux moteurs sans encoches

dimensionnés et le tableau 5.5 présente une comparaison de leurs dimensions et leurs

principales caractéristiques et performances. À partir de ces résultats, on constate que les

deux moteurs ont le même diamètre externe imposé par la contrainte d’encombrement.

Cependant, le moteur à 4 pôles a une longueur axiale active plus faible et un couple

massique plus élevé que ceux du moteur bipolaire malgré sa fréquence plus élevée. Cela est

dû essentiellement à l’effet de l’augmentation du nombre de pôles sur les dimensions du

moteur et sur les pertes magnétiques et les pertes Joule au niveau du stator. Le moteur à 4

pôles a une épaisseur de culasse du stator plus faible que celle du moteur à 2 pôles à cause

de la diminution du flux par pôle. De plus, il possède des têtes de bobines plus courtes.

Cela permet d’augmenter le diamètre interne du bobinage qui intervient sur la valeur du

couple et de diminuer les volumes du cuivre et du fer au stator ainsi que la longueur de la

machine lorsqu’on passe de 2 pôles à 4 pôles. Les pertes magnétiques dans le stator

diminuent légèrement à cause de la diminution du volume du fer malgré l’augmentation de

la fréquence. Cependant, les pertes Joule classiques dans le bobinage diminuent et les

pertes supplémentaires dues à l’effet de peau et de proximité augmentent conduisant ainsi à

une légère augmentation des pertes Joule totales. Notons que le gain obtenu au niveau du

volume du cuivre et des pertes Joule classiques permet d’augmenter la densité du courant

afin d’obtenir le couple désiré.

Page 236: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 214

L’analyse des résultats montre aussi que les pertes Joule totales dans les bobinages des

deux moteurs sont plus importantes que les pertes magnétiques parce que les machines sans

encoches présentent généralement des charges linéiques de courant plus élevées et des

inductions dans l’entrefer plus faibles que les machines avec encoches. Cela s’explique par

le fait qu’une machine sans encoches à haute vitesse possède un large entrefer et que

l’optimisation cherche à minimiser les pertes fer à cause de la haute fréquence en diminuant

l’induction dans l’entrefer. Ce constat justifie l’hypothèse de non-saturation des matériaux

magnétiques prise précédemment. Les résultats montrent également que les pertes

mécaniques (pertes aérodynamiques) sont très faibles dans les deux moteurs pour la vitesse

de rotation considérée et pour les diamètres des rotors obtenus. De plus, les pertes dans les

aimants permanents sont aussi très faibles à cause de la segmentation de ces derniers.

(a) (b)

Figure 5.13 : Structures optimales des moteurs sans encoches (a) à 2 pôles et (b) à 4 pôles

-0.03 -0.02 -0.01 0 0.01 0.02 0.03-0.03

-0.02

-0.01

0

0.01

0.02

0.03

-0.03 -0.02 -0.01 0 0.01 0.02 0.03-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Page 237: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 215

Paramètre 2 pôles 4 pôles Longueur axiale active 35.6 mm 23.04 mm Diamètre externe du stator 48 mm 48 mm Épaisseur de la culasse du stator 5.21 mm 3.40 mm Épaisseur du bobinage 6.06 mm 4.67 mm Diamètre interne du bobinage 25.46 mm 31.87 mm Entrefer mécanique 1 mm 1 mm Épaisseur de la frette 0.5 mm 0.5 mm Épaisseur des aimants 5.62 mm 6.56 mm Diamètre externe du rotor 11.22 mm 15.75 mm Nombre de spires par phase 61 70 Densité de courant 10.33 A/mm2 13.16 A/mm2 Charge linéique 23268 A/m 21119 A/m Induction maximale dans l’entrefer 0.43 T 0.478 T Force électromotrice (RMS) 35.4 V 35.5 V Inductance synchrone (pour h=1) 0.471 mH 0.167 mH Résistance du stator 0.695 Ω 0.711 Ω Poids du fer 0.2062 kg 0.1084 kg Poids du cuivre 0.1578 kg 0.0892 kg Poids des aimants 0.0623 kg 0.0718 kg Poids total 0.4263 kg 0.2694 kg Pertes Joule au stator 53.41 W 54.27 W Pertes magnétiques au stator 11.01 W 10.06 W Pertes dans les aimants 0.487 W 0.493 W Pertes mécaniques 0.086 W 0.174 W Pertes totales 65 W 65 W Rendement 88.55 % 88.55 % Couple massique 0.563 Nm/kg 0.891 Nm/kg

Tableau 5.5 : Principales caractéristiques, performances et dimensions des deux moteurs sans encoches optimisés

5.7 Conclusion

Dans ce chapitre, nous avons présenté une méthode de conception par optimisation globale

des machines sans encoches à aimants permanents à haute vitesse pour les deux types

d’alimentations par convertisseurs statiques : alimentation en tension et alimentation en

courant. Cette méthode est basée sur plusieurs outils intégrés dans un même environnement

Page 238: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 5 216

de CAO. Elle utilise un modèle de dimensionnement global de la machine permettant

d’évaluer les performances et les contraintes spécifiées dans le cahier des charges et une

procédure d’optimisation non linéaire avec contraintes. Le modèle de dimensionnement a

été établi en considérant les deux types de rotors interne et externe et en intégrant les

modèles électromagnétique, thermique et mécanique de la machine. La procédure

d’optimisation a été associée à un mécanisme original de correction des pertes par courants

de Foucault dans la culasse du stator lorsque cette dernière est réalisée en SMC. Cela est

effectué en utilisant des simulations en calcul de champ par éléments finis en 3D afin de

prendre en compte les effets de bord. Lorsque la machine est connectée à un convertisseur à

commutation de courant, la procédure d’optimisation a été associée à un autre mécanisme

de correction permettant le couplage fort entre la machine et son alimentation en se basant

sur des simulations sans à priori du modèle électrique équivalent de l’ensemble

convertisseur-machine. Les procédures détaillées de conception et d’optimisation des

machines sans encoches ont été établies en illustrant les différentes étapes de la méthode de

conception pour les deux types d’alimentations.

La méthode de conception et d’optimisation proposée a été illustrée dans le cas d’une

alimentation en tension par une analyse comparative de deux moteurs sans encoches à rotor

interne à 2 pôles et à 4 pôles. Il a été démontré que la convergence du processus de

conception peut être atteinte avec un faible nombre d’itérations et de simulations en calcul

numérique du champ en 3D. De plus, une réduction très importante du temps de calcul avec

une bonne précision a été constatée lorsque le calcul du champ en 3D est réalisé en

complexe plutôt qu’en instantané dans le temps. L’analyse des résultats a montré que les

machines sans encoches possèdent des charges linéiques plus élevées et des niveaux

d’inductions et des pertes fer plus faibles. De plus, le moteur à 4 pôles est meilleur que

celui à 2 pôles pour la vitesse et la puissance considérées. Cela montre ce que nous pouvons

trouver avec les outils de CAO développés et dont nous allons nous servir dans le chapitre

suivant afin d’effectuer d’autres analyses et comparaisons au niveau du dimensionnement

des machines sans encoches pour des cahiers des charges spécifiques et différents types

d’alimentations par convertisseurs statiques.

Page 239: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Equation Chapter 6 Section 1

CHAPITRE VI

6 APPLICATIONS DE LA MÉTHODOLOGIE ET DE

L’ENVIRONNEMENT DE CONCEPTION

6.1 Introduction

Dans ce chapitre, la méthodologie de conception et d’optimisation ainsi que les outils de

modélisation et de conception développés au cours des chapitres précédents sont appliqués

afin de dimensionner des machines sans encoches à aimants permanents à haute vitesse en

considérant les deux types d’alimentations par convertisseurs statiques : en tension et en

courant. L’objectif est, d’une part, de valider les différents outils développés sur des cahiers

des charges spécifiques, et d’autre part, de comparer plusieurs solutions topologiques de

machines sans encoches afin d’analyser leur faisabilité et leurs performances et de cerner

leurs limites en fonction du cahier des charges.

Dans un premier temps, la méthodologie de conception est utilisée afin de dimensionner,

d’analyser et de comparer différentes structures topologiques de moteurs sans encoches

alimentés par des onduleurs de tension avec une commande de type 120o à onde

rectangulaire de courant. Cette étude comparative est effectuée pour le même cahier des

charges afin d’analyser les performances des machines avec des stators réalisés en SMC et

en fer laminé et avec des rotors de types interne et externe, à 2 pôles et à 4 pôles. Ensuite,

les outils de CAO sont appliqués pour effectuer quelques études de sensibilité au niveau du

dimensionnement des machines sans encoches avec stator en SMC. Ces études sont

effectuées pour analyser l’effet de l’utilisation du fil de Litz dans le bobinage ainsi que

l’effet du type de matériau SMC utilisé (conductivité et perméabilité) sur les performances.

Page 240: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 218

Nous effectuons par la suite le dimensionnement de moteurs sans encoches alimentés par

des onduleurs de type 180o à onde pleine de tension. Dans cette étude, les même topologies

de machines considérées dans le cas de l’onduleur de type 120o sont utilisées dans le but de

comparer leurs performances respectives et de les confronter avec celles des machines

alimentées par le dernier onduleur (de type 120o). Cela permet d’étudier l’influence du type

de commande utilisée sur le dimensionnement optimal des machines sans encoches.

Finalement, nous illustrons la méthodologie de conception et d’optimisation dans le cas

d’une alimentation en courant en dimensionnant un alternateur sans encoches avec stator en

SMC utilisé dans le système de génération à haute vitesse décrit dans la partie 4.4 du

chapitre 4. Cet alternateur est entraîné par une turbine à gaz et débite sur un redresseur à

thyristors. Les deux méthodes de conception et d’optimisation proposées au chapitre 5 avec

ou sans utilisation du mécanisme de correction 3D des pertes par courants Foucault dans le

stator en SMC sont considérées et leurs résultats sont comparés.

6.2 Analyse comparative des dimensionnements de différentes topologies de moteurs sans encoches alimentés par onduleur de tension de type 120o

Dans cette partie, la procédure de conception et d’optimisation développée dans le chapitre

5 pour le cas d’une alimentation par convertisseurs de tension est utilisée afin d’effectuer

une analyse comparative des dimensionnements et des performances de plusieurs

topologies de moteurs sans encoches à aimants permanents à haute vitesse. Il s’agit en fait

de dimensionner, analyser et comparer huit topologies de machines alimentées par des

onduleurs de tension de type 120o avec une forme d’onde de courant rectangulaire et une

tension à onde entière. Les huit topologies de machines considérées sont :

• Machines A-1 et A-2 : machines avec stators en SMC et rotors internes à 2 pôles

(p=1) et à 4 pôles (p=2) ;

• Machines A-3 et A-4 : machines avec stators en SMC et rotors externes à 2 pôles et

à 4 pôles ;

Page 241: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 219

• Machines B-1 et B-2 : machines avec stators en fer laminé (tôles) et rotors internes

à 2 pôles et à 4 pôles ;

• Machines B-3 et B-4 : machines avec stators en fer laminé et rotors externes à 2

pôles et à 4 pôles.

Le dimensionnement des huit machines est effectué pour le même cahier des charges sans

utilisation du mécanisme de correction des pertes par courant de Foucault par calcul

numérique du champ en 3D dans le cas des machines dont les culasses statoriques sont

réalisées en SMC. En fait, nous utilisons le même cahier des charges ainsi que les mêmes

paramètres de dimensionnement et caractéristiques des matériaux considérés précédemment

dans l’exemple de la partie 5.6. De plus, la même fonction objectif et les mêmes contraintes

du problème d’optimisation sont considérées dans ce dimensionnement où les mêmes

valeurs du couple et des pertes dissipées sont imposées pour toutes les machines.

Rappelons que ces moteurs sont destinés à une application d’outillage électrique et qu’ils

doivent être dimensionnés pour fournir une puissance de 500 W à une vitesse de rotation de

20000 rpm. Dans le rotor, les aimants permanents de type radial sont segmentés pour

réduire les pertes par courants de Foucault et sont maintenus par une frette non conductrice

de type fibre de carbone lorsqu’il s’agit d’un rotor interne. Dans le stator, les mêmes types

de bobinages considérés pour les deux machines de l’exemple de la partie 5.6 sont utilisés.

Il s’agit de bobinages à pas diamétral à 6 encoches (pour p=1) et à 12 encoches (pour p=2)

réalisés par des fils de cuivre standards sans utilisation de fils de Litz. D’un autre côté, les

mêmes caractéristiques du matériau SMC utilisé dans la partie 5.6 sont considérées pour les

machines dont les culasses statoriques sont réalisées par ce type de matériau. Cependant,

pour les autres machines dont les stators sont en fer laminé, nous utilisons des tôles Fe-

3%Si dont les caractéristiques sont présentées dans le tableau 6.1.

Page 242: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 220

Type de tôles Transil 300-35-A5 Coefficient des pertes d’hystérésis Kh 1.71×10-2 Paramètre x (pour pertes d’hystérésis) 2.12 Coefficient des pertes par courants de Foucault excédentaires Kexc 6.6×10-5 Épaisseur des tôles et 0.35 mm Résistivité (1/σt) 4.5×10-7 Ωm Perméabilité relative µrt 5000

Tableau 6.1 : Caractéristiques des tôles Fe-Si considérées [39], [159]

6.2.1 Machines avec stator en SMC

Le tableau 6.2 montre les structures optimales finales des 4 types de moteurs dimensionnés

avec des culasses de stator réalisées en SMC. Il présente une comparaison de leurs

principales caractéristiques et performances obtenues par la procédure d’optimisation.

Comme cela a été montré dans la partie 5.6 pour les machines à rotor interne, les résultats

du tableau 6.2 montrent que l’augmentation du nombre de pôles (de 2 à 4 pôles) est très

avantageuse pour les machines à rotor externe pour le cahier des charges considéré. Les

machines à 4 pôles à rotor interne et à rotor externe (machines A-2 et A-4) sont plus

intéressantes que celles à 2 pôles (machines A-1 et A-3) étant donné que leurs masses sont

plus faibles et que leurs couples massiques sont plus élevés malgré l’augmentation de la

fréquence. L’augmentation du nombre de pôles conduit à une diminution de l’épaisseur de

la culasse du stator et à une réduction des têtes de bobines.

Les résultats du tableau 6.2 montrent aussi que les machines à rotor externe à 2 pôles et à 4

pôles (machines A-3 et A-4) semblent être légèrement plus intéressantes que les machines à

rotor interne (machines A-1 et A-2), respectivement, puisqu’elles ont des poids plus faibles

et des couples massiques plus élevés. Les structures des machines à rotor externe

permettent, d’une part, de minimiser les pertes magnétiques au stator à cause de la

réduction du volume du fer lorsqu’on passe d’un rotor interne à un rotor externe, et d’autre

part, de réduire les têtes de bobines ainsi que le volume total du cuivre. La réduction du

volume du cuivre ne conduit pas nécessairement à une diminution des pertes Joule totales à

cause de l’augmentation de la densité du courant. En fait, la diminution du volume du

cuivre est compensée par l’augmentation de la densité du courant afin de générer le couple

Page 243: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 221

désiré, ce qui conduit à des pertes Joule plus élevées. Il faut bien noter que les conclusions

issues de la comparaison entre les structures des machines à rotor interne et à rotor externe

dépendent étroitement du cahier des charges, des types de matériaux utilisés et du mode

d’alimentation. Il se peut qu’une machine à rotor interne soit meilleure que celle à rotor

externe pour le même nombre de pôles comme le démontre les résultats des études

comparatives qui suivent dans ce chapitre.

Machine A-1 Machine A-2 Machine A-3 Machine A-4

Structure optimale

Type de rotor Interne Interne Externe Externe Nombre de pôles 2 4 2 4 Nombre d’encoches 6 12 6 12 Longueur axiale 36.28 mm 23.49 mm 36.66 mm 25.86 mm Diamètre externe 48 mm 48 mm 48 mm 48 mm Nombre de spires 62 71 48 55 Densité de courant 10 A/mm2 12.72 A/mm2 16.67 A/mm2 19.99 A/mm2 Charge linéique 23608 A/m 21492 A/m 18648 A/m 17935 A/m Bmax dans l’entrefer 0.424 T 0.471 T 0.520 T 0.575 T fem RMS (h=1) 35.36 V 35.42 V 35.04 V 35.22 V Inductance (h=1) 0.476 mH 0.170 mH 0.353 mH 0.125 mH Résistance du stator 0.684 Ω 0.704 Ω 0.784 Ω 0.763 Ω Courant RMS (h=1) 4.85 A 4.84 A 4.82 A 4.82 A Tension RMS (h=1) 38.98 V 38.98 V 38.98 V 38.98 V Pertes Joule au stator 52.37 W 53.60 W 59.29 W 57. 60 W Pertes fer au stator 12.07 W 10.74 W 3.83 W 6.07 W Pertes aux aimants 0.475 W 0.480 W 0.706 W 0.297 W Pertes mécaniques 0.084 W 0.171 W 1.171 W 1.028 W Pertes totales 65 W 65 W 65 W 65 W Poids du fer 0.2048 kg 0.1072 kg 0.2657 kg 0.1538 kg Poids du cuivre 0.1644 kg 0.0936 kg 0.0667 kg 0.0420 kg Poids des aimants 0.0626 kg 0.0719 kg 0.0911 kg 0.0659 kg Poids total 0.4320 kg 0.2728 kg 0.4235 kg 0.2617 kg Couple massique 0.5556 Nm/kg 0.8797 Nm/kg 0.5667 Nm/kg 0.9169 Nm/kg

Tableau 6.2 : Structures optimales et principales caractéristiques et performances des 4 moteurs sans encoches avec stator en SMC

-0.02 -0.01 0 0.01 0.02

-0.02

-0.01

0

0.01

0.02

-0.02 -0.01 0 0.01 0.02

-0.02

-0.01

0

0.01

0.02

-0.02 -0.01 0 0.01 0.02

-0.02

-0.01

0

0.01

0.02

-0.02 -0.01 0 0.01 0.02

-0.02

-0.01

0

0.01

0.02

Page 244: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 222

Comme cela a été constaté dans la partie 5.6, les résultats montrent que les pertes Joule

dans les 4 machines sans encoches sont plus importantes que les pertes magnétiques parce

que ce type de machines présente des inductions dans l’entrefer plus faibles et des charges

linéiques plus élevées. On remarque aussi que contrairement aux machines à rotor interne,

les pertes mécaniques sont plus importantes dans les machines à rotor externe parce qu’un

rotor extérieur génère plus de pertes aérodynamiques qu’un rotor intérieur. À partir de ces

comparaisons, on peut conclure que la machine A-4 est la plus intéressante pour le cahier

des charges considéré étant donné qu’elle présente le meilleur couple massique.

6.2.2 Machines avec stator en fer laminé

Les résultats obtenus à partir de la procédure de conception par optimisation dans le cas du

dimensionnement des 4 moteurs sans encoches avec stator en fer laminé (tôles en Fe-Si de

0.35 mm) sont présentés dans le tableau 6.3. Une analyse comparative des performances de

ces machines confirme les mêmes conclusions obtenues et discutées précédemment dans le

cas des machines avec stator en SMC. Les machines à 4 pôles à rotors interne et externe

(machine B-2 et B-4) ont de meilleures performances que celles à 2 pôles (machines B-1 et

B-3). De plus, la machine B-4 à 4 pôles à rotor externe semble être la plus intéressante

puisqu’elle a un couple massique légèrement supérieur à celui de la machine à 4 pôles à

rotor interne. Cela s’explique par le fait que l’augmentation du nombre de pôles et

l’utilisation d’un rotor de type externe conduisent à une diminution des volumes du fer et

du cuivre au stator et à une réduction du poids de la machine.

La comparaison des performances des machines avec stator en fer laminé avec celles des

machines avec stator en SMC (cf. tableaux 6.2 et 6.3) montrent que, pour le cahier des

charges considéré, les dernières machines sont légèrement moins performantes que les

premières. Cela est dû au fait que, d’une part, les machines dont le stator est en tôles

présentent des pertes magnétiques plus faibles pour la vitesse de rotation considérée et que,

d’autre part, les machines avec stator en SMC possèdent des inductions moins importantes

dans l’entrefer à cause de la perméabilité moins élevée du matériau SMC. Toutefois, l’effet

de la perméabilité n’est pas très significatif sur le dimensionnement comparé à celui des

faibles pertes magnétiques au niveau des tôles à cause du large entrefer magnétique des

machines sans encoches. En effet, lors du dimensionnement, les pertes magnétiques moins

Page 245: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 223

élevées dans les tôles conduisent à une augmentation de l’induction dans l’entrefer des

machines et de la densité du courant dans les conducteurs du bobinage et à une diminution

de la quantité du cuivre et du volume de fer au stator.

Machine B-1 Machine B-2 Machine B-3 Machine B-4

Structure optimale

Type de rotor Interne Interne Externe Externe Nombre de pôles 2 4 2 4 Nombre d’encoches 6 12 6 12 Longueur axiale 29.96 mm 20.54 mm 35.24 mm 24.65 mm Diamètre externe 48 mm 48 mm 48 mm 48 mm Nombre de spires 62 70 48 54 Densité de courant 11.55 A/mm2 14.26 A/mm2 17.63 A/mm2 21.67 A/mm2 Charge linéique 22435 A/m 20241 A/m 18481 A/m 17772 A/m Bmax dans l’entrefer 0.461 T 0.505 T 0.540 T 0.598 T fem RMS (h=1) 34.96 V 35.26 V 34.91 V 35.12 V Inductance (h=1) 0.484 mH 0.165 mH 0.358 mH 0.124 mH Résistance du stator 0.765 Ω 0.741 Ω 0.811 Ω 0.786 Ω Courant RMS (h=1) 4.85 A 4.84 A 4.82 A 4.82 A Tension RMS (h=1) 38.98 V 38.98 V 38.98 V 38.98 V Pertes Joule au stator 58.51 W 56.30 W 61.28 W 59.35 W Pertes fer au stator 5.80 W 7.95 W 1.81 W 4.27 W Pertes aux aimants 0.592 W 0.561 W 0.752 W 0.363 W Pertes mécaniques 0.095 W 0.189 W 1.150 W 1.008 W Pertes totales 65 W 65 W 65 W 65 W Poids du fer 0.1881 kg 0.1026 kg 0.2646 kg 0.1511 kg Poids du cuivre 0.1399 kg 0.0801 kg 0.0622 kg 0.0376 kg Poids des aimants 0.0574 kg 0.0698 kg 0.0841 kg 0.0619 kg Poids total 0.3855 kg 0.2525 kg 0.4108 kg 0.2506 kg Couple massique 0.6226 Nm/kg 0.9506 Nm/kg 0.5841 Nm/kg 0.9576 Nm/kg

Tableau 6.3 : Structures optimales et principales caractéristiques et performances des 4 moteurs sans encoches avec stator en fer laminé

Cette étude comparative permet de constater que les machines sans encoches avec stator en

SMC peuvent êtres très compétitives par rapport à celles avec stator en fer laminé pour les

raisons suivantes :

-0.02 -0.01 0 0.01 0.02

-0.02

-0.01

0

0.01

0.02

-0.02 -0.01 0 0.01 0.02

-0.02

-0.01

0

0.01

0.02

-0.02 -0.01 0 0.01 0.02

-0.02

-0.01

0

0.01

0.02

-0.02 -0.01 0 0.01 0.02

-0.02

-0.01

0

0.01

0.02

Page 246: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 224

• Ces deux types de structures des machines présentent des performances

comparables à la vitesse de rotation imposée par le cahier des charges (20000

rpm) et pour le matériau SMC considéré. Ces performances deviennent plus proches

lorsque les effets 3D sur les pertes par courants de Foucault dans le stator en SMC

sont considérées dans le dimensionnement ;

• Basé sur les techniques de métallurgie des poudres, le processus de fabrication et

d’assemblage des machines avec des stators en SMC peut être plus rapide et moins

coûteux que celui des machines avec stator en fer laminé dans le cadre d’une

production de grand volume.

Cependant, les machines avec stator en SMC peuvent être plus intéressantes que celles

utilisant des tôles pour des vitesses très élevées comme le prouve la figure 6.1. Cette figure

compare l’évolution des pertes magnétiques au stator générées dans un matériau SMC et

dans des tôles en fonction de la vitesse de rotation en considérant les dimensions optimales

de la machine A-1. Notons que les mêmes caractéristiques des tôles données dans le tableau

6.1 sont considérées. Par contre, un matériau SMC moins conducteur que celui considéré

précédemment est utilisé (µrs=195, σs=1200 s/m).

L’analyse de cette figure permet de constater que les tôles sont plus intéressantes pour des

hautes vitesses moins importantes (inférieures à environ 70000 rpm). Par contre, le

matériau SMC devient plus performant que les tôles pour des très hautes vitesses car les

pertes magnétiques totales deviennent plus faibles. En fait, tel qu’il a été expliqué dans le

paragraphe 1.4.1.2 du 1er chapitre, les pertes par courants de Foucault dans le matériau

SMC sont moins importantes que les pertes d’hystérésis et les pertes magnétiques totales

augmentent pratiquement d’une façon linéaire avec la vitesse puisqu’elles sont dominées

par celles d’hystérésis. D’un autre côté, les pertes par courants de Foucault dans les tôles

sont plus importantes et augmentent rapidement avec la vitesse (au carré de la fréquence). Il

est important de noter que ce constat n’est valable que lorsque le matériau SMC est utilisé

dans une machine de faible puissance (comme dans le cas des machines dimensionnées

dans cette partie). Toutefois, un résultat complètement différent peut être obtenu si les

dimensions et la puissance de la machine sont très importantes étant donné que les pertes

Page 247: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 225

par courants de Foucault dans le matériau SMC deviennent plus significatives que les

pertes d’hystérésis sur toute la plage de vitesse comme cela sera montré dans la partie 6.5.

Figure 6.1 : Variation des pertes magnétiques dans la culasse du stator de la machine A-1 en

fonction de la vitesse de rotation (matériau SMC vs tôles)

6.3 Études de sensibilité au niveau du dimensionnement des machines sans encoches à haute vitesse

Cette partie présente des études de sensibilité des performances des machines sans

encoches à haute vitesse avec stator en SMC obtenues lors du dimensionnement en fonction

du type du fil de cuivre utilisé dans le bobinage et du type du matériau SMC considéré. Il

s’agit en fait d’investiguer l’effet de l’utilisation du fil de Litz dans le bobinage et l’effet

des paramètres du matériau SMC considéré (conductivité et perméabilité) sur les

performances optimales des machines en utilisant les outils de CAO développés.

6.3.1 Étude de l’effet de l’utilisation du fil de Litz

Afin d’étudier l’effet de l’utilisation du fil de Litz dans la conception des machines sans

encoches à haute vitesse et d’analyser la faisabilité et les limites de ces dernières en

fonction du cahier des charges, nous avons effectué le dimensionnement des quatre

topologies de moteurs avec stator en SMC précédentes (cf. paragraphe 6.2.1) en

considérant le même mode d’alimentation. Le même cahier des charges et les mêmes

matériaux sont utilisés mais les conducteurs classiques utilisés dans les bobinages sont

0 20 40 60 80 1000

20

40

60

80

100

Vitesse [103 rpm]

Per

tes

[W]

SMCTôles

Pertes totales

Pertes par courants de Foucault

Pertes d'hystérésis

Page 248: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 226

remplacés par d’autres utilisant du fil de Litz. Il est intéressant de rappeler que l’utilisation

du fil de Litz conduit à une diminution du facteur de remplissage des encoches à cause de

l’introduction d’un espace non occupé par les brins du cuivre et de leur isolation. Dans ce

cas, le facteur de remplissage Ku considéré est calculé comme le produit de deux facteurs de

remplissage :

• Un premier facteur Ku-fils correspondant au rapport entre la section totale occupée

par les conducteurs et leur isolation dans une encoche et la section de cette dernière.

Dans ce dimensionnement, ce facteur est pris égal à celui considéré précédemment

et qui correspond à 0.3 ;

• Un deuxième facteur Ku-brins correspondant au rapport entre la section totale occupée

par les brins dans un conducteur de Litz et la section de ce dernier incluant

l’isolation. La valeur de ce facteur dépend du nombre de brins utilisés et de leur

taille. Pour un conducteur de Litz normalisé, le facteur Ku-brins peut être facilement

calculé en se basant sur le nombre de brins, leur dimension AWG et le diamètre

externe du conducteur. Ces données sont fournies par les fabricants.

Pendant le processus de dimensionnement des quatre topologies de moteurs, un premier

dimensionnement est effectué pour chaque topologie en fixant un certain nombre de brins

et un facteur de remplissage Ku-brins approximatif. Ensuite, un conducteur de Litz normalisé

est choisi et un nouveau facteur Ku-brins est recalculé pour un deuxième dimensionnement.

Notons que le nombre des brins (Nbrins) et leur taille AWG (AWGbrins) fixés pendant le

dimensionnement sont respectivement 40 et 38 pour les machines sans encoches à rotor

interne, et 25 et 38 pour les machines à rotor externe. Cela correspond à des conducteurs de

Litz normalisés dont les tailles AWG équivalentes aux sections de cuivre (AWGfils) sont

respectivement 22 et 24 pour les deux catégories de machines :

Nbrins/AWGbrins/AWGfils=40/38/22 et 25/38/24 [160].

Le tableau 6.4 présente les résultats du processus de dimensionnement pour le cahier des

charges précédent dans le cas d’une alimentation en tension. Nous constatons que seules les

machines à 4 pôles à rotors interne et externe (machines A'-2 et A'-4) sont réalisables et que

leurs performances sont plus faibles que celles des machines déjà dimensionnées dans le

Page 249: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 227

paragraphe 6.2.1 avec des conducteurs standards puisque leurs couples massiques sont

moins élevés. La machine à rotor interne est légèrement plus performante que celle à rotor

externe. Cependant, aucune solution optimale n’est obtenue dans le cas des machines à 2

pôles (machines A'-1 et A'-3) puisqu’on n’arrive pas à obtenir le couple utile désiré

(Tu=0.24Nm) et à respecter ainsi le cahier des charges. En fait, les couples maximaux qui

peuvent être atteints pour les deux machines dans le volume fixé sont respectivement

0.193Nm et 0.194Nm. L’utilisation du fil de Litz dans la conception de ces machines

permet de contrôler et de diminuer les pertes par courants de Foucault (PJext) induites dans

les conducteurs par l’effet de peau et de proximité. Par exemple, ces pertes passent de 3.27

W pour des conducteurs standards à 0.033 W pour des fils de Litz dans le cas d’une

machine à rotor interne à 2 pôles et de 8.41 W à 0.13 W pour une machine à rotor interne à

4 pôles. Cependant, le facteur de remplissage des encoches pour les 4 machines est

largement réduit (environ de 41%) à cause du fil de Litz, ce qui dégrade les performances.

Machine A'-1 Machine A'-2 Machine A'-3 Machine A'-4 Type de rotor Interne Interne Externe Externe Nombre de pôles 2 4 2 4 Nombre d’encoches 6 12 6 12 Nbrins/AWGbrin/AWGfils 40/38/22 40/38/22 25/38/24 25/38/24 Ku-fils/Ku-brins/Ku 0.3/0.589/0.177 0.3/0.589/0.177 0.3/0.597/ 0.179 0.3/0.597/ 0.179 Longueur axiale

Pas de solution optimale

30.58 mm

Pas de solution optimale

33.97 mm Diamètre externe 48 mm 48 mm Nombre de spires 55 44 Densité de courant 16.41 A/mm2 24.47 A/mm2 Charge linéique 16673 A/m 14266 A/m Bmax dans l’entrefer 0.47 T 0.54 T Pertes PJext 0.13 W 0.19 W Pertes Joule totale 50.32 W 56.27 W Pertes fer au stator 14.04 W 7.29 W Pertes aux aimants 0.44 W 0.27 W Pertes mécaniques 0.19 W 1.16 W Pertes totales 65 W 65 W Poids du fer 0.1393 kg 0.1959 kg Poids du cuivre 0.0625 kg 0.0314 kg Poids des aimants 0.1022 kg 0.0875 kg Poids total 0.3039 kg 0.3148 kg Couple massique 0.7896 Nm/kg 0.7623 Nm/kg

Tableau 6.4 : Principales caractéristiques et performances des 4 moteurs sans encoches avec stator en SMC et fils de Litz

Page 250: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 228

Il faut noter que ces conclusions sont valides pour la vitesse de rotation imposée par le

cahier des charges (20000 rpm). Cependant, lorsque la vitesse augmente, un compromis

entre l’amélioration du facteur de remplissage (utilisation des conducteurs de cuivre

standards) et la réduction des pertes Joule supplémentaires dues à l’effet de peau et de

proximité (utilisation du fil de Litz) peut être adopté suivant la valeur de la vitesse et des

pertes mises en jeu, car les performances d’une machine peuvent être soit améliorées ou

diminuées. Pour démonter cela, nous effectuons une analyse de sensibilité des

performances optimales en fonction de la vitesse de rotation en considérant la structure

d’une machine à rotor interne à 2 pôles. Le dimensionnement est effectué pour plusieurs

valeurs de vitesse pour les deux types de conducteurs. La fonction objectif de la procédure

d’optimisation considérée est la maximation du couple dans un volume donné (Dmax=48

mm, Lmax=37 mm), les pertes totales sont imposées.

La figure 6.2 présente l’évolution des couples utiles des machines dimensionnées en

fonction de la vitesse pour les deux types de conducteurs utilisés. On observe que le couple

diminue dans les deux cas lorsque la vitesse augmente. L’augmentation de la vitesse

conduit à une diminution de l’induction dans l’entrefer et de la densité de courant dans les

conducteurs afin de réduire les pertes magnétiques et les pertes Joule au niveau du stator

qui augmentent rapidement avec la fréquence. Un tel comportement conduit à une

diminution du couple. On remarque aussi que pour des vitesses inférieures à 43000 rpm

environ, une machine utilisant des conducteurs standards est plus performante qu’une

machine avec des fils de Litz puisqu’elle présente un meilleur couple. Cela est dû au fait

que l’effet des pertes Joule supplémentaires sur le dimensionnement est moins significatif

que celui du facteur de remplissage des encoches pour cette plage de vitesses. Cependant,

pour des vitesses supérieures à 43000 rpm, les pertes dues à l’effet de peau et de proximité

deviennent plus importantes et l’introduction des fils de Litz permet de les réduire et

d’améliorer le couple malgré la réduction du facteur de remplissage. Dans ce cas, les

machines avec des fils de Litz deviennent plus intéressantes que celles avec des

conducteurs standards.

Page 251: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 229

À partir de ces analyses, on peut conclure que le choix optimal entre l’utilisation des

conducteurs standards ou des fils de Litz dépend étroitement du cahier des charges de

l’application et particulièrement de la vitesse de rotation.

Figure 6.2 : Variation des couples utiles en fonction de la vitesse pour des machines à rotor interne

à 2 pôles ayant des bobinages avec et sans fil de Litz

6.3.2 Étude de sensibilité en fonction du matériau SMC utilisé

Le choix du type du matériau SMC pour la réalisation de la culasse statorique est très

important au niveau de la conception des machines sans encoches à haute vitesse. Pour

étudier l’effet des paramètres du matériau SMC sur les performances optimales, on propose

de dimensionner et d’optimiser une machine sans encoches à rotor interne à 2 pôles en

utilisant deux matériaux différents :

• Un premier matériau moins conducteur utilisé précédemment (Mat-1) dont la

perméabilité est de 200 et la conductivité est de 3400 s/m ;

• Un deuxième matériau plus conducteur dont la perméabilité et la conductivité sont

respectivement 300 et 20000 s/m.

Dans cette étude, on utilise le même cahier des charges précédent et pour lequel le bobinage

utilise des conducteurs standards. La fonction objectif consiste à maximiser le couple dans

le volume fixé par le cahier des charges avec des pertes dissipées identiques. Les résultats

0 20 40 60 800

0.05

0.1

0.15

0.2

0.25

0.3

Vitesse [103 rpm]

Cou

ple

[Nm

]

Sans fils de LitzAvec fils de Litz

Page 252: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 230

obtenus par utilisation de la procédure d’optimisation développée sont donnés dans le

tableau 6.5.

Machine A-1-1 Machine A-1-2 Type de rotor Interne Interne Nombre de pôles 2 2 Nombre d’encoches 6 6 Perméabilité SMC 200 300 Conductivité SMC 3400 s/m 20000 s/m Longueur axiale 37 mm 37 mm Diamètre externe 48 mm 48 mm Nombre de spires 61 72 Densité de courant 9.92 A/mm2 8.80 A/mm2 Charge linéique 23513 A/m 27220 A/m Bmax dans l’entrefer 0.42 T 0.39 T Pertes Joule totale 52.18 W 48.79 W Pertes fer au stator 12.26 W 15.74 W Pertes aux aimants 0.47 W 0.40 W Pertes mécaniques 0.08 W 0.07 W Pertes totales 65 W 65 W Puissance utile fournie 508.8 W 467.4 W Couple utile 0.243 Nm 0.223 Nm Poids du fer 0.2082 kg 0.1789 kg Poids du cuivre 0.1663 kg 0.1979 kg Poids des aimants 0.0638 kg 0.0574 kg Poids total 0.4383 kg 0.4343 kg Couple massique 0.5542 Nm/kg 0.5138 Nm/kg

Tableau 6.5 : Principales caractéristiques et performances optimales des 2 machines sans encoches dimensionnées avec deux types de matériaux SMC (1er matériau : µrs=200, σs=3400s/m ;

2ème matériau : µrs=300, σs=20000s/m)

Une analyse comparative de ces résultats démontre que la machine avec le matériau SMC

le moins conducteur (machine A-1-1) est plus performante que l’autre machine malgré la

faible valeur de sa perméabilité. La première machine produit un couple plus élevé puisque

les pertes par courants de Foucault et les pertes magnétiques totales dans le stator sont plus

faibles. Bien que la perméabilité du matériau SMC de la deuxième machine soit plus

importante, son induction dans l’entrefer est plus faible et son couple est moins élevé à

cause de la valeur importante de la conductivité.

Page 253: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 231

On peut conclure que la perméabilité du matériau SMC a une influence non significative

par rapport à celle de la conductivité au niveau des machines sans encoches à cause de leur

entrefer magnétique important et que le choix optimal du type du matériau à utiliser dépend

essentiellement de la conductivité. Cette remarque reste toujours valide si la perméabilité a

une valeur plus importante parce que la réluctance du fer est pratiquement négligeable par

rapport à celle de l’entrefer.

6.4 Dimensionnement des moteurs sans encoches alimentés par onduleur de tension de type 180o à onde pleine

Nous appliquons à présent la méthodologie de conception développée au cas d’une

alimentation en tension afin de dimensionner des moteurs sans encoches à hautes vitesse

alimentés par des onduleurs de type 180o à onde pleine de tension. Le dimensionnement est

effectué pour les mêmes topologies de machines avec stator en SMC dimensionnées

précédemment où l’alimentation est assurée par des onduleurs de tension de type 120o (cf.

partie 6.2). Le même cahier des charges, les mêmes contraintes et la même fonction objectif

sont considérés. Le but est de comparer les performances de ces différentes machines et

d’analyser ainsi l’influence du type de commande (120o/180o) sur le dimensionnement

optimal.

Le tableau 6.6 présente les résultats obtenus à partir de la procédure d’optimisation pour les

structures optimales des quatre moteurs dimensionnés. L’analyse de ces résultats nous

permet de constater que, malgré l’augmentation de la fréquence, les machines à 4 pôles à

rotors interne et externe restent toujours plus performantes que celles à 2 pôles comme cela

a été démontré dans les différentes analyses comparatives précédentes. Cependant, les

machines à rotor interne à 2 pôles et à 4 pôles (machines C-1 et C-2) sont légèrement plus

performantes que celles à rotor externe (machines C-3 et C-4), respectivement. Notons que

la machine à 2 pôles à rotor externe (machine C-3) est non réalisable parce que sa longueur

dépasse la longueur maximale imposée par le cahier des charges Lmax=37 mm).

Page 254: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 232

Machine C-1 Machine C-2 Machine C-3 Machine C-4

Structure optimale

Type de rotor Interne Interne Externe Externe Nombre de pôles 2 4 2 4 Nombre d’encoches 6 12 6 12 Longueur axiale 36.82 mm 25.98 mm 39.78 mm 33.25 mm Diamètre externe 48 mm 48 mm 48 mm 48 mm Nombre de spires 78 94 62 73 Densité de courant 9.61 A/mm2 11.36 A/mm2 13.39 A/mm2 13.51 A/mm2 Charge linéique 26947 A/m 26821 A/m 18782 A/m 18569 A/m Bmax dans l’entrefer 0.398 T 0.424 T 0.420 T 0.370 T fem RMS (h=1) 40.73 V 40.97 V 40.59 V 40.98 V Inductance (h=1) 0.715 mH 0.277 mH 0.618 mH 0.252 mH Résistance du stator 0.916 Ω 0.909 Ω 0.981 Ω 0.922 Ω Courant RMS (h=1) 4.19 A 4.16 A 4.17 A 4.14 A Tension RMS (h=1) 45.01 V 45.01 V 45.01 V 45.01 V Pertes Joule au stator 53.77 W 55.69 W 59.44 W 58.37 W Pertes fer au stator 10.84 W 8.71 W 3.57 W 4.92 W Pertes aux aimants 0.319 W 0.457 W 0.713 W 0.522 W Pertes mécaniques 0.072 W 0.141 W 1.242 W 1.189 W Pertes totales 65 W 65 W 65 W 65 W Poids du fer 0.1943 kg 0.0992 kg 0.2576 kg 0.1449 kg Poids du cuivre 0.1842 kg 0.1243 kg 0.1034 kg 0.0902 kg Poids des aimants 0.0604 kg 0.0723 kg 0.0903 kg 0.0648 kg Poids total 0.4388 kg 0.2959 kg 0.4513 kg 0.2999 kg Couple massique 0.5468 Nm/kg 0.8110 Nm/kg 0.5318 Nm/kg 0.8001 Nm/kg

Tableau 6.6 : Structures optimales et principales caractéristiques et performances des 4 moteurs sans encoches avec stator en SMC dimensionnés (cas d’un onduleur de type 180o à onde pleine

de tension)

Une comparaison des performances optimales de ces machines avec celles des quatre

machines dimensionnées dans la partie 6.2 pour le cas d’un onduleur de tension de type

120o montre que l’utilisation de ce dernier type d’alimentation est plus intéressante que

celle d’une alimentation par onduleur de tension de type 180o. Les machines alimentées par

des onduleurs de tension de type 120o ont des inductions dans l’entrefer plus importantes,

des densités de courant supérieures et des couples massiques plus élevés. Cela s’explique

-0.02 -0.01 0 0.01 0.02

-0.02

-0.01

0

0.01

0.02

-0.02 -0.01 0 0.01 0.02

-0.02

-0.01

0

0.01

0.02

-0.02 -0.01 0 0.01 0.02

-0.02

-0.01

0

0.01

0.02

-0.02 -0.01 0 0.01 0.02

-0.02

-0.01

0

0.01

0.02

Page 255: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 233

par le fait que le courant délivré par un onduleur de tension de type 180o, pour le point de

fonctionnement considéré, présente un taux d’harmoniques plus important que celui de

l’onduleur de type 120o conduisant ainsi à une augmentation des pertes Joule et des pertes

fer au niveau du stator, à une diminution de l’induction et de la densité du courant et à une

augmentation du poids de la machine. Par exemple, le taux de distorsion harmonique dans

le cas d’une machine à rotor externe à 4 pôles est 47.9% pour un onduleur de type 180o et

28.8% pour un onduleur de type 120o pour les 25 premiers harmoniques.

Théoriquement, le fait d’augmenter la tension fondamentale aux bornes d’une machine

permet d’améliorer les performances puisque le nombre de spires augmente et les pertes

Joule supplémentaires dues à l’effet de peau et de proximité diminuent. Cependant, bien

que la tension fournie par un onduleur de tension de type 180o soit plus élevée que celle

appliquée par un onduleur 120o, les performances des machines alimentées par le premier

onduleur sont inférieures à cause de l’influence importante des harmoniques. De plus, les

ondulations de couple générées par ces machines sont plus importantes comme le montre la

figure 6.3 tracée dans le cas d’une structure de machine à rotor interne à 2 pôles.

Figure 6.3 : Couples utiles instantanés des machines A-1 et C-1 à 2 pôles à rotor interne

alimentées respectivement par onduleur de tension de type 120o et de type 180o

0 0.5 1 1.5 2 2.5 3x 10-3

0

0.05

0.1

0.15

0.2

0.25

0.3

Temps [t]

Cou

ple

[Nm

]

Tu pour onduleur 120o

Tu pour onduleur 180o

Couple moyen

Page 256: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 234

6.5 Dimensionnement d’un alternateur sans encoches à haute vitesse avec stator en SMC débitant sur un redresseur

Dans cette partie, nous proposons d’illustrer la méthodologie de conception par

optimisation globale développée dans le cas d’une alimentation par convertisseur de

courant en dimensionnant un alternateur sans encoches triphasé équipé avec un stator en

SMC et un rotor interne à aimants permanents. Cette validation est effectuée en considérant

le système de génération à haute vitesse décrit dans le chapitre 4 où l’alternateur est

entraîné par une turbine à gaz et débite sur un redresseur à thyristors. Notons que les deux

méthodes de conception et d’optimisation proposées dans le paragraphe 5.5.2 du chapitre 5

avec utilisation éventuelle du mécanisme de correction 3D des pertes par courants de

Foucault sont utilisées et comparées.

6.5.1 Cahier des charges et paramètres de dimensionnement

Les différentes spécifications du cahier des charges du système de génération ainsi que les

divers paramètres de dimensionnement et caractéristiques des matériaux de l’alternateur à

dimensionner sont respectivement présentés dans les tableaux 6.7 et 6.8. Le système de

génération doit fournir une puissance de 1.5 MW à la sortie du redresseur sous une tension

continue de 1500 V pour un fonctionnement à pleine charge à une vitesse de 18000rpm.

Les pertes dissipées au niveau de l’alternateur sont imposées (un système de

refroidissement par eau est utilisé). La culasse du stator de la machine est réalisée avec un

matériau SMC de perméabilité 200 et de conductivité 2500 s/m. Le bobinage est à pas

diamétral à 36 encoches réalisé en utilisant du fil de Litz de forme rectangulaire pour

réduire les pertes par courants de Foucault dues à l’effet de peau et de proximité. Tel

qu’expliqué précédemment dans le cas d’utilisation du fil de Litz, le coefficient de

remplissage global des encoches Ku est le produit des deux coefficients Ku-fils et Ku-brins.

Pour le présent dimensionnement, le coefficient de remplissage Ku-fils est pris égal à 0.7,

tandis que le coefficient Ku-brins est déterminé pendant le processus de dimensionnement

suite au choix d’un fil de Litz normalisé.

Le rotor à aimants permanents de l’alternateur comporte 4 pôles de type NdFeB à

aimantation radiale. Chaque aimant est segmenté en 3 blocs afin de réduire les pertes par

Page 257: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 235

courants de Foucault qui y sont générées. Leur induction de démagnétisation vaut 0.2T

pour une température de 150oC. La frette de maintien des aimants est amagnétique non

conductrice de type fibre de carbone. Dans ce dimensionnement, les pertes dans les

roulements sont considérées et ajoutées aux pertes aérodynamiques. Les roulements utilisés

sont équipés par des billes en céramique faite du Nitrure de Silicium. Ce type de

roulements est très adapté aux vitesses et aux températures très élevées. Comparées aux

billes en acier, les billes en céramique permettent de réduire les pertes dans les roulements

pour les hautes vitesses. Ils ont une longévité plus grande et résistent mieux à la fatigue.

Les dimensions des roulements choisis sont données dans le tableau 6.8 [161].

Paramètre Valeur Puissance nominale de sortie du redresseur Pout 1.5 MW Vitesse de rotation nominale de l’alternateur N 18000 rpm Diamètre externe maximal de l’alternateur Dmax 400 mm Longueur axiale maximale du stator Lmax 300 mm Pertes maximales de l’alternateur Pertot0 60 kW Tension continue de sortie du redresseur Vdo 1500 V Induction maximale dans la culasse du stator Bculsmax0 1.2 T Induction maximale dans la culasse du rotor Bculrmax0 1.6 T

Tableau 6.7 : Spécifications et contraintes du cahier des charges du système de génération

Paramètre Valeur Nombre de pôles 2p 4 Nombre d’encoches 36 Coefficient d’ouverture des encoches ke 0.95 Entrefer mécanique minimal 1.5 mm Épaisseur de la frette ec 3 mm Aimantation rémanente des aimants à 120oC (NdFeB) 1.2 T Perméabilité des aimants µrm 1.05 Conductivité des aimants σm 6.25×105 s/m Induction de démagnétisation des aimants BAPmin à 150oC 0.2 T Perméabilité du matériau SMC µrs 200 Conductivité du matériau SMC σs 2500 s/m Contrainte de traction limite du matériau du rotor (acier) 600 N/mm2 Contrainte de traction limite du matériau de la frette (fibre de carbone de type T700SC) 4900 N/mm2

Dimensions des roulements à billes en céramique (d×D×B) φ35×φ55×10

Tableau 6.8 : Paramètres de dimensionnement et caractéristiques des matériaux de l’alternateur

Page 258: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 236

6.5.2 Dimensionnement et analyse des résultats

Le dimensionnement de l’alternateur du système de génération est réalisé en utilisant les

deux procédures de conception et d’optimisation proposées qui intègrent le mécanisme de

correction itératif du couplage machine-convertisseur et qui considèrent ou non le

mécanisme de correction des pertes par courants de Foucault dans le stator en SMC par

calcul numérique du champ en 3D. Dans les deux cas, la fonction objectif du problème

d’optimisation est la minimisation d’une fonction de coût qui représente une pondération

entre les poids des principaux matériaux utilisés. Cette fonction s’écrit :

10. 7.ap cu ferObj P P P= + + (6.1)

Pap, Pcu et Pfer représentent respectivement le poids des aimants, du cuivre et du fer de la

machine. Pour ce dimensionnement, le fonctionnement en charge du système de génération

considéré correspond au cas où l’angle d’amorçage des thyristors du redresseur est nul. La

démagnétisation des aimants permanents est calculée pour le courant de court-circuit de

l’alternateur en utilisant un coefficient de sécurité égal à 1 (KsécB=1).

6.5.2.1 Dimensionnement sans correction 3D des pertes par courants de Foucault

L’application de la première méthode de conception et d’optimisation illustrée par la

procédure de la figure 5.11 nous a permis de trouver une solution optimale finale de

dimensionnement de l’alternateur. Cette solution est obtenue après seulement 3 itérations

sur le mécanisme de correction du couplage entre le modèle de dimensionnement de la

machine et le modèle électrique équivalent sans à priori de l’ensemble convertisseur-

machine. Le tableau 6.9 présente les valeurs des tensions imposée Vdo, calculée Vdi et

simulée Vdsim du bus continu à la sortie du redresseur pour chaque solution optimale

intermédiaire obtenue pendant le processus de conception. Le tableau présente aussi

l’évolution du facteur de correction du couplage machine-convertisseur. L’analyse de ces

résultats montre clairement que la convergence du processus de conception est atteinte

après un nombre d’exécutions du problème d’optimisation et de simulation du modèle

électrique du système de génération égal à 4. La dernière exécution (i=5) présentée dans le

tableau 6.9 montre que la convergence est atteinte à (i=4).

Page 259: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 237

Pendant le processus de dimensionnement, un fil de Litz normalisé a été choisi pour chaque

solution optimale intermédiaire avec une forme rectangulaire de type 8 [162]. Dans ce cas,

le coefficient de remplissage Ku-brins calculé pour la solution optimale finale est 0.543 et le

coefficient global Ku résultant est 0.38. Le nombre de spires, qui est faible, a été ajusté de

manière à rester un multiple de p.npp afin d’avoir un bobinage réparti et équilibré.

i=1 i=2 i=3 i=4 i=5 Vdo [V] 1500 1500 1500 1500 1500 Vdi [V] 1516.28 1754.95 1811.71 1826.32 1826.32 Vdsim[V] 1296 1453 1488 1500 1500 Kco(i) 1 1.16997 1.20781 1.21755 1.21755 Kco(i+1) 1.16997 1.20781 1.21755 1.21755 1.21755

Tableau 6.9 : Évolution des différentes tensions continues et du facteur de correction du couplage machine-convertisseur

La figure 6.4 montre la structure optimale finale de l’alternateur dimensionné, tandis que le

tableau 6.10 présente la liste de ses principales caractéristiques et performances. Le courant

de court-circuit a été vérifié à la sortie du redresseur à partir de la simulation du circuit

électrique du système de génération. Les résultats obtenus montrent que l’alternateur

dimensionné possède un bon rendement d’environ 96%. Les pertes Joule dans le bobinage

de la machine sont plus importantes que les autres pertes et représentent environ 68.1% des

pertes totales contre 28.4% pour les pertes magnétiques dans la culasse du stator. Par

contre, les pertes mécaniques et les pertes Joule dissipées dans les aimants sont plus faibles.

Figure 6.4 : Structure optimale de l’alternateur sans encoches dimensionné (sans correction 3D des

pertes par courants de Foucault)

-0.15 -0.1 -0.05 0 0.05 0.1 0.15-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Page 260: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 238

Paramètre Valeur Longueur axiale active 300 mm Diamètre externe du stator 290.5 mm Épaisseur de la culasse du stator 34.8 mm Épaisseur du bobinage 18.6 mm Diamètre interne du bobinage 183.7 mm Entrefer mécanique 1.5 mm Épaisseur de la frette 3 mm Épaisseur des aimants 28.1 mm Épaisseur de la culasse du rotor 26.9 mm Diamètre interne du rotor 64.7 mm Coefficient d’ouverture des aimants 0.738 Fil de Litz Nbrins/AWGbrin/AWGfils 112/22/2 Facteurs de remplissage Ku-fils/Ku-brins/Ku 0.7/0.543/0.38 Nombre de spires par phase 24 Densité de courant 25.4 A/mm2 Charge linéique 187617 A/m Induction maximale à vide dans l’entrefer 0.56 T Force électromotrice (RMS) 999.5 V Inductance synchrone au stator (h=1) 0.2118 mH Résistance d’une phase du stator 0.0241 Ω Rapport Ieff,cc/Ieff,n (Ieff,cc : courant de court-circuit) 1.664 Poids du fer 78.10 kg Poids du cuivre 19.99 kg Poids des aimants 21.20 kg Poids total 119.29 kg Pertes Joule supplémentaires au stator PJext 2.394 kW Pertes Joule totale au stator 40.85 kW Pertes par courants de Foucault au stator 14.79 kW Pertes d’hystérésis au stator 2.267 kW Pertes dans les aimants 0.619 kW Pertes dans les roulements 0.498 kW Pertes aérodynamiques 0.971 kW Pertes totales de la machine 60 kW Rendement 96.16 %

Tableau 6.10 : Principales dimensions, caractéristiques et performances optimales de l’alternateur sans encoches dimensionné (sans correction 3D des pertes par courants de Foucault)

Les pertes par courants de Foucault dans le matériau SMC du stator déterminées en 2D sont

plus significatives que les pertes d’hystérésis comme le montre la figure 6.5. Ces pertes,

validées par calcul numérique du champ en 2D, sont plus importantes malgré l’utilisation

d’un matériau SMC moins conducteur contrairement à ce qu’il a été remarqué dans le cas

Page 261: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 239

d’une machine de faible puissance (cf. Fig. 6.1). Cela s’explique par l’effet dimensionnel

sur les pertes par courants de Foucault. Les dimensions de la culasse statorique de

l’alternateur sont plus importantes et les trajets des courants de Foucault induits sont plus

longs contrairement au cas d’une machine de faible puissance. Ce phénomène peut être

facilement interprété par une analogie avec l’effet de l’épaisseur des tôles sur les pertes par

courants de Foucault dans les machines conventionnelles.

Figure 6.5 : Variation des pertes magnétiques dans la culasse du stator en SMC de l’alternateur en

fonction de la vitesse de rotation

La figure 6.6 présente les formes d’ondes de la fem, du courant et de la tension d’une phase

de la machine obtenues à partir du modèle électrique équivalent du système de génération.

Nous pouvons remarquer que la commutation du courant au stator a une influence très

importante sur la tension aux bornes de l’enroulement d’une phase de la machine ainsi que

sur la chute de tension au niveau du redresseur. Cela justifie parfaitement l’utilisation d’un

modèle électrique fin de l’ensemble convertisseur-machine tenant compte de la

commutation. Le mécanisme de correction du couplage pour la modélisation électrique du

système s’impose ici. Puisque l’alternateur sans encoches a une faible inductance,

l’utilisation d’une frette conductrice n’est pas nécessaire pour améliorer la commutation du

courant et réduire les pertes au rotor comme cela est souvent utilisé dans les machines avec

encoches [52]. La réduction des pertes au rotor est assurée dans notre cas par une

segmentation des aimants permanents.

0 10 20 30 40 500

20

40

60

80

100

120

Vitesse [103 rpm]

Per

tes

[kW

]

Calcul analytiqueCalcul numérique

Pertes par courants de Foucault

Pertes totales

Pertes d'hystérésis

Page 262: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 240

La figure 6.7 présente une comparaison entre la forme d’onde de la tension de phase de

l’alternateur calculée analytiquement et celle simulée. La première tension est calculée en

sommant les différents harmoniques de temps obtenus à partir du modèle analytique de

dimensionnement de l’alternateur, tandis que la deuxième tension est obtenue à partir de la

simulation sans à priori du modèle électrique équivalent fin du système de génération. Cette

figure montre qu’il y a une bonne concordance entre ces formes d’ondes de tension. Ce

résultat valide ainsi les hypothèses adoptées au chapitre 4 au niveau de l’inductance et de la

structure du circuit électrique équivalent de la machine (cf. paragraphe 4.4.2).

Figure 6.6 : Formes d’ondes de la fem, du courant et de la tension d’une phase de l’alternateur

Figure 6.7 : Formes d’ondes de la tension de phase de l’alternateur obtenues par calcul analytique

et par simulation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6-1500

-1000

-500

0

500

1000

1500

Temps [ms]

Tens

ion

[V],

cour

ant [

A]

CourantfemTension

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6-1500

-1000

-500

0

500

1000

1500

Temps [ms]

Tens

ion

[V]

Tension calculéeTension simulée

Page 263: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 241

6.5.2.2 Dimensionnement avec correction 3D des pertes par courants de Foucault

Les résultats du dimensionnement précédent montrent que la longueur axiale de la culasse

du stator en SMC de l’alternateur n’est pas assez importante par rapport au pas polaire. Le

rapport entre ces deux dimensions est égal à 1.49 (L/pp=1.49). Dans ce cas, les effets 3D

peuvent avoir une influence importante sur les pertes par courants de Foucault générées

dans le matériau SMC et sur le dimensionnement optimal de la machine. L’application de

la deuxième méthode de conception et d’optimisation, illustrée par l’organigramme de la

figure 5.12 et qui inclut le mécanisme de correction du couplage machine-convertisseur et

celui de la correction 3D des pertes par courants de Foucault, a permis de trouver une

solution optimale finale dont la structure est présentée dans la figure 6.8. Notons que le

couple de freinage dû à l’interaction des aimants permanents et des courants de Foucault à

vide induits dans le stator en SMC est aussi corrigé.

Le tableau 6.11 présente l’évolution des tensions continues Vdo, Vdi et Vdsim et du facteur de

correction Kco(i,j) du couplage machine-convertisseur suivant les itérations (i) sur le premier

mécanisme de correction du couplage et suivant les itérations (j) sur le deuxième

mécanisme de correction 3D des pertes par courants de Foucault dans le stator en SMC.

Cependant, le tableau 6.12 présente l’évolution des pertes par courants de Foucault en

charge dans le stator calculées en 2D et en 3D et du facteur de correction 3D de ces pertes

K(j). Ces grandeurs sont données pour chaque solution optimale intermédiaire du processus

de conception en incluant le mécanisme de correction du couplage machine-convertisseur

(pour chaque itération (j)). À partir de ces deux tableaux, nous pouvons remarquer que la

solution optimale finale de dimensionnement de l’alternateur est obtenue avec un faible

nombre d’itérations sur les deux mécanismes de correction. Trois itérations sur le

mécanisme de correction 3D des pertes par courants de Foucault et 6 itérations sur le

mécanisme de correction du couplage machine-convertisseur ont été suffisantes pour

atteindre la solution optimale finale. La convergence de la procédure de conception est ainsi

atteinte après 10 exécutions du problème d’optimisation non linéaire (cf. Fig. 5.12). Pour

cette solution, les pertes par courants de Foucault dans la culasse du stator de l’alternateur

calculées en 3D représentent environ 65% de celles calculées en 2D.

Page 264: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 242

Figure 6.8 : Structure optimale de l’alternateur sans encoches dimensionné (avec correction 3D des

pertes par courants de Foucault)

i=1 i=2 i=3 i=4

j=1

Vdo [V] 1500 1500 1500 1500 Vdi [V] 1516.28 1754.95 1811.71 1826.32 Vdsim[V] 1296 1453 1488 1500 Kco(i, j) 1 1.16997 1.20781 1.21755 Kco(i+1, j) 1.16997 1.20781 1.21755 1.21755

j=2

Vdo [V] 1500 1500 1500 Vdi [V] 1826.32 1827.46 1827.45 Vdsim[V] 1499.08 1500.01 1500 Kco(i, j) 1.21755 1.21829 1.21830 Kco(i+1, j) 1.21829 1.21830 1.21830

j=3

Vdo [V] 1500 1500 Vdi [V] 1827.45 1827.50 Vdsim[V] 1499.96 1500 Kco(i, j) 1.21830 1.21833 Kco(i+1, j) 1.21833 1.21833

j=4

Vdo [V] 1500 Vdi [V] 1827.50 Vdsim[V] 1500 Kco(i, j) 1.21833 Kco(i+1, j) 1.21833

Tableau 6.11 : Évolution des différentes tensions continues et du facteur de correction du couplage machine-convertisseur pendant le processus de conception de l’alternateur (suivant les itérations i

et j sur les deux mécanismes de correction)

-0.15 -0.1 -0.05 0 0.05 0.1 0.15-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Page 265: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 243

j=1 j=2 j=3 j=4 K(j) 1 0.65507 0.64946 0.64940 K(j+1) 0.65507 0.64946 0.64940 0.64941 Pcf_2D(j) [kW] 14.790 15.958 16.007 16.008 Pcf_3D(j) [kW] 14.790 10.453 10.396 10.3956 Pcf_3D(j+1) [kW] 9.689 10.364 10.395 10.3957

Tableau 6.12 : Évolution du facteur de correction 3D et des pertes par courants de Foucault en charge en 2D et en 3D lors du processus de conception de l’alternateur

Les principales dimensions, caractéristiques et performances de la structure optimale finale

de l’alternateur dimensionné sont présentées dans le tableau 6.13. La comparaison de ces

résultats avec ceux obtenus précédemment démontre l’importante nécessité de tenir compte

des effets 3D sur la distribution des courants de Foucault induits dans le stator en SMC et

leurs pertes. Dans le présent dimensionnement, les pertes magnétiques totales au stator et le

couple de freinage cité précédemment sont moins élevés à cause de la prise en compte de

ces effets 3D. Cela conduit à une augmentation de l’induction dans l’entrefer et de la

densité du courant dans les conducteurs de l’alternateur, ce qui permet de diminuer la

quantité du cuivre et d’aimants, de réduire la longueur et le poids total de la machine et

d’augmenter la compacité.

Page 266: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 244

Paramètre Avec correction 3D

Sans correction 3D

Longueur axiale active 288.8 mm 300 mm Diamètre externe du stator 291.3 mm 290.5 mm Épaisseur de la culasse du stator 36.6 mm 34.8 mm Épaisseur du bobinage 16.4 mm 18.6 mm Diamètre interne du bobinage 185.3 mm 183.7 mm Entrefer mécanique 1.5 mm 1.5 mm Épaisseur de la frette 3 mm 3 mm Épaisseur des aimants 27.1 mm 28.1 mm Épaisseur de la culasse du rotor 27.8 mm 26.9 mm Diamètre interne du rotor 66.6 mm 64.7 mm Coefficient d’ouverture des aimants 0.734 0.738 Fil de Litz Nbrins/AWGbrin/AWGfils 105/22/2 112/22/2 Facteurs de remplissage Ku-fils/Ku-brins/Ku 0.7/0.542/0.38 0.7/0.543/0.38 Nombre de spires par phase 24 24 Densité de courant 28.8 A/mm2 25.4 A/mm2 Charge linéique 185942 A/m 187617 A/m Induction maximale à vide dans l’entrefer 0.58 T 0.56 T Force électromotrice (RMS) 1008 V 999.5 V Inductance synchrone au stator 0.2154 mH 0.2118 mH Résistance d’une phase du stator 0.0265 Ω 0.0241 Ω Rapport Ieff,n/Ieff,cc (courant de court-circuit) 1.651 1.664 Poids du fer 78.95 kg 78.10 kg Poids du cuivre 17.32 kg 19.99 kg Poids des aimants 19.93 kg 21.20 kg Poids total 116.2 kg 119.29 kg Pertes Joule supplémentaires au stator PJext 2.147 kW 2.394 kW Pertes Joule totale au stator 44.99 kW 40.85 kW Pertes par courants de Foucault au stator 10.39 kW 14.79 kW Pertes d’hystérésis au stator 2.532 kW 2.267 kW Pertes dans les aimants 0.611 kW 0.619 kW Pertes dans les roulements 0.498 kW 0.498 kW Pertes aérodynamiques 0.976 kW 0.971 kW Pertes totales de la machine 60 kW 60 kW Rendement 96.16 % 96.16 %

Tableau 6.13 : Principales dimensions, caractéristiques et performances optimales de l’alternateur sans encoches dimensionné (avec correction 3D des pertes par courants de Foucault)

Page 267: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 245

6.6 Conclusion

Dans ce chapitre, nous avons mis en évidence la pertinence et la validité des différents

outils de modélisation et de conception optimale développés dans les chapitres précédents

en les appliquant au dimensionnement de machines sans encoches à aimants permanents à

haute vitesse pour des cahiers des charges spécifiques et différents types d’alimentations.

Le dimensionnement de ces machines a été effectué en utilisant la méthodologie de

conception par optimisation proposée dans cette thèse.

Dans le cas de l’alimentation par convertisseurs de tension, plusieurs structures

topologiques de moteurs sans encoches alimentés par des onduleurs de tension de types

120o et 180o ont été dimensionnés, analysés et comparés. Il s’agit de machines avec des

stators réalisés en SMC et avec des rotors interne et externe, à 2 pôles et à 4 pôles. Ces

structures ont été aussi comparées avec d’autres machines utilisant des stators en fer laminé

dans le cas d’une alimentation par des onduleurs de type 120o. Dans tous ces cas, il a été

démontré que les machines à 4 pôles à rotors interne et externe sont plus performantes que

celles à 2 pôles malgré l’augmentation de la fréquence. Il a été aussi démontré que

l’utilisation d’une alimentation avec un onduleur de tension de type 120o est plus

intéressante que celle d’une alimentation par un onduleur de type 180o à cause de

l’influence importante des harmoniques de courant qui affectent les performances des

machines alimentées par ce dernier type d’onduleur.

Par ailleurs, l’étude comparative des machines avec des stators réalisés en SMC ou en fer

laminé nous a permis de constater que les premières sont légèrement moins performantes

que les dernières pour le cahier des charges considéré. Cependant, les machines avec stator

en SMC peuvent être très compétitives dans le cadre d’une production de grand volume.

Nous avons conclu aussi que l’utilisation des tôles au niveau du stator des machines sans

encoches à haute vitesse est plus intéressante pour des vitesses moins élevées. Cependant,

les SMC deviennent plus performants que les tôles pour des très hautes vitesses,

particulièrement pour des machines de faible puissance.

Des études de sensibilité ont été effectuées pour analyser l’effet de l’utilisation du fil de

Litz au niveau du bobinage ainsi que l’effet du type du matériau SMC considéré sur les

Page 268: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Chapitre 6 246

performances optimales des machines sans encoches. Il ressort de la première étude que le

choix optimal entre l’utilisation d’un fil de Litz ou d’un conducteur standard repose

particulièrement sur un compromis entre l’amélioration du facteur de remplissage des

encoches et la réduction des pertes Joule supplémentaires dues à l’effet de peau et de

proximité. Ce compromis doit être réalisé suivant la vitesse de rotation de la machine. La

deuxième étude a démontré que le choix optimal du type du matériau SMC pour réaliser la

culasse du stator des machines sans encoches dépend essentiellement de la valeur de sa

conductivité. La perméabilité n’a pas d’influence significative sur les performances à cause

de l’entrefer magnétique important de ce type de machines.

Dans le cas de l’alimentation par convertisseurs de courant, la méthodologie de conception

et d’optimisation proposée a été validée en dimensionnant un alternateur sans encoches

avec un stator en SMC et un rotor interne utilisé dans un système de génération à courant

continu à haute vitesse. La méthodologie de conception, utilisant le mécanisme de

correction du couplage machine-convertisseur, a été appliquée en utilisant les deux

méthodes proposées au chapitre 5 pour les deux situations suivantes : avec ou sans prise en

compte des effets 3D sur les courants de Foucault induits dans la culasse du stator. Dans

ces deux cas, la convergence du processus de conception a été atteinte avec un faible

nombre d’exécution du problème d’optimisation et l’efficacité des deux méthodes de

conception a été mise en lumière. La validation de la deuxième méthode de conception a

démontré aussi qu’elle peut être une bonne alternative si la longueur de la machine n’est

pas assez importante par rapport au pas polaire pour tenir compte des effets 3D, puisqu’elle

permet un meilleur dimensionnement de la machine tout en assurant un bon compromis

entre la précision et le temps de calcul.

Page 269: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

CONCLUSION GÉNÉRALE

Dans ce travail de recherche, nous avons abordé la modélisation, la conception et

l’optimisation des machines synchrones sans encoches à aimants permanents à haute

vitesse à pôles lisses réalisées avec des matériaux massifs et conducteurs. Nous avons

présenté le développement d’une méthodologie de modélisation et de conception de ce type

de machines basée sur le concept de l’optimisation globale en prenant en compte les

différentes contraintes électromagnétiques, thermiques et mécaniques spécifiques au

fonctionnement à haute vitesse. Ce travail devrait permettre d’investiguer l’utilisation des

matériaux SMC dans ces applications et d’évaluer leur potentiel par rapport aux tôles.

Pour mettre en œuvre cette méthodologie, un outil de dimensionnement générique a été

développé pour différentes structures de machines sans encoches fonctionnant en moteur ou

en générateur et alimentées par diverses configurations de convertisseurs statiques et de

commandes. Cet outil de dimensionnement est constitué d’un ensemble d’outils de

modélisation, de conception et d’optimisation intégrés dans un même environnement de

CAO. L’outil réalisé utilise un modèle de dimensionnement analytique qui inclut un

modèle électromagnétique générique, un modèle de calcul des pertes, un modèle électrique

de l’ensemble convertisseur-machine et un modèle mécanique.

Le modèle électromagnétique des machines a été développé en utilisant une méthode de

modélisation analytique. Cette méthode est basée sur la prédiction de la distribution du

champ magnétique en 2D dans la structure de la machine produit par les aimants au rotor et

les courants au stator. Cette prédiction est effectuée en utilisant une résolution analytique

des équations de Maxwell en magnétodynamique en tenant compte des courants de

Foucault induits dans le stator en SMC et dans la frette lorsqu’elle est conductrice, des

harmoniques de temps et d’espace, du mouvement et de l’effet de la courbure.

Page 270: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Conclusion générale 248

La méthode de modélisation a été généralisée en considérant une structure de machine avec

deux régions conductrices, ayant différentes configurations au niveau du bobinage et divers

types d’aimantation des aimants (radiale, parallèle ou de type Halbach). Différentes

grandeurs électromagnétiques peuvent être calculées en utilisant cette méthode : le couple

électromagnétique, le flux, la fem, les inductances et les résistances. L’approche analytique

a permis d’identifier précisément les différentes interactions qui participent à la génération

du couple électromagnétique de la machine. Cette méthode de modélisation proposée est

efficace et sa mise en œuvre est rapide. Elle assure une précision comparable à celle du

calcul numérique du champ en 2D.

Le modèle de calcul des pertes a été développé en déterminant différents types de pertes :

pertes Joule, pertes magnétiques et pertes mécaniques. Les pertes magnétiques au stator

sont calculées en charge en considérant l’effet de l’angle de commande et les pertes Joules

dans le bobinage tiennent compte de l’effet de peau et de proximité. Au rotor, les pertes par

courants de Foucault sont calculées au niveau de la frette conductrice en utilisant plusieurs

méthodes, mais aussi dans les aimants en considérant qu’ils peuvent être éventuellement

segmentés transversalement. Il a été démontré que l’ajout d’une frette conductrice ou la

segmentation des aimants permettent de réduire considérablement les pertes au rotor.

Une validation du calcul analytique des pertes magnétiques dans le stator en SMC a été

effectuée en utilisant le calcul numérique du champ en 2D. Ces pertes ont aussi été validées

expérimentalement en concevant et réalisant un banc d’essai spécifique. Ces validations

montrent que le modèle développé est précis si on respecte l’hypothèse de 2D. Une autre

validation par le calcul numérique du champ en 3D a démontré qu’il est nécessaire de tenir

compte des effets de bord sur les pertes par courants de Foucault dans le stator en SMC

pour obtenir une meilleure évaluation de celles-ci et un dimensionnement optimal de la

machine, surtout lorsque le rapport entre la longueur et le pas polaire est faible. Afin de

prendre en compte cette limitation lors de la conception, nous avons proposé une méthode

de correction de ces pertes qui utilise le calcul du champ en 3D. Cette méthode a permis

d’intégrer dans le processus d’optimisation un mécanisme de correction que nous avons

judicieusement associé aux procédures de conception par optimisation.

Page 271: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Conclusion générale 249

Pour tenir compte des interactions entre la machine et son alimentation lors de la

conception, nous avons développé un modèle électrique équivalent pour chaque ensemble

convertisseur-machine considéré. Pour une alimentation par convertisseurs à commutation

de tension, une modélisation électrique analytique harmonique a été utilisée en considérant

plusieurs types d’onduleurs : onduleurs de type 120o à onde rectangulaire de courant,

onduleur de type MLI à courant sinusoïdal et onduleur de type 180o à onde pleine de

tension. Dans le cas des convertisseurs à commutation de courant, un modèle analytique

harmonique a aussi été utilisé, mais il est associé à une méthode de correction basée sur les

résultats de simulation du modèle électrique équivalent. Ce deuxième mécanisme de

correction a été également intégré dans le processus d’optimisation afin de tenir compte du

couplage fort existant entre les performances de la machine et de son convertisseur.

Les méthodes de conception optimale des machines ont été mises en œuvre en développant

les procédures de conception et d’optimisation associées suivant le type d’alimentation par

convertisseurs utilisé. Pour une alimentation en tension, le modèle de dimensionnement a

été associé à une procédure d’optimisation non linéaire avec contraintes et au mécanisme

itératif de correction 3D des pertes par courants de Foucault dans le stator lorsque celui-ci

est réalisé en SMC. Dans le cas d’une alimentation en courant, deux méthodes de

conception originales ont été proposées. Elles sont basées sur l’association du modèle de

dimensionnement, d’une procédure d’optimisation et du mécanisme de correction du

couplage machine-convertisseur et qui peuvent être utilisées suivant la considération ou

non des effets 3D sur les pertes par courants de Foucault dans le stator en SMC.

Le développement des procédures de conception et le couplage entre les différents outils de

l’environnement de CAO, incluant les deux mécanismes de correction, ont été effectués en

prenant soin d’assurer une convergence rapide et efficace du processus de conception et

une meilleure précision. D’ailleurs, les validations de la méthodologie de conception

effectuées au niveau des chapitres 5 et 6 ont démontré que la convergence peut être atteinte

avec un faible nombre d’exécution du problème d’optimisation et d’itérations sur les

mécanismes de correction tout en assurant une bonne précision.

Les multiples outils de CAO développés ont été appliqués pour dimensionner plusieurs

structures de machines sans encoches à aimants à haute vitesse et pour effectuer différentes

Page 272: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Conclusion générale 250

analyses comparatives. Cela a été effectué pour deux cahiers des charges et différents types

de convertisseurs statiques. Pour le premier cahier des charges (application d’outillage

électrique), nous avons dimensionné, analysé et comparé plusieurs structures de moteurs

sans encoches à rotors interne et externe, à 2 pôles et à 4 pôles, à stators en SMC et en tôles

laminées et alimentés par des onduleurs de tension de type 120o et 180o. Des investigations

portant sur l’effet de l’utilisation du fil de Litz dans le bobinage et l’influence des

paramètres des SMC sur le dimensionnement optimal des machines ont aussi été effectuées.

Pour le deuxième cahier des charges, portant sur une application de génération à haute

vitesse, un alternateur sans encoches équipé d’un stator en SMC et connecté à un redresseur

à thyristors a été dimensionné en utilisant les deux méthodes de conception proposées.

Des résultats et des conclusions intéressants ont été obtenus à partir des différents

dimensionnements, études et comparaisons effectués tout au long de ce manuscrit. La

principale conclusion est que les SMC ont un potentiel pour la conception des machines

sans encoches à haute vitesse malgré leur faible perméabilité, particulièrement pour les

machines de faible puissance (faibles dimensions). Par comparaison avec les tôles,

l’utilisation des SMC dans les stators peut être intéressante, surtout dans le cadre d’une

production de grand volume avec les technologies de la métallurgie des poudres. De plus,

les SMC deviennent meilleurs pour des vitesses très élevées car les pertes par courants de

Foucault peuvent être plus faibles, notamment lorsque ces matériaux sont moins

conducteurs. Cependant, nous avons constaté que cette conclusion, généralement admise

dans la littérature, n’est pas toujours valide lorsque les dimensions et la puissance de la

machine sont plus importantes à cause de l’effet dimensionnel. Contrairement à la

perméabilité, la conductivité des SMC a une influence très importante sur les performances

des machines sans encoches, sur leur dimensionnement et sur le choix optimal du matériau

à utiliser. Cette influence dépend étroitement de la topologie et des dimensions globales du

circuit magnétique et de la puissance mise en jeu.

Les résultats ont démontré l’importance de tenir compte de l’influence des effets 3D sur les

pertes par courants de Foucault dans les stators SMC, mais aussi de la modélisation de tout

l’ensemble convertisseur-machine, de leurs interactions, du type de la commutation et de

type de la commande utilisée lors de la conception afin de réaliser un dimensionnement

Page 273: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Conclusion générale 251

optimal. Il a aussi été démontré que l’augmentation du nombre de pôles de 2 à 4 pôles peut

conduire à avoir des machines plus performantes et que l’utilisation du fil de Litz n’est pas

toujours bénéfique en haute vitesse. Le choix d’utiliser ou non ce type de fil doit faire

l’objet d’une comparaison entre l’influence du facteur de remplissage des encoches et celle

des pertes Joule supplémentaires sur les performances de la machine.

Au final, les différentes validations effectuées ont confirmées que l’ensemble des outils de

modélisation et de conception développés sont rapides, efficaces et performants. Ils nous en

permis de construire un environnement de CAO générique adapté à l’étude et à la

conception optimale des machines sans encoches à aimants à haute vitesse équipées avec

des matériaux massifs et conducteurs. L’utilisation des ces outils ne se limite pas seulement

à ce type de machines, mais elle peut être étendue aux machines sans encoches à basse et

moyenne vitesse et à d’autres dispositifs électromagnétiques tels que les freins par courants

de Foucault et les coupleurs électromagnétiques à aimants.

• Perspectives de recherche

Différentes améliorations et extensions peuvent être apportées aux travaux effectués que ce

soit au niveau de la modélisation ou au niveau de la conception optimale. Sur le plan de la

modélisation, les différents modèles développés pourraient être affinés afin de gagner en

précision et étendus pour inclure d’autres aspects. Ainsi, il serait intéressant d’améliorer le

modèle électromagnétique des machines sans encoches en considérant l’influence des effets

3D et du flux de fuite axial sur l’ensemble des performances telles que les inductions, le

couple, la fem, etc. Lorsque la machine est munie d’une frette conductrice et est couplée à

un convertisseur de courant, son modèle électrique pourrait aussi inclure les circuits

amortisseurs de la frette et du stator en SMC afin de tenir compte précisément de l’effet de

la commutation du courant.

Le modèle thermique des machines peut être également raffiné en améliorant la méthode de

calcul des pertes d’hystérésis dans les stators en SMC et en considérant l’influence des

effets 3D sur les pertes induites dans les aimants et dans la frette si elle est conductrice. Par

ailleurs, il serait possible d’établir un modèle mécanique plus réaliste qui tiendrait compte

de l’analyse dynamique et vibratoire du rotor de la machine en haute vitesse. Cette analyse

Page 274: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Conclusion générale 252

permettrait d’ajuster les dimensions du rotor afin d’éviter les fréquences naturelles critiques

et en conséquence sa destruction.

Sur le plan de la conception optimale, différentes perspectives peuvent être envisagées. Au

niveau de la méthode de conception, le mécanisme de correction 3D des pertes développé

pourrait être étendu afin de corriger le calcul analytique des différentes performances

évoquées précédemment en utilisant le calcul du champ en 3D. De plus, la même méthode

de correction développée pour le couplage machine-convertisseur de courant pourrait aussi

être appliquée dans le cas des onduleurs de type 120o et de type MLI. Puisque l’angle de

commande a une influence importante sur les pertes magnétiques dans le stator en SMC.

Une autre perspective consiste alors à effectuer le dimensionnement des machines en

déterminant, pour chaque vitesse, la loi de commande optimale qui permet par exemple de

maximiser le couple ou de minimiser les pertes. Il serait également possible de réaliser une

conception globale de tout le système en dimensionnant en même temps la machine, le

convertisseur avec sa commande et éventuellement le système de refroidissement. Ce

dimensionnement peut être effectué en adaptant les différentes parties du système et en

optimisant les performances globales telles que le rendement global, le coût total, etc.

Au niveau des validations et des études comparatives, il serait intéressant de dimensionner

des machines sans encoches en utilisant d’autres types d’aimantation des aimants (parallèle

ou de type Halbach) et d’effectuer des comparassions avec les machines dimensionnées

dans la thèse. Le dimensionnement des machines avec des frettes conductrices pourrait

aussi être envisagé. Dans ce cas, l’épaisseur de la frette pourrait être optimisée pour

améliorer la commutation du courant et les performances globales de l’ensemble

convertisseur-machine. Finalement, il serait judicieux de réaliser des prototypes pour les

différentes machines dimensionnées, ce qui permettrait de valider expérimentalement la

méthodologie de conception proposée ainsi que les différents modèles développés.

Page 275: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Bibliographie

[1] W. Fengxiang, Z. Wenpeng, Z. Ming, W. Baoguo, « Desgin consideration of high-speed PM generators for micro turbines », IEEE Proceedings of the International Conference on Power System Technology, vol. 1, pp. 158-162, Oct. 2002.

[2] J. Enon, B. Laporte, Les Machines Rapides, Journées Électrotechniques, Club EEA, Belfort 1993.

[3] M.A. Rahman, A. Chiba, T. Fukao, « Super high speed electrical machines – Summary », IEEE Power Engineering Society General Meeting, vol. 2, pp. 1272-1275, June 2004.

[4] A. Arkkio, T. Jokinen, E. Lantto, « Induction and permanent-magnet synchronous machines for high-speed applications », Proceedings of the Eighth International Conference on Electrical Machines and Systems, vol. 2, pp. 871-876, Sep. 2005.

[5] H. Polinder, On the Losses in a High-Speed Permanent Magnet Generator with Rectifier, PhD Thesis, Delft University of Technology, Netherlands, May 1998.

[6] O. Aglén, « A high-speed generator for microturbines », Proceedings of the International Conference on Electrical engineering and Technology, University of Dar es Salaam, 2001.

[7] I. Takahashi, T. Koganezawa, G. Su, K. Ohyama, « A super high speed PM motor drive system by a quasi-current source inverter », IEEE Transactions on Industry Applications, vol. 30, no. 3, May/June 1994.

[8] C. Schätzer, A. Binder, W. Muller, « Vector optimization of a high-speed drive using two-dimensional numerical field calculation », The International Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL), vol. 19, pp. 646-650, 2000.

[9] N. Bianchi, S. Bolognani, F. Luise, « Analysis and design of a PM brushless motor for high-speed operations », IEEE Transactions on Energy Conversion, vol. 20, no. 3, pp. 629-637, Sep. 2005.

[10] F. Dubas, C. Espanet, A. Miraoui, « Design of a high-speed permanent magnet motor for the drive of a fuel cell air-compressor », IEEE Conference on Vehicle Power and Propulsion, Sep. 2005.

[11] W.L. Soong, G.B. Kliman, R.N. Johnson, R. White, J. Miller, « Novel high speed induction motor for a commercial centrifugal compressor », IEEE Transactions on Industry Applications, vol. 36, no. 3, pp. 706-713, May/June 2000.

Page 276: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Bibliographie 254

[12] S.M. Jang, H.W. Cho, S.K. Choi, « Design and analysis of a high-speed brushless DC motor for centrifugal compressor », IEEE Transactions on Magnetics, vol. 43, no. 6, pp. 2573-2575, June 2007.

[13] Y.K. Kim, M.C. Choi, K.H Suh, Y.C. Ji, D.S. Wang, « HS Induction motor development for small centrifugal compressor », Proceedings of the International Conference on Electrical Machines and Systems, vol. 2, pp. 891-894, Aug. 2001.

[14] H.W. Cho, S.M. Jang, S.K. Choi, « A design approach to reduce rotor losses in high-speed permanent magnet machine for turbo-compressors », IEEE Transactions on Magnetics, vol. 42, no. 10, pp. 3521-3523, Oct. 2006.

[15] J. Pyrhonen, J. Nerg, P. Kurronen, U. Lauber, « High-speed high-output solid rotor induction-motor technology for gas compression », IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 272-280, Jan. 2010.

[16] F. Wang, M. Zong, W. Zheng, E. Guan, « Design features of high speed PM machines », Proceedings of the International Conference on Electrical Machines and Systems, vol. 1, pp. 66-70, Nov. 2003.

[17] N. Bianchi, S. Bolognani, F. Luise, « High speed drive using a slotless PM motor », IEEE Transactions on Power Electronics, vol. 21, no. 4, pp. 1083-1090, July 2006.

[18] M.I. Lamghari-Jamal, J. Fouladgar, E.H. Zaim and D. Trichet, « A magneto-thermal study of a high-speed synchronous reluctance machine », IEEE Transactions on Magnetics, vol. 42, no. 4, April 2006.

[19] R.M. Calfo, J.A. Fulmer, J.E. Tessaro, « Generator for use in electric marine ship propulsion systems », IEEE Power Engineering Society Summer Meeting, vol. 1, pp. 254-259, July 2002.

[20] K. R. Pullen, M. R. Etemad, A. Fenocchi, « The high speed axial flux disc generator – Unlocking the potential of the automotive gas turbine », IEEE Colloquium on Machines and Drives for Electric and Hybrid Vehicles, pp. 8/1-8/4, June 1996.

[21] H. Polinder, M. J. Hoeijmakers, « Effect of a shielding cylinder on the rotor losses in a rectifier-loaded PM machine », IEEE Proceedings of the International Conference on Industry Applications, vol. 1, pp. 163-170, Oct. 2000.

[22] G. Filliau, A. Bondu, L. Mazodier, « Le navire tout électrique, propulsion et production d’énergie », Technique de l’Ingénieur, D5610.

[23] S.R. MacMinn, W.D. Jones, « A very high speed switched-reluctance starter-generator for aircraft engine applications », IEEE Proceedings-Aerospace and electronics Conference, ANECON, vol. 4, pp. 1758-1764, May 1989.

[24] P.H. Mellor, S.G. Burrow, T. Sawata, M. Holme, « A wide-speed-range hybrid variable-reluctance/permanent-magnet generator for future embedded aircraft generation systems », IEEE Transactions on Industry Applications, vol. 41, no. 2, pp. 551-556, March/April 2005.

[25] P.P. Acarnley, B.C. Mecrow, J.S. Burdess, J.N. Fawcett, J. G. Kelly, P.G. Dickinson, « Design principles for a flywheel energy store for road vehicles », IEEE Transactions on Industry Applications, vol. 32, no. 6, Nov/Dec. 1996.

Page 277: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Bibliographie 255

[26] S.R. Holm, Modelling and Optimization of a Permanent Magnet Machine in a Flywheel, PhD Thesis, Delft University of Technology, Netherlands, 2003.

[27] F. Sahin, Design and Development of a High-Speed Axial-Flux Permanent Magnet Machine, PhD Thesis, Eindhoven University of Technology, Netherlands, May 2001.

[28] B.H. Kenny, P.E. Kascak, R. Jansen, T. Dever, W. Santiago, « Control of a high-speed flywheel system for energy storage in space applications », IEEE Transactions on Industry Applications, vol. 41, no. 4, pp. 1029-1038, July/Aug. 2005.

[29] W. Wang, D. Zhong, H. Hofmann, J. Noland, C.E. Bakis, « Design of high-speed permanent magnet machines with anisotropic electromagnetic and structural continuum formulations », IEEE Proceedings of the International Conference on Electrical Machines and Drives, vol. 1, pp. 37-43, June 2003.

[30] G.A.J. Amaratunga, P.P. Acarnley, P.G. Mclaren, « Optimum magnetic circuit configurations for permanent magnet aerospace generators », IEEE Transactions on Aerospace and Electronic Systems, vol. AES-21, no. 2, pp. 230-255, March 1985.

[31] B.P. James, B.A.T. Al Zahawi, « A high speed alternator for a small scale gas turbine CHP unit », IEEE Proceedings of the International Conference on Electrical Machines and Drives (Conf. Publ. No. 412), pp. 281-285, Sep. 1995.

[32] J. Huppunen, High-Speed Solid-Rotor Induction Machine – Electromagnetic Calculation and Design, PhD Thesis, Lappeenrantaensis University of Technology, Finland, 2004.

[33] J.C. Rama, A. Giesecke, « High-speed electric drives: Technology and opportunity », IEEE Industry Applications Magazine, pp. 48-55, 1997.

[34] Y. Alhassoun, Étude et mise en œuvre de machines à aimantation induite fonctionnant à haute vitesse, Thèse de l’Institut National Polytechnique de Toulouse, France, 2005.

[35] T. Humiston, P. Pillay, J. Faiz, « The switched reluctance motor drive for distributed generation », IEEE AFRICON, vol. 2, pp. 669-674, Sep/Oct. 1999.

[36] Z. Kolondzovski, Thermal and Mechanical Analyses of High-Speed Permanent-Magnet Electrical Machines, PhD Thesis, Aalto University, Finland, 2010.

[37] L. Zheng et all., « Analysis and test of a high-speed axial flux permanent magnet synchronous motor », IEEE Proceedings of the International Conference on Electrical Machines and Drives, pp. 119-124, 2005.

[38] T.S. El-Hasan, P.C.K. Luk, F.S. Bhinder, M.S. Ebaid, « Modular Design of High-Speed Permanent Magnet Axial-Flux Generators », IEEE Transactions on Magnetics, vol. 36, no. 5, pp. 3558-3561, Sep. 2000.

[39] Z.Q. Zhu, K. Ng, D. Howe, « Design and analysis of high-speed brushless permanent magnet motors », IEEE Proceedings of the International Conference on Electrical Machines and Drives, pp. 381-385, Sep. 1997.

[40] S.M. Jang, S.S. Jeong, D.W. Ryu, S.K. Choi, « Design and analysis of a high speed slotless PM machine with Halbach array », IEEE Transactions on Magnetics, vol. 37, no. 4, pp. 2827-2830, July 2001.

Page 278: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Bibliographie 256

[41] S.R. Holm, H. Polinder, J.A. Ferreira, M.J. Hoeijmakers, P. van Gelder, R. Dill, «Analytical calculation of the magnetic field in electrical machines due to the current density in an airgap winding », IEEE Proceedings of the International Conference on Electrical Machines, ICEM, Brugge, Belgium, Aug. 2002.

[42] Y.S. Chen, Z.Q. Zhu, D. Howe, « Optimisation of slotless brushless permanent magnet machines », IEEE Proceedings of the International Conference on Electrical Machines and Drives, vol. TB2, pp. 5.1-5.3, May 1997.

[43] J. Engström, « Design of slotless PM-motor for a screw compressor drive », IEEE Proceedings of the International Conference on Electrical Machines and Drives, (Conf. Publ. No. 468), pp. 154-158, 1999.

[44] T. Kosaka, N. Matsui, T. Shikayama, R. Oguro, « Drive characteristics of slotless PM motors », IEEE Proceedings of the International Conference on Industry Applications, vol. 2, pp. 894-899, 2000.

[45] M. Sanada, S. Morimoto, « Efficiency improvement in high speed operation using slot-less configuration for permanent magnet synchronous motor », IEEE Power Engineering Society General Meeting, pp. 1-7, June 2007.

[46] E. Hélène, A. Tzvetkov, « S2M high speed motors for turbomachines », Compressors Users and Manufacturers Symposium, St-Petersbourg, May 2006.

[47] E.C. Lovelace, T.M. Jahns, T.A. Keim, J.H. Lang, « Mechanical design considerations for conventionally laminated, high-speed, interior PM synchronous machine rotors », IEEE Transactions on Industry Applications, vol. 40, no. 3, pp. 806-812, May/June 2004.

[48] A.S. Nagorny, N.V. Dravid, R.H. Jansen, B.H. Kenny, « Design aspects of a high speed permanent magnet synchronous motor/generator for flywheel applications », IEEE Proceedings of the International Conference on Electrical Machines and Drives, pp. 635-641, 2005.

[49] M. Hippner, R.G. Harley, « Looking for an optimal rotor for high speed permanent magnet synchronous machine », IEEE Conference on Industry Applications, Annual Meeting, vol. 1, pp. 265-270, 1992.

[50] A. Binder, T. Schneider, M. Klohr, « Fixation of buried and surface-mounted magnets in high-speed permanent-magnet synchronous machines », IEEE Transactions on Industry Applications, vol. 42, no. 4, pp. 1031-1037, July-Aug. 2006.

[51] O. Aglén, A. Andersson, « Thermal analysis of a high speed generator », IEEE Conference on Industry Applications, Annual Meeting, vol.1, pp. 547-554, Oct. 2003.

[52] J.L.F. Van der Veen, L.J.J. Offringa, A.J.A. Vandenput, « Minimising rotor losses in high-speed high-power permanent magnet synchronous generators with rectifier load», IEEE Proceedings-Electric Power Applications, vol. 144, no. 5, pp. 331-337, Sep. 1997.

[53] F. Zhou, J. Shen, W. Fei, R. Lin, « Study of retaining sleeve and conductive shield and their influence on rotor loss in high-speed PM BLDC motors », IEEE Transactions on Magnetics, vol. 42, no. 10, pp. 3398-3400, Oct. 2006.

Page 279: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Bibliographie 257

[54] M.W. Degner, R. Van Maaren, A. Fahim, D.W. Novotny, R.D. Lorenz, C.D. Syverson, « A Rotor lamination design for surface permanent magnet retention at high speeds », IEEE Transactions on Industry Applications, vol. 32, no. 2, pp. 380-385, March/April 1996.

[55] Z.Q. Zhu, K. Ng, N Schofield, D. Howe, « Improved analytical modeling of rotor eddy current loss in brushless machines equipped with surface-mounted permanent magnets », IEE Proceedings-Electric Power Applications, vol. 151, no.6, pp. 641-650, Nov. 2004.

[56] N. Bianchi, S. Bolognani, F. Luise, « Potentials and limits of high-speed PM motors», IEEE Transactions on Industry Applications, vol. 40, no. 6, pp. 1570-1578, Nov./Dec. 2004.

[57] T. Jokinen, J. Larjola, I. Mikhaltsev, « Power unit for research submersible », Proceedings of the International Conference on Electric Ship, pp. 114-118, Sep.1998.

[58] J. Verdun, J.C. Bavay, « Alliages fer-silicium », Technique de l’Ingénieur, D1120, 1991.

[59] G. Couderchon, « Alliages magnétiques doux », Technique de l’Ingénieur, M350, 1998.

[60] G. Couderchon, « Alliages fer-nickel et fer-cobalt. Propriétés magnétiques », Technique de l’Ingénieur, D2130, 1994.

[61] D.C. Jiles, Introduction to Magnetism and Magnetic materials, Chapman & Hall, UK, 1991.

[62] ARCELOR, http://www.arcelor.com.

[63] JEF Steel Corporation, http://www.jfe-steel.co.jp.

[64] Nippon Steel Corporation, http://www.nsc.co.jp/en/.

[65] H. Hajji, K. Okada, T. Hiratani, M. Abe, M. Ninomiya, « Magnetic properties and workability of 6.5% Si steel sheet », Journal of Magnetism and Magnetic Materials, vol. 160, pp.109-114, 1996.

[66] J. Cros, J. Perin, P. Viarouge, « Soft magnetic composites for electromagnetic components in lighting applications », IEEE Conference on Industry Applications, 37th IAS Annual Meeting, vol. 1, pp. 342-347, Oct. 2002.

[67] Quebec Metal Powders, Canada, http://www.qmp-powders.com.

[68] C. Gelinas, S. Pelletier, P. Lemieux, L. Azzi, « Properties and Processing of Improved SMC Materials », PM2TEC Conference, Montreal, June 2005.

[69] Y. Huang, Q. Hu, J. Zhao, J. Zhu, Y. Guo, « Comparative study of high-speed PM motors with laminated steel and soft magnetic composite cores », IEEE Conference on Industry Applications, 42th IAS Annual Meeting, pp. 76-72, 2007.

[70] J.J.H. Paulides, G.W. Jewell, D. Howe, « An evaluation of alternative stator lamination materials for a high-speed, 1.5MW,permanent magnet generator », IEEE Transactions on Magnetics, vol. 40, no. 4, pp. 2041-2043, July 2004.

Page 280: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Bibliographie 258

[71] K. Atallah, D. Howe, P.H. Mellor, « Design and analysis of multi-pole halbach (self-shielding) cylinder brushless permanent magnet machines », IEEE Proceedings of the International Conference on Electrical Machines and Drives, no. 444, pp. 376-380, Sep. 1997.

[72] C. Gélinas, F. Chagnon, S. Pelletier, « Development of iron-resin composite materials for soft magnetic applications », Advances in Powder Metallurgy and Particulate Materials, MPIF Princeton, NJ, 1996, pp 20-85 to 20-97.

[73] C. Gélinas, D. Brydges, « Insulated iron powders for automotive applications », Society of Automotive Engineers, paper 2003-01-0447, Feb. 2003.

[74] C. Cyr, Modélisation et caractérisation des matériaux magnétiques composites doux utilisés dans les machines électriques, thèse de doctorat, Université Laval, 2007.

[75] P. Viarouge, J. Cros, I. Haouara, « Conception des machines électriques avec des matériaux composites fer-résine », Revue internationale de génie électrique, vol.5, no. 2, pp. 299-310, 2002.

[76] G.S. Liew, N. Ertugrul, W.L. Soong, D.B. Gehlert, « Analysis and performance evaluation of an axial-field brushless PM machine utilising soft Magnetic composites», IEEE Proceedings of the International Conference on Electrical Machines and Drives, vol. 1, pp. 153-158, May 2007.

[77] W.M. Arshad, Application of SMC Iron Powder Materials in Electrical Machines, Thesis Report, Royal Institute of Technology, Stockholm, 1998.

[78] C. Gélinas, P. Viarouge, J.Cros, « Use of soft magnetic composite materials in industrial applications », PM2004 World Congress and Exhibition, Vienna, Austria, Oct. 2004.

[79] J. Cros, P. Viarouge, « New structures of polyphase claw-pole machines », IEEE Transactions on Industry Applications, vol. 40, no. 1, pp. 113-120, Jan.-Feb. 2004.

[80] K.M. Rahman, « Application of direct-drive wheel motor for fuel cell electric and hybrid electric vehicle propulsion system », IEEE Transactions on Industry Applications, vol. 42, no. 5, pp. 1185-1192, Sep.-Oct. 2006.

[81] Y. Huang, J. Zhu, Y. Guo, Q. Hu, « Development of a high-speed claw pole motor with soft magnetic composite core », IEEE Proceedings of the International Conference on Electrical Machines and Drives, vol. 2, pp. 1564-1568, May 2007.

[82] F. Leprince-Ringuet, «Aimants permanents : matériaux et applications », Technique de l’Ingénieur, traité Génie électrique, D2100, 1996.

[83] Permanent magnets catalogs, Chen Yang Technologies, Germany, www.cy-magnetics.com.

[84] Product catalog, « Rare-earth permanent magnets », Vacuumschmelze, Germany, www.vacuumschmelze.com.

[85] P. Brissonneau, « Aimants permanents, principes et circuits magnétiques », Technique de l’Ingénieur, traité Génie électrique, D2090, 1990.

Page 281: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Bibliographie 259

[86] G.R. Slemon, « On the design of high performance surface mounted PM motors », IEEE Transactions on Industry Applications, vol. 1, Jan-Feb. 1994.

[87] G. Grelly, « Pertes dans les machines tournantes », Technique de l’Ingénieur, D3450.

[88] L. Zheng et all., « Design of a super-high speed permanent magnet synchronous motor for cryogenic applications », IEEE Proceedings of the International Conference on Electrical Machines and Drives, pp. 874-881, May 2005.

[89] Y. Chen, J. Shen, Z. Fang, « Topology and preliminary design of slotless brushless DC motor », IEEE International Conference Record on Electrical Machines and Drives, pp. WB2/7.1-WB2/7.3, May 1997.

[90] B. Hague, Electromagnetic Problems in Electrical Engineering», Oxford University Press, London, UK, 1929.

[91] N. Boules, « Two-dimensional field analysis of cylindrical machines with permanent magnet excitation », IEEE Transactions on Industry Applications, vol. IA-20, pp. 1267-1277, 1984.

[92] B. Nogarede, Étude de moteurs sans encoches aimants permanents de forte puissance à basse vitesse, Thèse de l’Institut National Polytechnique -Toulouse, France, 1990.

[93] K. Atallah, Z.Q. Zhu, D. Howe, T.S. Birch. « Armature reaction field and winding inductances of slotless permanent-magnet brushless machines », IEEE Transactions on Magnetics, vol. 34, no. 5, pp. 3737-3744, Sep. 1998.

[94] B. Davat, Modélisation des dispositifs électromagnétiques, Thèse de l’Institut National Polytechnique de Toulouse, France, 1984.

[95] A. Chebak, P. Viarouge, J. Cros, « Analytical model for design of high-speed slotless brushless machines with SMC stators », IEEE Proceedings of the International Conference on Electrical Machines and Drives, vol. 1, pp. 159-164, May 2007.

[96] J. Lammeraner, Eddy Currents, Iliffe Books, London, UK, 1966.

[97] N. Boules, « Prediction of no-load flux density distribution in permanent magnet machines », IEEE Transactions on Industry Applications, vol. IA-21, no. 4, pp. 633-643, May/June 1985.

[98] Z.Q. Zhu, D. Howe, C.C. Chan, « Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines », IEEE Transactions on Magnetics, vol. 38, no. 1, pp. 229-238, Jan. 2002.

[99] F. Deng, « Commutation-caused eddy-current losses in permanent-magnet brushless DC motors », IEEE Transactions on Magnetics, vol. 33, no. 5, pp. 4310-4318, Sep. 1997.

[100] S.M. Abu Sharkh, M.R. Harris, N. Taghizadeh Irenji, « Calculation of eddy-current loss in high-speed PM alternators », Proceedings of the Eighth International Conference on Electrical Machines and Drives, pp. 170-174, Sept. 1997.

[101] S.M. Abu Sharkh, N. Taghizadeh Irenji, M.R. Harris, « Effect of power factor on rotor loss in high-speed PM alternators », IEEE Proceedings of the International Conference on Electrical Machines and Drives, pp. 346–350, Sept. 1999.

Page 282: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Bibliographie 260

[102] Z.Q. Zhu, D. Howe, K. Ng, « Open-circuit field distribution in a brushless motor with diametrically magnetised PM rotor, accounting for slotting and eddy current effects », IEEE Transactions on Magnetics, vol. 32, no. 5, pp. 5070-5072, Sept. 1996.

[103] K. Atallah, D. Howe, P.H. Mellor, D.A. Stone, « Rotor loss in permanent-magnet brushless AC machine », IEEE Transactions on Industry Applications, vol. 36, no. 6, pp. 1612-1618, Nov./Dec. 2000.

[104] Z.Q. Zhu, D. Howe, K. Ng, N. Schofield, « Analytical prediction of rotor eddy current loss in brushless machines equipped with surface-mounted permanent magnets, Part II: Accounting for eddy current reaction field », IEEE Proceedings of the 5th International Conference on Electrical Machines and Systems, vol. 2, pp. 810-813, Aug. 2001.

[105] Z.J. Liu, K.J. Binns, T.S. Low, « Analysis of eddy current and thermal problems in permanent magnet machines with radial-field topologies », IEEE Transactions on Magnetics, vol. 31, no. 3, pp. 1912-1915, May 1995.

[106] M. Markovic,Y. Perriard, « An analytical determination of eddy-current losses in a configuration with a rotating permanent magnet », IEEE Transactions on Magnetics, vol. 43, no. 8, pp. 3380-3386, Aug. 2007.

[107] A.D. Koné, Contribution à la conception des actionneurs électriques par formulation en termes d’optimisation, Thèse de l’Institut National Polytechnique de Toulouse, France, 1993.

[108] J.C. Sabonnadière, J.L Coulomb, « Calcul des Champs Électromagnétiques », Technique de l’Ingénieur, D3020.

[109] J.P.A. Bastos, N. Sadowski, Electromagnetic Modeling by Finite Element Methods, Santa Catarina Federal University, Florianopolis, Brazil.

[110] M. Markovic,Y. Perriard, « Analytical solution for rotor eddy-current losses in a slotless permanent-magnet motor: The case of current sheet excitation », IEEE Transactions on Magnetics, vol. 44, no. 3, pp. 386-393, March 2008.

[111] Gordon R. Slemon, Electric Machines and Drives, Addison-Wesley, Reading, Massachusetts, 1992.

[112] M.N.O. Sadiku, P.J. Tegopoulos, E.E. Kriezis, Numerical Techniques in Electromagnetics, CRC Press, 2001.

[113] J. Engström, « Inductance of slotless machines », IEEE Nordic Workshop on Power and Industrial Electronics, Aalborg, Denmark, June 2002.

[114] J. Chatelain, Machines Électriques, traité d’électricité, d’électronique et d’électrotechnique, no 10, vol. 1, 1983.

[115] M. Liwschitz, Calcul des Machines Électriques, Éditions Spes Lausanne, vol. 1, 1967.

[116] D.C. Hanselman, Brushless Permanent Magnet Motor Design, McGraw-Hill, Inc, 1994.

Page 283: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Bibliographie 261

[117] G.W. Carter, The Electromagnetic Field in its Engineering Aspects, Longmans, 2nd edition, 1967.

[118] J. Cros, P. Viarouge, « Modelling of the coupling of several electromagnetic structures using 2D field calculations », IEEE Transactions on Magnetics, vol. 34, no. 5, pp. 3178-3181, Sep 1998.

[119] A. Chebak, P. Viarouge, J. Cros, « Analytical computation of the full load magnetic losses in the soft magnetic composite stator of high-speed slotless PM machines », IEEE Conference on Electromagnetic Field Computation, Greece, May 2008.

[120] A. Chebak, P. Viarouge, J. Cros, « Optimal design of a high-speed generation system using a slotless PM machine with SMC stator yoke connected to a rectifier », ELECTRIMACS08 Conference, Quebec, Canada, June 2008.

[121] A.A. Arkadan, R. Vyas, J.G. Vaidya, M.J. Shah, « Effect of toothless design on core stator conductors eddy current losses in permanent magnet generators », IEEE Transactions on Energy Conversion, vol. 7, no. 1, pp. 231-237, March 1992.

[122] E. Spooner, B.J. Chalmers, « Torus: A slotless, toroidal stator permanent magnet generator », IEEE Proceedings-B on Power Electric Applications, vol. 6, pp. 497-506, Nov. 1992.

[123] G. Bertotti, « General properties of power losses in soft ferromagnetic materials », IEEE Transactions on Magnetics, vol. 24, pp. 621-630, 1988.

[124] K. Atallah, Z.Q. Zhu, D. Howe, « An improved method for predicting iron losses in brushless permanent magnet DC », IEEE Transactions on Magnetics, vol. 28, no. 5, pp. 2997-2999, Sep. 1992.

[125] G. Slemon, X. Liu, « Core losses in permanent motors », IEEE Transactions on Magnetics, vol. 26, pp. 1653-1655, Sep. 1990.

[126] S. Clénet, J. Cros, F. Piriou, P. Viarouge, L.P. Lefebvre, « Determination of losses local distribution for transformer optimal designing », COMPEL Int. Journal Comp. & Math. in Electrical Engineering, vol. 20/1, pp.187-204, 2000.

[127] A. Chebak, P. Viarouge, J. Cros, « Analytical computation of the full load magnetic losses in the soft magnetic composite stator of high-speed slotless PM machines », IEEE Transactions on Magnetics, vol. 45, no. 3, pp. 952-955, March 2009.

[128] P.J. Tegopoulos, E. E. Kriezis, Eddy Currents in Linear Media, Elsevier, 1985.

[129] D. Ishak, Z.Q. Zhu, D. Howe, « Eddy-current loss in the rotor magnets of permanent-magnet brushless machines having a fractional number of slots per pole », IEEE Transactions on Magnetics, vol. 41, no. 9, pp. 2462-2469, Sep. 2005.

[130] H. Polinder, M.J. Hoeijmakers, « Eddy-current losses in the segmented surface-mounted magnets of a PM machine », IEEE Proceeding-Electric Power Applications, vol. 146, no. 3, pp. 261-266, May 1999.

[131] M. Lajoie-Mazenc, P. Viarouge, « Alimentation des machines synchrone », Technique de l’Ingénieur, traité Génie électrique, D3630.

Page 284: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Bibliographie 262

[132] J. Saari, Thermal Analysis of High-Speed Induction Machines, PhD Thesis, Acta Polytechnica Scandinavica, Helsinki University of Technology, Finland, 1998.

[133] Y. Yamada, « Torque resistance of a flow between rotating co-axial cylinders having axial flow », Bulletin of JSME, vol. 5, no. 20, pp. 634–642, 1962.

[134] J.E. Vrancik, « Prediction of windage power loss in alternators », Lewis Research center, NASA, Ohio, Oct. 1968.

[135] O. Aglén, « Calculation and thermal analysis of a high-speed generator », IEEE Proceedings of the International Conference on Electrical Machines and Drives, vol.2, pp. 1117-1123, June 2003.

[136] F. Magnussen, On Design and Analysis of Synchronous Permanent Magnet machines for Field-weakening Operation in Hybrid Electric Vehicles, PhD Thesis, Royal Institute of Technology, Sweden 2004.

[137] E. Gudefin, « Détermination des champs magnétiques, Circuits magnétiques », Technique de l’Ingénieur, D420.

[138] Y. Guo, J.G. Zhu, J. Zhong, H. Lu, J.X. Jin, « Measurement and modelling of rotational core losses of soft magnetic materials used in electrical machines: a review», IEEE Transactions on Magnetics, vol. 44, no. 2, pp. 279-291, Feb. 2008.

[139] A. Chebak, C. Cyr, P. Viarouge, J. Cros, « Mesure du couple de pertes magnétiques dans les machines utilisant des matériaux composites doux », Conférence NUMELEC’06, Lille, France, Décembre 2006.

[140] F.M. Smits, « Measurement of sheet resistivities with the four-point probe », Bell System Technical Journal, vol. 37, May 1958.

[141] A. Chebak, P. Viarouge, J. Cros, « Optimal design of a high-speed slotless permanent magnet synchronous generator with soft magnetic composite stator yoke and rectifier load », Transactions of Mathematics and Computers in Simulation (IMACS), Elsevier, vol. 8, no. 2, pp. 239-251, Oct. 2010.

[142] N. Tadrist, H. Zeroug and B. Boukais, « Theoretical and experimental assessment of control strategies performances of a BDCM for industrial applications », Journal of electrical systems, Special Issue no. 01, pp. 36-41, Nov 2009.

[143] E. Starschich, A. Muetze, « Comparison of the performances of different geared brushless-DC motor drives for electric bicycles », IEEE Proceedings of the International Conference on Electrical Machines and Drives, IEMDC07, Antalya, Turkey, May. 2007, pp. 140-147.

[144] P. Pillay, R. Krishnan, « Modeling, simulation, and analysis of permanent-magnet motor drives, Part II: The brushless DC motor drive », IEEE Transactions on Industry Applications, vol. 25, no. 2, pp. 274-279, April 1989.

[145] M.S. Woo, Y.H. Yoon, S.J. Lee, C.Y. Won, Y.Y. Choe, « Comparison of characteristics using two Hall-ICs and one Hall-IC for 3 phase slotless PM brushless DC motor », The 30th Annual Conference of the IEEE Industrial Electronics Society, vol. 2, pp. 1380-1384, Nov. 2004.

Page 285: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Bibliographie 263

[146] T.S. Hui, K.P. Basu, V. Subbiah, « Permanent magnet brushless motor control technique », Proceedings of the National Power and Energy Conference (PECon), pp. 133-138, Dec 2003.

[147] S.D. Sudhoff, P.C. Krause, « Operating modes of the brushless DC motor with a 120o inverter », IEEE Transactions on Energy conversion, vol. 5, no. 3, pp. 558-564, Sep. 1990.

[148] K.H. Kim, M.J. Youm, « Performance comparison of PWM inverter and variable DC link inverter schemes for high-speed sensorless control of BLDC motor », Electronic Letters, vol. 38, no. 21, pp. 1294-1295, Oct 2002.

[149] C. Zwyssig, M. Duerr, D. Hassler, J.W. Kolar, « An ultra-high speed, 50000rpm, 1kW electrical drive system », IEEE Transactions on Industrial Electronics, vol. 55, no. 2, pp. 577–585, Feb. 2008.

[150] N. Matsui, « Sensorless PM brushless DC motor drives », IEEE Trans. on Industrial Electronics, vol. 43, no. 2, pp. 300-308, April 1996.

[151] M. Leroy, Étude et mise au point de motoventilateurs à hautes performances pour l’aéronautique, Thèse de l’institut nationale polytechnique - Toulouse, France, 1995.

[152] C. Fleury, Modélisation de l’entraînement électrique synchrone auto-commuté, Thèse de l’école polytechnique fédérale de Lausanne, Suisse, 1995.

[153] Y. Liu, Z.Q. Zhu, D. Howe, « Direct torque control of brushless DC drives with reduced torque ripple », IEEE Transactions on Industry Applications, vol. 41, no. 2, pp. 599-608, April 2005.

[154] A. Hodder, Y. Perriard, « Analytical modelling of a BLDC drive with 120o/180o commutation », ELECTRIMACS08 Conference, Quebec, Canada, June 2008.

[155] B.P. James, B.A.T. Al Zahawi, F. Starr, « High speed turboalternator for domestic combined heat and power unit », IEEE Conference on Electric Machines and Drives (Conf. Publ. No. 444), pp. 215-218, Sep. 1997.

[156] G.O. Cimuca, Système Inertiel de Stockage d’Énergie Associé à des Générateurs Éoliens, Thèse de l’Institut Supérieure d’Art et Métiers, France, 2005.

[157] S. Astier, Contribution à la Recherche de Critères d’Adaptation des Machines Excitées par Aimants Permanents à l’Alimentation par Convertisseur Statique, Thèse de l’Institut National Polytechnique de Toulouse, 1979.

[158] C. Schätzer, A. Binder, « Design optimization of a high-speed permanent magnet machine with the VEKOPT algorithm », IEEE conference on Industry Applications, vol. 1, pp. 439-444, Oct. 2000.

[159] K.H.J. Buschow, Conicise Encyclopedia of Magnetic and Superconducting Materials, Elsevier, 2005.

[160] MWS Wire industries, USA, www.mwswire.com.

[161] SKF (fournisseur mondial de roulements), www.skf.com.

[162] New England Wire Technologies, USA, www.newenglandwire.com.

Page 286: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

ANNEXE A

A ÉLÉMENTS DE CALCUL ANALYTIQUE DU

CHAMP

Cette annexe présente les expressions des coefficients de Fourier issus de la décomposition

harmonique des composantes radiale et tangentielle du vecteur d’aimantation des aimants

permanents. Il présente aussi le calcul des facteurs de bobinage correspondants aux

harmoniques d’espace de rang k utilisés dans la modélisation de la répartition spatiale du

bobinage.

A.1 Coefficients de Fourier des composantes du vecteur d’aimantation

Les coefficients de Fourier, sous formes réelles, utilisés dans les séries de Fourier des

composantes radiale et tangentielle du vecteur d’aimantation sont donnés par :

, , ,1

, , ,1

4

4

q

r k r k nnq

k k nn

pM E

pM Eθ θ

π

π

=

=

=

=

où q représente le nombre de blocs d’aimant élémentaires constituant un demi-pôle.

Pour un bloc n à aimantation radiale ou parallèle, les coefficients Er,k,n et Eθ,k,n sont

exprimés par les expression suivantes :

Page 287: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Annexe A 265

• Bloc à aimantation radiale :

( ),, , ,

, ,

2 sin cos2

0

m nnr k n m n

k n

ME kp kpkp

εβ

=

=

• Bloc à aimantation parallèle :

- Si kp≠1:

( ) ( )

( ) ( )

( ) ( )

( ) ( )

,, , , ,

,, ,

,, , , ,

,, ,

sin 1 cos1 2

sin 1 cos1 2

sin 1 cos1 2

sin 1 cos1 2

m nnr k n m n m n

m nnm n m n

m nnk n m n m n

m nnm n m n

ME kp kpkp

M kp kpkp

ME kp kpkp

M kp kpkp

θ

εβ α

εβ α

εβ α

εβ α

= + − +

+ − + −

= + − +

− − + −

- Si kp=1:

( ) ( ) ( )

( ) ( ) ( )

, , , , , , , ,

, , , , , , , ,

sin cos cos2 2

sin cos cos2 2

n nr k n m n m n m n m n m n m n

n nk n m n m n m n m n m n m n

M ME

M MEkp kpθ

ε β α ε β α

ε β α ε β α

= − + + = − − +

A.2 Calcul des facteurs de bobinage

Les facteurs de bobinage simplifient la représentation de la distribution des enroulements

en séries de Fourier. Comme énoncé dans la partie 2.4.2 du 2ème chapitre, le facteur de

bobinage kw,k d’un enroulement pour un harmonique d’espace k peut être calculé en

introduisant la contribution de quatre facteurs : facteur de distribution de l’enroulement

kw,dist,k, facteur de raccourcissement kw,racc,k, facteur d’encochage kw,enc,k et facteur

d’inclinaison kw,inc,k :

, , , , , , , , ,. . .w k w dist k w racc k w enc k w inc kk k k k k=

Page 288: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Annexe A 266

Si on considère une machine électrique possédant un nombre d’encoches par pôle par phase

npp entier, on peut définir ces différents facteurs comme suit [5], [26] :

• Facteur de distribution kw,dist,k

Ce facteur quantifie l’effet de la distribution des conducteurs d’un enroulement dans les

encoches de la machine. Il est donné par :

, ,

sin2

sin2 .

w dist k

pppp

kmkkn

m n

π

π

=

où m est le nombre de phases de la machine.

• Facteur de raccourcissement kw,racc,k

Ce facteur est introduit quand on raccourcit l’ouverture des spires constituant une bobine

d’un enroulement. Il se calcule par :

, ,1cos2w racc k racck kpθ =

θracc est l’angle mécanique de raccourcissement qui peut être calculé par :

( )1 /racc raccR pθ π= − où Racc est le coefficient de raccourcissement.

• Facteur d’encochage kw,enc,k

C’est un facteur qui décrit la contribution de la largeur d’une encoche au facteur de

bobinage. Il est exprimé en fonction de l’angle mécanique d’ouverture des encoches θe par :

, ,

1sin2

12

e

w enc k

e

kpk

kp

θ

θ

=

• Facteur d’inclinaison kw,inc,k

L’inclinaison des encoches du stator par rapport au rotor est utilisée dans le cas où on veut

réduire le couple de détente pour une machine avec encoches. L’effet de cette inclinaison

Page 289: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Annexe A 267

sur le flux est pris en compte par le facteur d’inclinaison dont l’expression est semblable à

celle du facteur d’encochage :

, ,

1sin2

12

inc

w inc k

inc

kpk

kp

θ

θ

=

où θinc représente l’angle mécanique d’inclinaison qui est généralement égal à l’angle d’un

pas dentaire. Pour la machine sans encoches, ce facteur est considéré nul puisque on n’a pas

de couple de détente.

Page 290: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

ANNEXE B

B STRUCTURES ET PARAMÈTRES DES

MACHINES MSE-1 ET MSE-2

Cette annexe présente les structures, les dimensions et les caractéristiques des machines

sans encoches à aimants permanents à haute vitesse utilisées dans les différentes études et

validations effectuées dans cette thèse. L’annexe B.1 décrit la structure et les paramètres de

la machine appelée MSE-1, tandis l’annexe B.2 résume ceux de la machine appelée MSE-2.

B.1 Structures et paramètres de la machine MSE-1

La machine sans encoches MSE-1 est une machine triphasée à aimants permanents à 2

pôles lisses à rotor interne. La frette qui maintient les aimants est amagnétique et non

conductrice. Les aimants sont de type NdFeB à aimantation radiale et le stator est fait en

matériaux SMC dont la perméabilité est 200 et la conductivité est 3400 s/m (ce matériau est

appelé Mat-1). Le bobinage est réparti sur 6 encoches avec un pas diamétral.

La figure B.1 présente la structure de cette machine, tandis que le tableau B.1 donne ses

principales caractéristiques.

Page 291: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Annexe B 269

Culasse du Stator (SMC)

+A

+C

-B

+B

-A

-CBobinage

Rotor

Aimants

Entrefer & Frette

Figure B.1 : Structure de la machine MSE-1

Paramètre Valeur Puissance nominale 510 W Vitesse nominale 20000 rpm Nombre de pôles 2 Nombre d’encoches 6 Nombre de spires par phase 61 Longueur axiale active 36.8 mm Diamètre externe du stator 48 mm Épaisseur de la culasse du stator 5.07 mm Épaisseur du bobinage 6.3 mm Entrefer mécanique 1 mm Épaisseur de la frette 0.5 mm Épaisseur des aimants 5.57 mm Diamètre de la culasse du rotor 11.09 mm Coefficient d’ouverture des aimants 0.8 Aimantation rémanente des aimants (NdFeB) 1.2 T Perméabilité des aimants (NdFeB) 1.05 Conductivité du matériau SMC (Mat-1) 3400 s/m Perméabilité du matériau SMC (Mat-1) 200

Tableau B.1 : Principales caractéristiques et dimensions de la machine MSE-1

B.2 Structures et paramètres de la machine MSE-2

La structure de cette machine est similaire à celle de la machine MSE-1 sauf que, dans ce

cas, l’aimantation est parallèle (diamétrale) et les aimants sont jointifs (cf. Fig. B.2). La

puissance nominale mise en jeu est 1 kW pour une vitesse de 30000rpm. La frette entourant

Page 292: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents

Annexe B 270

les aimants est non magnétique et non conductrice. Le tableau B.2 résume les différentes

caractéristiques de cette machine.

Figure B.2 : Structure de la machine MSE-2

Paramètre Valeur Puissance nominale 1 kW Vitesse nominale 30000 rpm Nombre de pôles 2 Nombre d’encoches 6 Nombre de spires par phase 44 Longueur axiale active 60 mm Diamètre externe du stator 55 mm Épaisseur de la culasse du stator 7.5 mm Épaisseur du bobinage 7.5 mm Entrefer mécanique 1 mm Épaisseur de la frette 0.5 mm Épaisseur des aimants 7 mm Diamètre de la culasse du rotor 8 mm Coefficient d’ouverture des aimants 1 Aimantation rémanente des aimants (NdFeB) 1.15 T Perméabilité des aimants (NdFeB) 1.05 Conductivité du matériau SMC (Mat-1) 3400 s/m Perméabilité du matériau SMC (Mat-1) 200

Tableau B.2 : Principales caractéristiques et dimensions de la machine MSE-2

Page 293: MODÉLISATION, CONCEPTION ET OPTIMISATION DES MACHINES … › jspui › bitstream › 20.500... · optimisation globale des machines synchrones sans encoches à aimants permanents