modelling of borehole stability

Upload: ahmad-waisul-qorni

Post on 16-Feb-2018

222 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/23/2019 Modelling of Borehole Stability

    1/17

    Borehole stability and shale mechanics

    2nd lecture:

    Borehole stability modelling

    Dag kland, 03.03.2000 1

  • 7/23/2019 Modelling of Borehole Stability

    2/17

    Tertiary

    Quat.

    Made by: D

    DEPTH(mRKB)

    TVD

    Stratigraphy

    Seabed

    Date:03.03.00

    PL nnn, WELL: xx/xx-2

    Water Depth: 300 m MSL

    RKB - Sea: 23,5 m

    System

    Group

    1911

    aland

    1450

    Nord

    land

    mRKB

    Casing

    30"

    380,5m

    Lithology

    20"

    810m

    320

    0

    100

    200

    300400

    500

    600

    700

    800

    900

    1000

    1100

    1200

    1300

    1400

    1500

    1600

    1700

    1800

    1900

    2000

    12-1 12-1kv.3 12-1FIT 11-2 11-2kv3 11-2sst 12/7 12-7FIT 12/9s 12-9s FITsst 12/10

    12-10FIT 12/6 11-4sFIT 11-4s 0 15 30 45 60 75 90

    Fm.

    Nau

    st

    Kai

    ge

    *

    0 H V

    --P (PP) --Pk --LOTk (FG) -- (HS) -- (OB)

    STABIL AnalysisDummy Field

  • 7/23/2019 Modelling of Borehole Stability

    3/17

    Base case for modelling(Dummy Field, 2350 m depth)

    Stresses and pressures Stress / Pressure[MPa]

    Gradient[g/cm3]

    v (vertical stress) 47.5 2.06

    H (max. horizontal stress) 44.2 1.92

    h (min. horizontal stress) 44.2 1.92

    p0 (pore pressure) 38.0 1.65

    pw (well pressure) 42.2 1.83

    Borehole orientation

    Borehole inclination 45

    Rock strength

    C0 (uniaxial compr. strength) 4.0 0.17

    Angle of internal friction 12

    (unless otherwise specified) 3

  • 7/23/2019 Modelling of Borehole Stability

    4/17

    Borehole stresses are a function of:

    in si tustresses (1 , , 2 , 3)

    pore pressure (p0)

    borehole orientation (inclination, azimuth)Poisson's ratio (to a very small degree)

    well pressure (pw)

    In inclined wells (well axis non-parallel with in si tu

    principal stress axis), stresses are calculated thus:Transform in situ stresses to well coordinates (x, y, z)

    Use formulas from Bradley (1979)

    Borehole stresses(linear elastic solution)

    4

  • 7/23/2019 Modelling of Borehole Stability

    5/17

    Assumptions:linear elasticity

    impermeable borehole wall

    plane strain (no displacement in z-direction parallel toborehole axis)

    Effective stresses on the borehole wall:

    r= pw - p0

    = (x + y - pw) - 2(x - y)cos2 - 4xysin2 - p0

    z = zz -[2(x - y)cos2 + 4xysin2] - p0

    r = 0z = 2(-xzsin + yzcos) (NB! Misprint in Bradley's article)

    rz = 0

    Borehole stresses(after Bradley, 1979)

    (Bradley, W.B. (1979) Failure of Incl ined Boreholes. J Energy Res. Tech.; Trans ASME 101, 1482 - 1498) 5

  • 7/23/2019 Modelling of Borehole Stability

    6/17

    Borehole stressesbase case

    0 90 180 270 360

    Angle along well circumference [ from high side]

    -5

    0

    5

    10

    15

    20

    Effectivestress

    es[MPa]

    Sigma theta

    Sigma z

    Sigma r

    Tau th-z

    Sigma 1

    Sigma 2

    6

  • 7/23/2019 Modelling of Borehole Stability

    7/17

    Borehole stresses2 = 45.9 MPa (1.99 g/cm3)

    azimuth = 30 (clockwise from 1)

    0 90 180 270 360

    Angle along well circumference [ clockwise from high side]

    -5

    0

    5

    10

    15

    20

    Effectivestress

    es[MPa]

    Sigma theta

    Sigma z

    Sigma r

    Tau th-z

    Sigma 1

    Sigma 2

    7

  • 7/23/2019 Modelling of Borehole Stability

    8/17

    Borehole failure

    Shear failure:Compressive stressanisotropy causes shearstresses in excess of rockstrength

    Fragments (cavings) arecreated on the borehole

    wallDirectional borehole

    enlargement (breakout)

    Tensile failure:Tensile stress exceedstensile rock strength

    Hydraulic fracture initiationon borehole wall

    Lost circulation if fracturepropagates

    8

  • 7/23/2019 Modelling of Borehole Stability

    9/17

    Shear failure criteria

    Mohr-Coulomb (conservative)

    1 = C0+ q3

    Drucker-Prager (may overestimate influence of 2)

    (1 - 2)2 + (1 - 3)2 + (2 - 3)2 = C(1 + 2 + 3 + A)2

    Stassi-d'Alia (a bit weird)

    (1 - 2)2 + (1 - 3)2 + (2 - 3)2 = 2(C0-T0)(1 + 2 + 3) + 2T0C0

    Statoil version: T0 = 0

    9

  • 7/23/2019 Modelling of Borehole Stability

    10/17

    Comparison of failure criteriabase case

    0 30 60 90

    Borehole inclination [ from vertical]

    1.65

    1.7

    1.75

    1.8

    1.85

    1.9

    1.95

    2

    Minimums

    tablemuddensity[g/cc]

    Mohr-Coulomb

    Drucker-Prager

    Stassi-d'Alia

    sigma hmin

    10

  • 7/23/2019 Modelling of Borehole Stability

    11/17

    What simplifications have we made?

    1. Impermeable borehole wall; unchanged pore pressure

    2. Linear elasticity3. Biot's coefficient = 1

    4. Elasto-brittle failure5. Failure = shear fracture initiation6. Chemically inert mud

    7. Well pressure = hydrostatic mud pressure8. No thermal stresses

    11

  • 7/23/2019 Modelling of Borehole Stability

    12/17

    1.Pore pressure in formationPressure changes immediately after drillout

    in response to elastic volumetric strains

    Plot created with B OSS-APF from PUC-Rio 12

  • 7/23/2019 Modelling of Borehole Stability

    13/17

    1.ConsolidationPressure changes with time due to consolidation.

    10 nD permeability assumed for this plot.

    Plot created with B OSS-APF from PUC-Rio 13

  • 7/23/2019 Modelling of Borehole Stability

    14/17

    1.Yielded zone (red) increasesdue to consolidation

    Plots created with BOSS-APF from PUC-Rio

    15.8 minutes

    623 years14.6 days2.15 days

    14.2 hours2.37 hours

    4.77 days

    14

  • 7/23/2019 Modelling of Borehole Stability

    15/17

    2.Pressure-dependent elasticity

    Santarelli et al (1986) proposed a Young's moduluswhich depends on the confining pressure;

    E(r) = E0ra ; 0 < a < 1

    Supported by laboratory observations

    Tangential stress is reduced when computed with thismethod

    (Santarelli, F.J. et al. (1986) Analysis of Bo rehole Stresses Using Pressu re-Dependent Linear Elast ic i ty.

    Int. J. Rock Mech. Sci. & Geomech. Abstr., 23, 445 - 449) 15

  • 7/23/2019 Modelling of Borehole Stability

    16/17

    2.and 4.Elasto-plasticity

    Real rock displays plastic yield and can sustainconsiderable plastid deformation before critical failure.

    May be modelled with Finite Element Method (FEM)models.

    Failure

    Failure?

    Residual

    strength

    Elasto-brittle Elasto-plastic

    16

  • 7/23/2019 Modelling of Borehole Stability

    17/17

    Other comments to simplifications

    3. Biot's coefficient = 1

    < 1 in deep formations; affects effective stresses

    5. Failure = shear fracture initiationConservative; some researchers have proposed a"break-out span"; a critical angular breakout extent

    6. Chemically inert mudHydration / dehydration and ionic alteration in shalemay lead to volumetric deformations

    7. Well pressure = hydrostatic mud pressureSurge / swab and ECD effects may give transient well

    pressures above or below hydrostatic pressure

    8. No thermal stresses

    = T*E*T/(1-)

    17