modelling of induced polarization effects in time-domain electromagnetic data from...

35
Modelling of induced polarization effects in time-domain electromagnetic data from a glacier in Svalbard, Norway Heather A. Burgi and Colin G. Farquharson Department of Earth & Ocean Sciences, University of British Columbia; Inco Innovation Centre, and Department of Earth Sciences, Memorial University of Newfoundland.

Upload: others

Post on 07-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Modelling of induced polarization effects in time-domain

    electromagnetic data from a glacier in Svalbard, Norway

    Heather A. Burgi and Colin G. Farquharson

    Department of Earth & Ocean Sciences,University of British Columbia;

    Inco Innovation Centre, andDepartment of Earth Sciences,

    Memorial University of Newfoundland.

  • Acknowledgments

    Prof. Tavi Murray, Swansea University.

  • Outline

    Introduction.

    Context.

    ◦ Svalbard.

    ◦ The glacier.

    ◦ Time-domain EM soundings.

    ◦ The data.

    Complex-valued, frequency-dependent conductivity.

    ◦ Mathematical model.

    Fitting the observations.

    The physical mechanism?

    Summary.

  • Outline

    Introduction.

    Context.

    ◦ Svalbard.

    ◦ The glacier.

    ◦ Time-domain EM soundings.

    ◦ The data.

    Complex-valued, frequency-dependent conductivity.

    ◦ Mathematical model.

    Fitting the observations.

    The physical mechanism?

    Summary.

  • Svalbard

  • The glacier in Svalbard: Bakaninbreen

  • The glacier

    soundingssurg

    e f

    ront

    glacier

    17 6

  • The glacier

    thickness (m)

    2

    75 - 100

    5 - 25

    ~ 10

    ?

    ?

    snow

    cold, clean ice

    warm, sediment-rich ice

    permafrost

    unfrozen sediment

    bedrock (shales, mudstones)

    warm, clean ice30 - 60

    above surge front

    thickness (m)

    2

    50 - 60

    5 - 20

    ~ 10

    ?

    ?

    snow

    cold, clean ice

    cold, sediment-rich ice

    permafrost

    unfrozen sediment

    bedrock (shales, mudstones)

    below surge front

  • Time-domain EM soundings

    Time

    Current

    Time

    Voltage

  • Time-domain EM soundings

    Time

    Current

    Time

    Voltage

  • Time-domain EM soundings

    Time

    Current

    Time

    Voltage

  • Time-domain EM soundings

    Time

    Current

    Time

    Voltage

  • 1e-07

    1e-061e-06

    1e-05

    0.0001

    0.001

    0.01

    0.1

    1

    10V

    olta

    ge (

    µV)

    0.10.1 1 10 100

    Time (ms)

    Station 1

  • 1e-07

    1e-061e-06

    1e-05

    0.0001

    0.001

    0.01

    0.1

    1

    10V

    olta

    ge (

    µV)

    0.10.1 1 10 100

    Time (ms)

    Station 2

  • 1e-07

    1e-061e-06

    1e-05

    0.0001

    0.001

    0.01

    0.1

    1

    10V

    olta

    ge (

    µV)

    0.10.1 1 10 100

    Time (ms)

    Station 3

  • 1e-07

    1e-061e-06

    1e-05

    0.0001

    0.001

    0.01

    0.1

    1

    10V

    olta

    ge (

    µV)

    0.10.1 1 10 100

    Time (ms)

    Station 4

  • 1e-07

    1e-061e-06

    1e-05

    0.0001

    0.001

    0.01

    0.1

    1

    10V

    olta

    ge (

    µV)

    0.10.1 1 10 100

    Time (ms)

    Station 5

  • 1e-07

    1e-061e-06

    1e-05

    0.0001

    0.001

    0.01

    0.1

    1

    10V

    olta

    ge (

    µV)

    0.10.1 1 10 100

    Time (ms)

    Station 6

  • 1e-07

    1e-061e-06

    1e-05

    0.0001

    0.001

    0.01

    0.1

    1

    10V

    olta

    ge (

    µV)

    0.10.1 1 10 100

    Time (ms)

    Station 7

  • Outline

    Introduction.

    Context.

    ◦ Svalbard.

    ◦ The glacier.

    ◦ Time-domain EM soundings.

    ◦ The data.

    Complex-valued, frequency-dependent conductivity.

    ◦ Mathematical model.

    Fitting the observations.

    The physical mechanism?

    Summary.

  • Ohm’s law

    E

    σ

    J Eσ=

  • Ohm’s law

    (ω)σ

    E

    J E(ω)σ=

  • Debye and Cole-Cole models

    σ(ω) = σ0

    1 + (iωτ)c

    1 + (1 − m)(iωτ)c

    σ0

    τmc

    DC conductivity (S/m),relaxation time (s),chargeability,frequency parameter.

    R

    C

    R

  • 0.000

    0.001

    0.002

    Con

    duct

    ivity

    (S

    /m)

    0.01 0.10.1 1 10 100 1000 10000 100000

    Frequency (Hz)

    Debye

    real

    imaginary

    σ0

    : 7 × 10−4 S/m, τ : 8 × 10−3 s, m : 0.5

  • Outline

    Introduction.

    Context.

    ◦ Svalbard.

    ◦ The glacier.

    ◦ Time-domain EM soundings.

    ◦ The data.

    Complex-valued, frequency-dependent conductivity.

    ◦ Mathematical model.

    Fitting the observations.

    The physical mechanism?

    Summary.

  • Non-polarizable halfspace

    1e-07

    1e-061e-06

    1e-05

    0.0001

    0.001

    0.01

    0.1

    1

    10

    Vol

    tage

    (µV

    )

    0.10.1 1 10 100

    Time (ms)

    Station 3

    thickness (m)∞

    σ0

    (S/m)8 × 10−3

    τ (s)0

    m0

  • Polarizable halfspace

    1e-07

    1e-061e-06

    1e-05

    0.0001

    0.001

    0.01

    0.1

    1

    10

    Vol

    tage

    (µV

    )

    0.10.1 1 10 100

    Time (ms)

    Station 3

    thickness (m)∞

    σ0

    (S/m)6 × 10−3

    τ (s)3 × 10−2

    m0.5

  • Two-layer model, polarizable over non-polarizable

    1e-07

    1e-061e-06

    1e-05

    0.0001

    0.001

    0.01

    0.1

    1

    10

    Vol

    tage

    (µV

    )

    0.10.1 1 10 100

    Time (ms)

    Station 3

    thickness (m)55∞

    σ0

    (S/m)6.8×10−4

    1.0×10−2

    τ (s)8.5×10−3

    0

    m0.50

  • Two-layer model, non-polarizable over polarizable

    1e-07

    1e-061e-06

    1e-05

    0.0001

    0.001

    0.01

    0.1

    1

    10

    Vol

    tage

    (µV

    )

    0.10.1 1 10 100

    Time (ms)

    Station 3

    thickness (m)62∞

    σ0

    (S/m)5.0×10−5

    9.0×10−3

    τ (s)0

    4.2×10−3

    m0

    0.29

  • Conclusions from numerical modelling

    ⋆ Double sign change can be easily mimicked using a simplecomplex-valued, frequency-dependent model ofconductivity (i.e., Debye).

    ⋆ Slight preference for a two-layer Earth model, rather than ahomogeneous polarizable halfspace.

  • Outline

    Introduction.

    Context.

    ◦ Svalbard.

    ◦ The glacier.

    ◦ Time-domain EM soundings.

    ◦ The data.

    Complex-valued, frequency-dependent conductivity.

    ◦ Mathematical model.

    Fitting the observations.

    The physical mechanism?

    Summary.

  • What is the physical mechanism?

    • Traditional explanations for polarization effects inexploration geophysics:

    ◦ electrode polarization – disseminated sulphides;

    ◦ membrane polarization – clays.

  • What is the physical mechanism?

    • But what about an explanation that’s relevant here . . .

    ◦ the ice itself;

    ◦ membrane polarization – ice–sediment mixture;

    ◦ membrane polarization – ice–water mixture?

    0.000

    0.001

    0.002

    Con

    duct

    ivity

    (S

    /m)

    0.01 0.10.1 1 10 100 1000 10000 100000

    Frequency (Hz)

    Debye

    real

    imaginary

  • Outline

    Introduction.

    Context.

    ◦ Svalbard.

    ◦ The glacier.

    ◦ Time-domain EM soundings.

    ◦ The data.

    Complex-valued, frequency-dependent conductivity.

    ◦ Mathematical model.

    Fitting the observations.

    The physical mechanism?

    Summary.

  • Summary

    • Double sign changes have been observed in time-domain EMsounding data from a glacier.

    • These sign changes can be easily reproduced mathematicallywith a complex-valued, frequency-dependent model ofconductivity, such as the Debye model.

    • The physical mechanism responsible for the polarizationeffects is unknown. It might be a consequence of an ice–water mixture, an ice–sediment mixture, or a property ofthe ice itself.