modelling water & life

19
Modelling Water & Life 4 in 40 Corey J. A. Bradshaw 1,2 1 THE ENVIRONMENT INSTITUTE, University of Adelaide, Australia 2 South Australian Research & Development Institute

Upload: conservation-bytes

Post on 04-Jul-2015

4.592 views

Category:

Education


0 download

DESCRIPTION

My recent 10-minute talk on modelling for environmental decision-making

TRANSCRIPT

Page 1: Modelling Water & Life

Modelling Water & Life4 in 40

Corey J. A. Bradshaw1,2

1THE ENVIRONMENT INSTITUTE, University of Adelaide, Australia2South Australian Research & Development Institute

Page 2: Modelling Water & Life

• > 4 million protists

• 16600 protozoa

• 75000-300000 helminth parasites

• 1.5 million fungi

• 320000 plants

• 4-6 million arthropods

• > 6500 amphibians

• > 30000 fishes

• 10000 birds

• > 5000 mammals

Page 3: Modelling Water & Life

99 % of ALL species that have ever existed...

EXTINCTspecies lifespan = 1-10 M years

Ordovician (490-443 MYA)

Devonian (417-354 MYA)

Permian (299-250 MYA)

Triassic (251-200 MYA)

Cretaceous (146-64 MYA)

Anthropoceneextinction rate 100-10000 background

Crutzen 2002 Nature 415:23; Bradshaw & Brook 2009 J Cosmol 2:221-229© T

ian

tian

Zhan

g, G

oo

d5

0x7

0.o

rg

Page 4: Modelling Water & Life
Page 5: Modelling Water & Life

• reduce desertification• maintain soils• crop pollination• seed dispersal• food provision• water purification• fuel provision• fibre provision• climate regulation• flood regulation• disease regulation• waste decomposition/detoxification• nutrient cycling• soil formation• primary production• pharmaceutical sources• cultural appreciation (aesthetic, spiritual, educational, recreational…)

• €50 billion lost/year• Land-based ecosystem loss €545 billion by 2010• > €14 trillion/year lost by 2050

Cost of Policy Inaction (COPI):The case of not meeting the 2010 biodiversity target.

European Commission

€153 billion/year

fisheries: €50 billion/year

Page 6: Modelling Water & Life

Bra

dsh

aw e

t al

. 20

09

Fro

nt

Eco

l En

viro

n 7

:79

-87

Bra

dsh

aw e

t al

. 20

09

Tre

nd

s Ec

ol E

vol2

4:5

41

-54

8

Han

sen

et

al. 2

01

0 P

NA

Sd

oi:1

0.1

07

3/p

nas

.09

12

668

10

7

Bar

son

et a

l. 2

00

0 L

and

Co

ver

Ch

ange

in A

ust

ralia

, Bu

r R

ur

Sci

• 1,011,000 km2 lost 2000-2005 (3.1 %; 0.6 %/year)• highest in boreal biome (60 %)• humid tropics next (Brazil, Indonesia, Malaysia)• dry tropics next highest (Australia, Brazil, Argentina)• N.A. greatest proportional lost by continent• Nationally, Brazil, Canada, Indonesia, DR Congo

Page 7: Modelling Water & Life
Page 8: Modelling Water & Life

Bradshaw et al. 2007 Glob Change Biol 13:2379-2395

1990-2000• ~100,000 people killed• 320 million people displaced• total reported damages > US$1151 billion

Page 9: Modelling Water & Life

Ohl & Tapsell 2000 Br Med J 321:1167-1168; Ivers & Ryan 2006 Curr Op Infect Dis 19:408-414

• schistosomiasis

• malaria

• leptospirosis

• dysentery

• cholera

• hepatitis

• typhus

increased host habitat availability & displacement of humans to areas where inadequate sanitation and temporary high-density living promote disease

Page 10: Modelling Water & Life

Mellin et al. 2010 Glob Ecol Biogeog 19:212

Page 11: Modelling Water & Life

Taylor’s Power Law (TPL)

Relationship between log-transformed abundances (N) and temporal variance (s2) = line with a slope of 2

log mean abundance

log

vari

ance

2 2.5 3 3.5 4

3

4

5

6

Kilpatrick & Ives (2003) – Nature

TPL slope decreases as the strength of competition between species increases

deviations from TPL:

Page 12: Modelling Water & Life

3.0 0.42.2 0.4

1.5 0.3

Reef area Reef isolation

3.1 0.4

2.0 0.3

1.7 0.3

Mellin et al. 2010 Ecology doi:10.1890/10-0267.1

Page 13: Modelling Water & Life

Mellin et al. 2010 Ecology doi:10.1890/10-0267.1

Page 14: Modelling Water & Life

• natural forest loss2005-1990 D/ha

• natural habitat conversionhuman-modified landcover/total landcover

• marine captures1990-2005 fish, whales, seals/EEZ km

• fertiliser useNPK/ha arable land

• water pollutionbiochemical oxygen demand/total renewable water resources

• carbon emissionsforestry, land-use change, fossil fuels/km2

• biodiversity threatRed List threatened birds, mammals, amphibians/listed species

Bradshaw et al. 2010 PLoS One 5:e10440

Page 15: Modelling Water & Life

+

imp

act

0 50 100 150 200

0

50

100

150

Governance quality rank

Pro

po

rtio

nal

en

vir

on

men

tal

imp

act

ran

k

0 50 100 150

0

50

100

150

Gross National Income rank

Ab

so

lute

en

vir

on

men

tal

imp

act

ran

k

0 50 100 150 200

0

50

100

150

Total population rank

Pro

po

rtio

nal

en

vir

on

men

tal

imp

act

ran

k

0 50 100 150 200

0

50

100

150

Population density rank

0 50 100 150 200

0

50

100

150

Population growth rank

Pro

po

rtio

nal

en

vir

on

men

tal

imp

act

ran

k

0 50 100 150

0

50

100

150

Gross National Income rank

A B

C D

- im

pac

t

+

imp

act

+ people - people

+ growth - growth

- im

pac

t

poorer wealthier

- quality + quality poorer wealthier

+ density - density

- im

pac

t

+

imp

act

E F

Bradshaw et al. 2010 PLoS One 5:e10440

Page 16: Modelling Water & Life

Bradshaw et al. 2010 PLoS One 5:e10440

Page 17: Modelling Water & Life

per capita prosperity

envi

ron

men

tal d

amag

eENVIRONMENTAL

KUZNETS CURVE

Bradshaw et al. 2010 PLoS One 5:e10440

Page 18: Modelling Water & Life

1 10 100

0

50

100

150

l inear

quadratic

intercept

per capita PPP-adjusted GNI

Pro

po

rtio

nal

en

vir

on

men

tal

imp

act

ran

k*

1 10 100

0

50

100

150

per capita PPP-adjusted GNI

Ab

so

lute

en

vir

on

men

tal

imp

act

ran

k*

- im

pac

t

+

imp

act

- im

pac

t

+

imp

act

poorer wealthier

poorer wealthier

A

B

Bradshaw et al. 2010 PLoS One 5:e10440

Page 19: Modelling Water & Life

[email protected]

www.adelaide.edu.au/directory/corey.bradshaw

ConservationBytes.com

• Barry Brook University of Adelaide

• Julian Caley AIMS

• Xingli Giam Princeton University

• Mark Meekan AIMS

• Camille Mellin University of Adelaide/AIMS

• Kelvin Peh University of Leeds

• Navjot S. Sodhi National University of Singapore

• Ian Warkentin Memorial University

© T

ian

tian

Zhan

g, G

oo

d5

0x7

0.o

rg