modelling economically optimal heat supply to low energy building areas – the importance of scales

30
MODELLING ECONOMICALLY OPTIMAL HEAT SUPPLY TO LOW ENERGY BUILDING AREAS – THE IMPORTANCE OF SCALES Akram Sandvall Fakhri, Erik O Ahlgren, Tomas Ekvall* Chalmers Univ Tech * IVL ETSAP, Cork, May 3031, 2016

Upload: iea-etsap

Post on 14-Apr-2017

152 views

Category:

Data & Analytics


0 download

TRANSCRIPT

MODELLING ECONOMICALLY OPTIMAL HEAT SUPPLY TO LOW

ENERGY BUILDING AREAS –THE IMPORTANCE OF SCALES

Akram  Sandvall  Fakhri,  Erik  O  Ahlgren,  Tomas  Ekvall*Chalmers  Univ Tech

*  IVL

ETSAP,  Cork,  May  30-­31,  2016

Bioenergy and transport –modelling of Swedish energy

futures• Börjesson  Hagberg  M,  Pettersson  K,  Ahlgren  EO  (2016).  Bioenergyfutures in  Sweden  – Modeling integration  scenarios  for  biofuel production.  Energy,  in  press.

• BörjessonM,  AthanassiadisD,  Lundmark R,  Ahlgren  EO (2015).  Bioenergy  futures  in  Sweden  – System  effects  of  CO2  reduction  and  fossil  fuel  phase-­out  policies.  GCB  Bioenergy 7:  1118-­1135.

• BörjessonM,  Ahlgren  EO,  Lundmark R,  Athanassiadis D  (2014).  Biofuel  futures  in  road  transport  – A  modeling  analysis  for  Sweden.  Transportation  Research  Part  D:  Transport  and  Environment 32:  239–252.

Biomass use per sector(variations in climate ambition (CO2))

Bio for heat and powerproduction

Bio for transport biofuelproduction

0

40

80

120

160

2000 2010 2020 2030 2040 2050

[TWh]

CO2_LR50 CO2_LR65 NAT_CA GLOB_CA

0

40

80

120

160

2000 2010 2020 2030 2040 2050

[TWh]

CO2_LR50 CO2_LR65 NAT_CA GLOB_CA

Buildings heat supply

Why  ?

Buildings heat supply

Strategic  interest  !

Three heat supply options-­to NEW buidlings

q IndividualEach building has its own heat production device

q On-­siteHeat supply by a small local district heating (DH) system

within the LEB area

q Large heat networkHeat  is  produced  in  the  DH  system  of  nearby  urban  area  

and  is  transmitted  to  the  LEB  area  by  a  transmission  pipeline.  

Questions

• Which is the most cost-­efficient heat supply option toNEW buildings from a societal point of view?

• How do the various cost components of the long-­termsystem cost compare between the three heatingoptions?

Urban  area

Approach

Single building

National  building stock  

LEB  area

Method– Systematic analysis• threshold  for  the  most  cost-­efficient  heat  supply

– Based  on  hypothetical  LEB  areas  and  hypothetical  DH  systems– Dynamic energy systems  modelling– Scenario  analysis (450PPM,  BAU)

Systematic analysis(scale effects)

Urban  area

LEB  area

d

Hypothetical cases I• LEB  areas– One-­family buildings area,  plot ratio 0.15  (PR-­1A)– Apartment  building area,  plot ratio 0.73  (PR-­5A)– Large apartment  building area,  plot ratio 1.3  (PR-­9A)

• PR  (plot ratio)  =  heated area/land  area  (heating density)

Hypothetical case inspired by Vallda Heberg

Area

Single family building

TerracebuildingsApartment  building

(1)

(2)

(3)

(4)

Assumptions I

-­ New  areas  are  built  based  on  LEB  standards

(LEB  =  low  energy  buildings)

-­ New  LEB  areas  are  built  in,  or  in  the  vicinity  of,  urban  areas

Hypothetical cases II

• Urban  DH  systems  – Small  (Kungsbacka)  – bio  HOB– Medium  (Linköping)  – bio  CHP– Large (Göteborg)  – large bio  CHP,  industrial/MSW  wasteheat

• Distances– 0-­3  km  (1  km  steps)

Modelling

• Local TIMES  – two regions  (MIP)  • Long-­term  perspective (until 2050)• Simulating approach:– 1.    Individual  heat  supply  in  the  LEB  area  (i.e.  individual)– 2.    DH  supply  in  the  LEB  area  (i.e.  on-­site)– 3.    Diff  (DH  supply  in  both  the  nearby  town  and  LEB  area -­DH  supply  in  the  nearby  town)

Assumptions II

• Heat  supply represented in  detail– Existing DH  production capacity in  the  DH  systems– New  investment  options  in  the  DH  systems  and  the  LEB  area  (discrete investments)

– Individual devices:  bio  pellets  boiler,  geothermal heat  pump,  electric boiler

– Low temperature DH  (55/25  C)  in  the  LEB  areas.

• Electricity system,  energy markets,  biomass cost/price,  climatepolicies and  heat  demand are included exogenously.

• Time resolution:  Seasonal,  Day-­Night• Inelastic heat  demand

Scenarios• 450PPM:  – Increasing  CO2  cost– Increasing  biomass  prices  (biomass  market)

• BAU:– Slowly increasing CO2  cost– Biomass supply cost

Results

18.1 14.5 16.4 17.7 13.7 15.517.6 12.9 10.8 17.2 12.7 10.515.2 12.8 9.3 15.0 12.5 9.015.1 11.3 8.0 14.3 11.1 7.712.2 7.9 6.6 11.8 7.7 6.38.8 5.4 5.2 8.9 5.2 4.9

19.2 14.5 16.4 19.0 14.2 15.518.1 14.3 10.8 17.2 13.7 10.616.3 12.8 10.4 16.2 12.6 10.515.2 12.7 9.0 14.3 12.5 9.213.4 9.3 7.6 13.3 9.2 7.810.5 6.6 6.2 10.5 6.6 6.4

19.4 14.5 16.4 20.2 15.2 15.518.1 14.4 10.8 17.3 13.7 11.016.5 12.8 10.7 17.2 13.6 10.515.2 12.8 9.3 14.4 12.5 9.613.7 9.4 7.9 14.3 10.1 8.311.1 7.2 6.9 11.6 7.5 6.9

BAU  -­  System  cost  ranking&  

Specefic  system  cost  [€/GJ]

450PPM

 -­  System  cost  ranking&  

Specefic  system  cost  [€/GJ]

Town/  City

Town/  City

Medium  DH

Medium  DH

Small  DH

Small  DH

Large  DH

Large  DH

1.3LEB  area  &  plot  ratio LEB  area  &  plot  ratio

0.15 0.73 1.3 0.15 0.73PR-­9APR-­1A PR-­5A PR-­9A PR-­1A PR-­5A

Large  heat  network:Individual ZeroOn-­site 1  km

2  km3  km

Ranking & threshold

Breakdown of costcomponents

-­50510152025

Zero

1  km

2  km

3  km

Zero

1  km

2  km

3  km

Zero

1  km

2  km

3  kmSmall  DH Medium  DH Large  DH

IndividualOn-­site Large  heat  network

PR-­1A_450PPM

-­5

0

5

10

15

20

25

Zero

1  km

2  km

3  km

Zero

1  km

2  km

3  km

Zero

1  km

2  km

3  km

Small  DH Medium  DH Large  DHIndividualOn-­site Large  heat  network

PR-­1A_BAU

Heat  supply  cost  (investment  &  operation)  (€/GJ)DH  transmission  cost  (€/GJ)DH  distribution  (€/GJ)

-­50510152025

Zero

1  km

2  km

3  km

Zero

1  km

2  km

3  km

Zero

1  km

2  km

3  kmSmall  DH Medium  DH Large  DH

IndividualOn-­site Large  heat  network

PR-­1A_450PPM

-­20246810121416

Zero

1  km

2  km

3  km

Zero

1  km

2  km

3  km

Zero

1  km

2  km

3  km

Small  DH Medium  DH Large  DHIndividualOn-­site Large  heat  network

PR-­5A_450PPM

Heat  supply  cost  (investment  &  operation)  (€/GJ)DH  transmission  cost  (€/GJ)DH  distribution  cost  (€/GJ)

-­50510152025

Zero

1  km

2  km

3  km

Zero

1  km

2  km

3  km

Zero

1  km

2  km

3  kmSmall  DH Medium  DH Large  DH

IndividualOn-­site Large  heat  network

PR-­1A_450PPM

024681012141618

Zero

1  km

2  km

3  km

Zero

1  km

2  km

3  km

Zero

1  km

2  km

3  km

Small  DH Medium  DH Large  DHIndividualOn-­site Large  heat  network

PR-­9A_450PPM

Heat  supply  cost  (investment  &  operation)  (€/GJ)DH  transmission  cost  (€/GJ)DH  distribution  cost  (€/GJ)

Findings

• Large  heat  network  option  economically  optimal– DH  distribution  and  transmission  costs  account  for  large  cost  share

• Scales  important• Results  rather  robust  with  respect  to  climate  policies

Next step

Climate impactsUrban  model

Thanks!

Assumptions Unit 450PPM BAU

2014/2020/2030/2040/2050 2014/2020/2030/2040/2050 Policy tools

CO2 charge €/tonne 16.9/25.2/68.4/110/153 16.9/14.4/23.8/33.5/43

Renewable electricity subsidy €/MWh 20/20/0/0/0 20/20/0/0/0

Energy prices/costs a Natural gas €/MWh 28.7/28.3/25.1/22/18.5 28.7/29.2/30.2/32/33

Fuel oil, light €/MWh 64.2/64.7/61.8/58/54.9 64.2/66.2/70/75/80

Fuel oil, heavy €/MWh 41.6/42/39.8/37.2/34.6 41.6/43.1/46/50/53.5

Coal €/MWh 8.8/8.9/7.6/6/4 8.8/9.4/9.7/9.7/9.7

Bio-oilb €/MWh 42/44.5/53.9/62.5/71.5 42/42.6/47.7/53.9/59.5

Wood chipsc €/MWh 20/20/20/40.5/55 20

Bio pellets €/MWh 35/44/50/59/78 35/41/45/50/53

Excess heatd €/MWh 0.56 0.56

MSWe €/MWh -14.5 -14.5

Electricityc Winter cold (1 month) Winter (2 months) Spring and fall (3 months) Summer (6 months)

€/MWh

55.2/62.9/98/122.2/74.4

54.3/61.4/93.2/122.2/74.4 51.3/57.9/73.1/80/74.4 51.3/64.2/73.1/80/74.4

55.2/54.6/63.8/72.5/80.9 54.3/53.7/62.1/70/77.6 51.3/50.8/57/60.8/67.5

51.3/50.8/63.2/61.4/67.8

Background• EU Directives (2010 &2012)• National goal by 2050• In 2015 the Boverket forecasted that 700,000 newhomes are needed in ten years.

• Boverket has set standards and rules for the heatdemand of new buildings.

• Construction of buildings with very low energy use issupported by the Swedish Energy Agency

àNew areas are built based on LEB standards