moderne teilchendetektoren - theorie und praxis 2

35
Gaseous Detectors Bernhard Ketzer University of Bonn XIV ICFA School on Instrumentation in Elementary Particle Physics LA HABANA 27 November - 8 December, 2017

Upload: others

Post on 21-May-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Moderne Teilchendetektoren - Theorie und Praxis 2

Gaseous Detectors

Bernhard KetzerUniversity of Bonn

XIV ICFA School on Instrumentation in Elementary Particle PhysicsLA HABANA

27 November - 8 December, 2017

Page 2: Moderne Teilchendetektoren - Theorie und Praxis 2

Plan of the Lecture

1. Introduction2. Interactions of charged particles with matter3. Drift and diffusion of charges in gases4. Avalanche multiplication of charge5. Signal formation and processing6. Ionization and proportional gaseous detectors7. Position and momentum measurement / track reconstruction

B. Ketzer Gas Detectors 2

Page 3: Moderne Teilchendetektoren - Theorie und Praxis 2

2.3 Fluctuations of Energy Loss

Consider single particle: statistical fluctuations of

• number of collisions• energy transfer in each collision range straggling (if stopped in medium) energy straggling (if traversing medium)

Gas Detectors 3

[H. Bichsel, NIM A 562, 154 (2006)]

B. Ketzer

Page 4: Moderne Teilchendetektoren - Theorie und Praxis 2

Fluctuations of Energy Loss

Important quantity in order to understand response of detector:

probability density function for energy loss ∆ in material of thickness x,determined by• collision cross section d𝜎𝜎/d𝐸𝐸• 𝑛𝑛𝑒𝑒𝑥𝑥

Calculation of energy loss distribution: two approaches• Convolution method• Laplace transform method[Allison, Cobb, Ann. Rev. Nucl. Part. Sc., 253 (1980)]

Gas Detectors 4

[H. Bichsel, NIM A 562, 154 (2006)]

Straggling functions

B. Ketzer

Page 5: Moderne Teilchendetektoren - Theorie und Praxis 2

2.3.1 Convolution Method

B. Ketzer Gas Detectors 5

In each collision, the probability to transfer an energy 𝐸𝐸 is given by

Energy loss Δ for exactly 𝑁𝑁𝑐𝑐 collisions 𝑁𝑁𝑐𝑐-fold convolution of 𝐹𝐹(𝐸𝐸)

with and

Page 6: Moderne Teilchendetektoren - Theorie und Praxis 2

Convolution Method

B. Ketzer Gas Detectors 6

Number of collisions 𝑁𝑁𝑐𝑐 in layer of thickness 𝑥𝑥

Linked to CCS through mean free path

Mean value

Standard deviation

Relative width

Page 7: Moderne Teilchendetektoren - Theorie und Praxis 2

Convolution Method

B. Ketzer Gas Detectors 7

Pdf for total ionization energy loss ∆ in material slice of thickness 𝑥𝑥= sum of all 𝐹𝐹𝑁𝑁𝑐𝑐(∆), weighted by their Poissonian probability for

exactly 𝑁𝑁𝑐𝑐 collisions

Straggling functions

• Poissonian contribution dominant for very small number of collisions (very thin absorbers)

• Peak structure vanishing for larger 𝑁𝑁𝑐𝑐

Page 8: Moderne Teilchendetektoren - Theorie und Praxis 2

Convolution Method

Solution for thickness 𝑥𝑥:• Iterative application of convolution integral (numerical)

[Bichsel et al., Phys. Rev. A 11, 1286 (1975)]

• Monte-Carlo method [Cobb et al., Nucl. Instr. Meth. 133, 315 (1976)]

• calculate mean number of collisions 𝑚𝑚𝑐𝑐 from integrated cross section• for each trial (particle penetration) choose actual number of collisions

from Poisson distribution with mean 𝑚𝑚𝑐𝑐

• total energy loss = sum of energy losses in single collisions, takenfrom normalized dσ/dE distribution 𝐹𝐹(𝐸𝐸)

Gas Detectors 8B. Ketzer

Page 9: Moderne Teilchendetektoren - Theorie und Praxis 2

Straggling Functions

B. Ketzer Gas Detectors 9

[H. Bichsel, NIM A 562, 154 (2006)]

Page 10: Moderne Teilchendetektoren - Theorie und Praxis 2

Straggling Functions

B. Ketzer Gas Detectors 10

[H. Bichsel, NIM A 562, 154 (2006)]

Bethe-Bloch mean energy loss: ∆ = 400 eV

Page 11: Moderne Teilchendetektoren - Theorie und Praxis 2

2.3.2 Laplace Transform Method[L. Landau, J. Phys. USSR 8, 201 (1944)]

Change of energy-loss distribution 𝑓𝑓(Δ; 𝑥𝑥) as a result of the particlepassing through a thin elemental layer δx:

• 1st term: probability that the energy loss in x was (∆−E ), and a collisionwith energy transfer E occurred in δx, which makes the total energy loss equal to ∆ (particle scattered into ∆)

• 2nd term: probability that the energy loss in x was already equal to ∆before entering δx, where a further collision increased the energy loss beyond ∆ (particle scattered out of ∆)

Gas Detectors 17B. Ketzer

Page 12: Moderne Teilchendetektoren - Theorie und Praxis 2

Laplace Transform Method

Put in form of a transport equation:

upper integration limit 𝐸𝐸 → ∞for 1st term ok, since

( ), 0 for 0f x ∆ = ∆ <

Solution: Laplace transform of both sides

+ solve for 𝑓𝑓(𝑠𝑠; 𝑥𝑥)

+ inverse Laplace transform

Exact solution, but numerical integration necessary in most cases!

Gas Detectors

0 < 𝑐𝑐 ≪ 1

18

( ) ( ),

s

F x s

∆ =L f x,

B. Ketzer

Page 13: Moderne Teilchendetektoren - Theorie und Praxis 2

2.3.3 Straggling Functions

Remarks to both methods:

• result determined by d𝜎𝜎/d𝐸𝐸

• given the same cross section d𝜎𝜎/d𝐸𝐸, both methods are equivalent

Gas Detectors 19B. Ketzer

Page 14: Moderne Teilchendetektoren - Theorie und Praxis 2

Straggling Functions

Different approximations, depending on thickness of absorber

Characteristic parameter: ,

𝜉𝜉 = scaling parameter (1st term of Bethe-Bloch eq.)

Thin absorbers: κ ≤ 10• possibility of large energy transfer in single collisions: δ-electrons• long tail on high-energy side, strongly asymmetric shape

∆m

20B. Ketzer Gas Detectors

Page 15: Moderne Teilchendetektoren - Theorie und Praxis 2

Landau Distribution

Very thin absorbers: κ→0 (i.e. Tmax→∞)• single energy transfers sufficiently large to consider e- as free

Rutherford

• particle velocity remains constant

Landau distribution [Landau, J. Phys. USSR 8, 201 (1944)]

Gas Detectors

dσ(E

’)/dE

’/ σ

21B. Ketzer

Page 16: Moderne Teilchendetektoren - Theorie und Praxis 2

Landau Distribution

Very thin absorbers: κ→0 (i.e. Tmax→∞)• single energy transfers sufficiently large to consider e- as free

Rutherford

• particle velocity remains constant

Analytical approximation: Moyal distribution [Moyal, Phil. Mag. 46, 263 (1955)]:

1 ( )2

Mm( ,,

ef x e

λλλ

π ξ

−− +1∆)

∆ − ∆==

2

Landau distribution [Landau, J. Phys. USSR 8, 201 (1944)]

L ( ,f x φ λξ1

∆) = ( )

Gas Detectors 22

𝜆𝜆 = universal parameter, see next page for relationto Δ𝑚𝑚 and 𝜉𝜉

Note: 𝜆𝜆 different fromparameter in Landau distr. above

B. Ketzer

Page 17: Moderne Teilchendetektoren - Theorie und Praxis 2

Landau Distribution

Properties of φ(λ):• asymmetric: tail up to 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 → ∞• Maximum at λ=-0.223• FWHM=4.02•λ• numerical evaluation

Universal Landau distribution:

Landau distribution in ROOT:

Gas Detectors 23B. Ketzer

Page 18: Moderne Teilchendetektoren - Theorie und Praxis 2

Comparison Landau - Moyal

Landau:p1=1.p2=500.p3=100.

Moyal:• coarse shape correct• tail too low!

Gas Detectors

But: tails are important for detector resolution!

24B. Ketzer

Page 19: Moderne Teilchendetektoren - Theorie und Praxis 2

Landau Distribution

B. Ketzer Gas Detectors 25

Landau distribution:• Uses Rutherford cross section• Does not reproduce straggling functions based on more realistic

models for CCS for very small 𝑁𝑁𝑐𝑐• Narrower width also for higher 𝑁𝑁𝑐𝑐 related to mean free path 𝜆𝜆

− Rutherford CCS underestimates 𝜆𝜆 (overestimates 𝑁𝑁𝑐𝑐)− Poisson contribution to straggling function leads to broadening

Page 20: Moderne Teilchendetektoren - Theorie und Praxis 2

Symon-Vavilov Distribution

Thin absorbers: 0.01 < κ < 10• use correct expression for Tmax

• use Mott cross section instead of Rutherford• reduces to Landau distribution for very small κ• less asymmetric shape for larger κ

[S.M. Seltzer, M.J. Berger, Nucl. Sc. Ser. Rep. No. 39 (1964)]

Gas Detectors 26B. Ketzer

Page 21: Moderne Teilchendetektoren - Theorie und Praxis 2

Realistic Straggling Functions

[H. Bichsel, Rev. Mod. Phys. 60, 663 (1988)]

Iterative Solution of convolution integral

[Blunck, Leisegang, Z. Phys, 128, 500 (1950)]

PAI Model vs Landau• Histogram: data• Landau + corrections

• PAI model

Ar/CH4 (93/7) Ar/CH4 (93/7)

[Maccabee, Papworth, Phys. Lett. A 30, 241 (1969)]

[Allison, Cobb, Ann. Rev. Nucl. Part. Sci. 30, 253 (1980)]

Gas Detectors 27B. Ketzer

Page 22: Moderne Teilchendetektoren - Theorie und Praxis 2

2.4 Measurement of Energy Loss

Gas Detectors

Restricted energy loss:

( )cut

2 4 2e cut cut

2 2 2max

2d 4 1 ln 1d 2 2T T

z e n mc T TEx mc I T

β γπ β δβπε

2 2 2

2< 0

− = − + − 24

approaches normal Bethe-Bloch equation for 𝑇𝑇cut → 𝑇𝑇max

Transforms into average total number of e- ion pairs nT along path length x:

TddEx n Wx

=

But: actual energy loss fluctuates with a long tail (Landau distribution)mean value of energy loss is a bad estimator use truncated mean of N pulse height measurements along the track:

1

1 tN

itit

A AN =

= ∑ [ ]1 for 1, ,

, 0,1i i

t

A A i NN t N t

+≤ =

= ⋅ ∈

B. Ketzer 28

Page 23: Moderne Teilchendetektoren - Theorie und Praxis 2

Gas Detectors

Measurement of Energy Loss

B. Ketzer 29

Page 24: Moderne Teilchendetektoren - Theorie und Praxis 2

Measurement of Energy Loss

Gas DetectorsB. Ketzer 30

Page 25: Moderne Teilchendetektoren - Theorie und Praxis 2

Measurement of Energy Loss

Gas Detectors

Resolution (empirical):

N = number of samplesΔ𝑥𝑥 = sample length (cm)p = gas pressure (atm)

B. Ketzer 31

Page 26: Moderne Teilchendetektoren - Theorie und Praxis 2

Example: ALICE TPC

Gas DetectorsB. Ketzer 32

Page 27: Moderne Teilchendetektoren - Theorie und Praxis 2

Example: FOPI GEM-TPC

Gas Detectors

• PID using dE/dx:• Resolution ~ 14-17%• No density correction

First dE/dx measurementwith GEM-TPC!

• Sum up charge in 5 mm steps• Truncated mean: 0-70%• Momentum from TPC + CDC

[F. Böhmer et al., NIM A 737, 214 (2014)]

B. Ketzer 33

Page 28: Moderne Teilchendetektoren - Theorie und Praxis 2

Example: FOPI GEM-TPC

Gas Detectors

• PID using dE/dx:• Resolution ~ 14-17%• No density correction

First dE/dx measurementwith GEM-TPC!

• Sum up charge in 5 mm steps• Truncated mean: 0-70%• Momentum from TPC + CDC

B. Ketzer 34

[F. Böhmer et al., NIM A 737, 214 (2014)]

Page 29: Moderne Teilchendetektoren - Theorie und Praxis 2

Energy Loss of Charged Particles

[Review of Particle Physics, S. Eidelmann et al., Phys. Lett. B 592, 1 (2004)]

35B. Ketzer Gas Detectors

Page 30: Moderne Teilchendetektoren - Theorie und Praxis 2

Z2 electrons, q=-e0

Electromagnetic Interaction of Particles with Matter

B. Ketzer Gas Detectors 36

Interaction with the atomic electrons. The incoming particle loses energy and the atoms are excited or ionized.

Interaction with the atomic nucleus. The particle is deflected (scattered) causing multiple scattering of the particle in the material. During this scattering a Bremsstrahlung photon can be emitted.

In case the particle’s velocity is larger than the velocity of light in the medium, the resulting EM shockwave manifests itself as Cherenkov Radiation. When the particle crosses the boundary between two media, there is a probability of the order of 1% to produce an X ray photon, called Transition radiation.

M, q=Z1 e0

Slide courtesy of W. Riegler

Page 31: Moderne Teilchendetektoren - Theorie und Praxis 2

2.5 Multiple Scattering

Gas Detectors

In addition to inelastic collisions with atomic electrons elastic Coulomb scattering from nuclei Rutherford cross section for single scattering (no spin, recoil)

( )( )

22

2 2 4 4Rutherford0

d 1d 4 4 sin sin

2 2

zZe

E

σθ θπε

= ∝ Ω ⋅

small angular deflection of incident particle random zigzag path, 0θ =

For hadronic projectiles also the strong interaction contributes to multiplescattering

contribution to momentum resolution!

B. Ketzer 37

Page 32: Moderne Teilchendetektoren - Theorie und Praxis 2

Multiple Scattering

Gas Detectors

Theory:• Single scattering: very thin absorber such that probability for more than one

Coulomb scattering small angular distribution given by Rutherford formula

• Plural scattering: average number of scatterings N<20 difficult!

• Multiple scattering: N >20, energy loss negligible statistical treatment Gaussian distribution via Central Limit Theorem non-Gaussian tails due to less frequent hard scatterings probability distribution for net angle of deflection as function

of thickness of material traversed: Molière distribution (up to )30θ ≈

[G. Molière, Z. Naturforsch. 3a, 78 (1948), H.A. Bethe, Phys. Rev. 89, 1256 (1953)]

B. Ketzer 38

Page 33: Moderne Teilchendetektoren - Theorie und Praxis 2

Multiple Scattering

Gas Detectors

Gaussian approximation: ignore large-angle (>10°) single scatterings

2plane

plane plane plan00

e21( ) exp

22P d d

θθ θ

θθ

πθ

= −

T T0

0 0

13.6MeV 1 0.038lnL Lzcp X X

θβ

= +

central limit theorem

rms 2 20 plane plane

12

θ θ θ θ= = =

X0 = radiation length of absorberLT = track length in medium (w/o multiple scattering),

i.e. straight line or helix

Accurate to < 11% for 3 T

0

10 100LX

− < <

from fit to Molière distribution

[V.L. Highland, NIM 129, 497 (1975)][G.R. Lynch et al., NIM B 58, 6 (1991)]

B. Ketzer 39

Page 34: Moderne Teilchendetektoren - Theorie und Praxis 2

Gas Detectors

Multiple Scattering

2plane

plane plane plane200

1( ) exp22

P d dθ

θ θ θθπθ

= −

T T0

0 0

13.6MeV 1 0.038lnL Lzcp X X

θβ

= +

B. Ketzer 40

Page 35: Moderne Teilchendetektoren - Theorie und Praxis 2

Literature

W. Blum, L. Rolandi, W. Riegler: Particle Detection with Drift Chambers. Springer, 2008.

H. Spieler: Semiconductor Detector Systems. Oxford 2005.C. Leroy, P.-G. Rancoita: Principles of Radiation Interaction in Matter and

Detection. World Scientific, Singapore 2012.Specialized articles in Journals, e.g. Nuclear Instruments and Methods A, Ann. Rev. Nucl. Part. Sci.

C. Grupen, B. Shwartz: Particle Detectors. Cambridge Univ. Press, 2008.K. Kleinknecht: Detektoren für Teilchenstrahlung. Teubner, Stuttgart 1992.G. F. Knoll: Radiation Detection and Measurement. J. Wiley, New York

1979.W. R. Leo: Techniques for Nuclear and Particle Physics Experiments.

Springer, Berlin 1994.

B. Ketzer Gas Detectors 41