modelling and simulation of marine craft dynamics...desirable to derive equations of motion about co...

26
Modelling and Simulation of Marine Craft DYNAMICS Edin Omerdic Senior Research Fellow Mobile & Marine Robotics Research Centre University of Limerick

Upload: others

Post on 15-Mar-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Modelling and Simulation of Marine Craft

DYNAMICSEdin OmerdicSenior Research FellowMobile & Marine Robotics Research CentreUniversity of Limerick

Mobile & Marine Robotics Research Centre

University of Limerick

Outline

DynamicsRigid-Body Equations of Motion

Equations of Motion about CG

Equations of Motion about CO

6 DoF Equations of Motion (ROV)Restoring Forces and Moments

Ocean Current Forces and Moments

Wave Forces and Moments

Propulsion SystemPropeller Thrust and Torque Modelling

Full thruster model

Simulation DiagramsNonlinear 6DoF ROV model (Euler Angles)

Nonlinear 6DoF ROV model (Quaternions)

Mobile & Marine Robotics Research Centre

University of Limerick

GNC Signal Flow

GNC Signal Flow

Weather routing

program

Trajectory

Generator

Motion Control

System

Control

Allocation

Fusion Marine Craft INS (GNSS + AHRS)

OA Sensors

(Radar, Cameras, etc.)

Observer

Weather

data

Waypoints

Guidance

System

Control

System

Obstacle

Avoidance

Module

Estimated

positions and

velocities Navigation

System

Waves, wind

and ocean

currents

Mobile & Marine Robotics Research Centre

University of Limerick

𝑛

𝑏 CO CG

Τ¦π‘Ÿπ‘/𝑛

Τ¦π‘Ÿπ‘”

Τ¦π‘Ÿπ‘”/𝑛

DynamicsRigid-Body Equations of Motion

π‘šπ‘°3Γ—3 𝟎3Γ—3𝟎3Γ—3 𝑰𝑔

αˆΆπ’— ΀𝑔 𝑛𝑏

αˆΆπ’˜ ΀𝑏 𝑛𝑏

+π‘šπ‘Ί π’˜ ΀𝑏 𝑛

𝑏 𝟎3Γ—3

𝟎3Γ—3 βˆ’π‘Ί π‘°π‘”π’˜ ΀𝑏 𝑛𝑏

𝒗 ΀𝑔 𝑛𝑏

π’˜ ΀𝑏 𝑛𝑏

=𝒇𝑔𝑏

π’Žπ‘”π‘

Equations of Motion about CG

Desirable to derive Equations of Motion about CO (to take advantage of geometric properties of craft)

Coordinate Transformation:

𝒗 ΀𝑔 𝑛𝑏

π’˜ ΀𝑏 𝑛𝑏

= 𝑯 π’“π’ˆπ‘

𝒗 ΀𝑏 𝑛𝑏

π’˜ ΀𝑏 𝑛𝑏

𝑯 𝒓𝑔𝑏 =

𝑰3Γ—3 𝑺𝑻 𝒓𝑔𝑏

𝟎3Γ—3 𝑰3Γ—3

𝑴𝑅𝐡𝐢𝐺

π‘ͺ𝑅𝐡𝐢𝐺

Mobile & Marine Robotics Research Centre

University of Limerick

DynamicsRigid-Body Equations of Motion

𝑴𝑅𝐡𝐢𝐺𝑯 𝒓𝑔

π‘αˆΆπ’— ΀𝑏 𝑛𝑏

αˆΆπ’˜ ΀𝑏 𝑛𝑏 + π‘ͺ𝑅𝐡

𝐢𝐺𝑯 𝒓𝑔𝑏

𝒗 ΀𝑏 𝑛𝑏

π’˜ ΀𝑏 𝑛𝑏 =

𝒇𝑔𝑏

π’Žπ‘”π‘

Equations of Motion about CO

𝑯𝑻 π’“π’ˆπ‘ 𝑴𝑅𝐡

𝐢𝐺𝑯 𝒓𝑔𝑏

αˆΆπ’— ΀𝑏 𝑛𝑏

αˆΆπ’˜ ΀𝑏 𝑛𝑏 +𝑯𝑻 𝒓𝑔

𝑏 π‘ͺ𝑅𝐡𝐢𝐺𝑯 𝒓𝑔

𝑏𝒗 ΀𝑏 𝑛𝑏

π’˜ ΀𝑏 𝑛𝑏 = 𝑯𝑻 𝒓𝑔

𝑏𝒇𝑔𝑏

π’Žπ‘”π‘ =

𝒇𝑏𝑏

π’Žπ‘π‘

𝑴𝑅𝐡𝐢𝑂 π‘ͺ𝑅𝐡

𝐢𝑂

𝑴𝑅𝐡𝐢𝑂 =

π‘šπ‘°3Γ—3 βˆ’π‘šπ‘Ί 𝒓𝑔𝑏

π‘šπ‘Ί 𝒓𝑔𝑏 𝑰𝑏

= 𝑴𝑅𝐡𝐢𝑂𝑇 > 0

Rigid-Body System Inertia Matrix Inertia Matrix (Parallel-Axes Theorem)

𝑰𝑏 = 𝑰𝑔 βˆ’π‘šπ‘ΊπŸ 𝒓𝑔𝑏

𝑰𝑔 =

𝐼π‘₯ βˆ’πΌπ‘₯𝑦 βˆ’πΌπ‘₯π‘§βˆ’πΌπ‘¦π‘₯ 𝐼π‘₯ βˆ’πΌπ‘¦π‘§βˆ’πΌπ‘§π‘₯ βˆ’πΌπ‘§π‘¦ 𝐼π‘₯

= 𝑰𝑔𝑇 > 0Unique representation!

𝝉𝑅𝐡𝐢𝑂𝝂𝑅𝐡

πΆπ‘‚αˆΆπ‚π‘…π΅πΆπ‘‚

Mobile & Marine Robotics Research Centre

University of Limerick

DynamicsRigid-Body Equations of Motion

π‘ͺ𝑅𝐡𝐢𝑂 𝒗 =

𝟎3Γ—3 βˆ’π‘šπ‘Ί 𝒗 ΀𝑏 𝑛𝑏 βˆ’π‘šπ‘Ί 𝑺 π’˜ ΀𝑏 𝑛

𝑏 π’“π’ˆπ‘

βˆ’π‘šπ‘Ί 𝒗 ΀𝑏 𝑛𝑏 βˆ’π‘šπ‘Ί 𝑺 π’˜ ΀𝑏 𝑛

𝑏 π’“π’ˆπ‘ π‘šπ‘Ί 𝑺 𝒗 ΀𝑏 𝑛

𝑏 π’“π’ˆπ‘ βˆ’ 𝑺 π‘°π‘π’˜ ΀𝑏 𝑛

𝑏 = βˆ’π‘ͺ𝑅𝐡𝐢𝑂𝑇> 0

Rigid-Body Coriolis and Centripetal MatrixMultiple representations!

π‘ͺ𝑅𝐡𝐢𝑂 𝒗 =

𝟎3Γ—3 βˆ’π‘šπ‘Ί 𝒗 ΀𝑏 𝑛𝑏 βˆ’π‘šπ‘Ί π’˜ ΀𝑏 𝑛

𝑏 𝑺 π’“π’ˆπ‘

βˆ’π‘šπ‘Ί 𝒗 ΀𝑏 𝑛𝑏 +π‘šπ‘Ί π’“π’ˆ

𝑏 𝑺 π’˜ ΀𝑏 𝑛𝑏 βˆ’π‘Ί π‘°π‘π’˜ ΀𝑏 𝑛

𝑏 = βˆ’π‘ͺ𝑅𝐡𝐢𝑂𝑇> 0

π‘ͺ𝑅𝐡𝐢𝑂 𝒗 =

π‘šπ‘Ί π’˜ ΀𝑏 𝑛𝑏 βˆ’π‘šπ‘Ί π’˜ ΀𝑏 𝑛

𝑏 𝑺 π’“π’ˆπ‘

π‘šπ‘Ί π’“π’ˆπ‘ 𝑺 π’˜ ΀𝑏 𝑛

𝑏 βˆ’π‘Ί π‘°π‘π’˜ ΀𝑏 𝑛𝑏

Generalized vector of External forces and moments

𝝉𝑅𝐡𝐢𝑂 =

𝒇𝑏𝑏

π’Žπ‘π‘

𝑯𝑻 π’“π’ˆπ‘ 𝑴𝑅𝐡

𝐢𝐺𝑯 𝒓𝑔𝑏

αˆΆπ’— ΀𝑏 𝑛𝑏

αˆΆπ’˜ ΀𝑏 𝑛𝑏 +𝑯𝑻 𝒓𝑔

𝑏 π‘ͺ𝑅𝐡𝐢𝐺𝑯 𝒓𝑔

𝑏𝒗 ΀𝑏 𝑛𝑏

π’˜ ΀𝑏 𝑛𝑏 = 𝑯𝑻 𝒓𝑔

𝑏𝒇𝑔𝑏

π’Žπ‘”π‘ =

𝒇𝑏𝑏

π’Žπ‘π‘

𝑴𝑅𝐡𝐢𝑂 π‘ͺ𝑅𝐡

𝐢𝑂𝝉𝑅𝐡𝐢𝑂𝝂𝑅𝐡

πΆπ‘‚αˆΆπ‚π‘…π΅πΆπ‘‚

Mobile & Marine Robotics Research Centre

University of Limerick

DynamicsRigid-Body Equations of Motion

6 DoF Rigid-Body Simulation ModelAttitude representation: Euler Angles

r

q

p

w

v

u

b

nb

b

nb

/

/

w

vv

nb

n

nb

ΞΈ

pΞ·

/

Y

P

R

z

y

x

n

n

n

nb

n

nb

ΞΈ

pΞ· /

Gain Integrator

0

00 /

nb

n

nb

ΞΈ

pΞ·

0

00

/

/

b

nb

b

nb

w

vv

αˆΆπ’‘ ΀𝑏 𝑛𝑛

αˆΆπœ½π‘›π‘=

𝑹𝑏𝑛 πœ½π‘›π‘ 𝟎3Γ—3𝟎3Γ—3 π‘»πœƒ πœ½π’π’ƒ

𝒗 ΀𝑏 𝑛𝑏

π’˜ ΀𝑏 𝑛𝑏

ሢ𝜼 = π‘±πœ£ 𝜼 𝝂

b

nb

b

nb

/

/

w

vv

𝑴𝑅𝐡 αˆΆπ‚ + π‘ͺ𝑅𝐡𝒗 = 𝝉𝑅𝐡

αˆΆπ‚ = π‘΄π‘…π΅βˆ’1 𝝉𝑅𝐡 βˆ’ π‘ͺ𝑅𝐡𝒗

Gain

π‘ͺ𝑅𝐡KINEMATICS

DYNAMICS

+

βˆ’

𝝉𝑅𝐡𝑴𝑅𝐡

βˆ’1

GainIntegrator

Mobile & Marine Robotics Research Centre

University of Limerick

DynamicsRigid-Body Equations of Motion

6 DoF Rigid-Body Simulation ModelAttitude representation: Quaternions

r

q

p

w

v

u

b

nb

b

nb

/

/

w

vv

Gain Integrator

0

00

/

/

b

nb

b

nb

w

vv

b

nb

b

nb

/

/

w

vv

𝑴𝑅𝐡 αˆΆπ‚ + π‘ͺ𝑅𝐡𝒗 = 𝝉𝑅𝐡

αˆΆπ‚ = π‘΄π‘…π΅βˆ’1 𝝉𝑅𝐡 βˆ’ π‘ͺ𝑅𝐡𝒗

Gain

π‘ͺ𝑅𝐡KINEMATICS

DYNAMICS

+

βˆ’

𝝉𝑅𝐡𝑴𝑅𝐡

βˆ’1

GainIntegrator

q

pΞ·

n

nb /

3

2

1

0

/

q

q

q

q

z

y

x

n

n

n

n

nb

q

pΞ·

αˆΆπ’‘ ΀𝑏 𝑛𝑛

αˆΆπ’’=

𝑹𝑏𝑛 𝒒 𝟎3Γ—3𝟎4Γ—3 𝑻𝒒 𝒒

𝒗 ΀𝑏 𝑛𝑏

π’˜ ΀𝑏 𝑛𝑏

ሢ𝜼 = 𝑱𝒒 𝜼 𝝂

0

00 /

q

pΞ·

n

nb

Mobile & Marine Robotics Research Centre

University of Limerick

Dynamics6 DoF Equations of Motion (ROV)

6 DoF Equations of Motion including Ocean Currents (ROV)

𝑴𝑅𝐡 αˆΆπ‚ + π‘ͺ𝑅𝐡 𝒗 𝒗 + π’ˆ 𝜼 +𝑴𝐴 αˆΆπ‚π’“ + π‘ͺ𝐴 π’—π‘Ÿ π’—π‘Ÿ + 𝑫 π’—π‘Ÿ π’—π‘Ÿ = π‰π‘€π‘Žπ‘£π‘’ + π‰π‘π‘Ÿπ‘œπ‘π‘’π‘™π‘ π‘–π‘œπ‘›

rigid-body and hydrostatic terms hydrodynamic terms

Restoring Forces and Moments π‘Š = π‘šπ‘” 𝐡 = πœŒπ‘”π›»

π’ˆ 𝜼 = βˆ’π’‡π‘”π‘ + 𝒇𝑏

𝑏

𝒓𝑔𝑏 Γ— 𝒇𝑔

𝑏 + 𝒓𝑏𝑏 Γ— 𝒇𝑏

𝑏 𝒇𝑔𝑛 =

00π‘Š

𝒇𝑏𝑛 = βˆ’

00𝐡

𝒇𝑔𝑛

𝒇𝑏𝑛

𝐢𝐡

Buoyancy force

Weight force

𝐢𝐺

𝑧𝑛

Euler Angles Quaternions

𝒇𝑔𝑏 = 𝑹𝑏

𝑛 πœ½π‘›π‘βˆ’1𝒇𝑔

𝑛

𝒇𝑏𝑏 = 𝑹𝑏

𝑛 πœ½π‘›π‘βˆ’1𝒇𝑏

𝑛

𝒇𝑔𝑏 = 𝑹𝑏

𝑛 𝒒 βˆ’1𝒇𝑔𝑛

𝒇𝑏𝑏 = 𝑹𝑏

𝑛 𝒒 βˆ’1𝒇𝑏𝑛

Mobile & Marine Robotics Research Centre

University of Limerick

Dynamics6 DoF Equations of Motion (ROV)

6 DoF Equations of Motion including Ocean Currents (ROV)

𝑴𝑅𝐡 αˆΆπ‚ + π‘ͺ𝑅𝐡 𝒗 𝒗 + π’ˆ 𝜼 +𝑴𝐴 αˆΆπ‚π’“ + π‘ͺ𝐴 π’—π‘Ÿ π’—π‘Ÿ + 𝑫 π’—π‘Ÿ π’—π‘Ÿ = π‰π‘€π‘Žπ‘£π‘’ + π‰π‘π‘Ÿπ‘œπ‘π‘’π‘™π‘ π‘–π‘œπ‘›

rigid-body and hydrostatic terms hydrodynamic terms

Ocean Current Velocity Vector(Irrotational Fluid)

n

cnb

n

b

n

cnb

b

n

b

c

b

c vΞΈRvΞΈRv0

vv

13

c

1,

Relative Velocity Vector

π’—π‘Ÿ = 𝒗 βˆ’ 𝒗𝑐 =𝒗 ΀𝑏 𝑛𝑏

π’˜ ΀𝑏 𝑛𝑏 βˆ’

𝒗𝒄𝑏

𝟎3Γ—1=

𝒗 ΀𝑏 𝑛𝑏 βˆ’ 𝒗𝒄

𝑏

π’˜ ΀𝑏 𝑛𝑏

Assumption: αˆΆπ‚π’„ β‰ˆ 𝟎

𝑴𝑅𝐡 +𝑴𝐴 αˆΆπ‚ + π‘ͺ𝑅𝐡 π’—π‘Ÿ + π‘ͺ𝐴 π’—π‘Ÿ π’—π‘Ÿ +𝑫 π’—π‘Ÿ π’—π‘Ÿ + π’ˆ 𝜼 = π‰π‘€π‘Žπ‘£π‘’ + π‰π‘π‘Ÿπ‘œπ‘π‘’π‘™π‘ π‘–π‘œπ‘›

𝑴 π‘ͺ π’—π‘Ÿ

Mobile & Marine Robotics Research Centre

University of Limerick

Dynamics6 DoF Equations of Motion (ROV)

6 DoF Equations of Motion including Ocean Currents (ROV)

Hydrodynamic System Inertia (Added-Mass) Matrix

Hydrodynamic Coriolis-Centripetal (Added-Mass) Matrix

𝑴𝑅𝐡 +𝑴𝐴 αˆΆπ‚ + π‘ͺ𝑅𝐡 π’—π‘Ÿ + π‘ͺ𝐴 π’—π‘Ÿ π’—π‘Ÿ +𝑫 π’—π‘Ÿ π’—π‘Ÿ + π’ˆ 𝜼 = π‰π‘€π‘Žπ‘£π‘’ + π‰π‘π‘Ÿπ‘œπ‘π‘’π‘™π‘ π‘–π‘œπ‘›

𝑴 π‘ͺ π’—π‘Ÿ

𝑴𝐴 = 𝑴𝐴𝑇 β‰₯ 𝟎

r

q

p

w

v

u

N

M

K

Z

Y

X

00000

00000

00000

00000

00000

00000

AM

𝑴𝐴 =𝑴11 𝑴12

𝑴21 𝑴22π‘ͺ𝐴 π’—π‘Ÿ =

𝟎3Γ—3 βˆ’π‘Ί 𝑴11𝒗1π‘Ÿ +𝑴12𝒗2π‘Ÿβˆ’π‘Ί 𝑴11𝒗1π‘Ÿ +𝑴12𝒗2π‘Ÿ βˆ’π‘Ί 𝑴21𝒗1π‘Ÿ +𝑴22𝒗2π‘Ÿ

π‘ͺ𝐴 π’—π‘Ÿ = βˆ’π‘ͺ𝐴𝑇 π’—π‘Ÿ

Hydrodynamic Damping Matrix

rrrr

rqqq

rppp

rwww

rvvv

ruuu

rNN

qMM

pKK

wZZ

vYY

uXX

00000

00000

00000

00000

00000

00000

rvD

Mobile & Marine Robotics Research Centre

University of Limerick

Dynamics6 DoF Equations of Motion (ROV)

Wave Spectra

6 DoF Equations of Motion including Ocean Currents (ROV)

𝑴𝑅𝐡 +𝑴𝐴 αˆΆπ‚ + π‘ͺ𝑅𝐡 π’—π‘Ÿ + π‘ͺ𝐴 π’—π‘Ÿ π’—π‘Ÿ +𝑫 π’—π‘Ÿ π’—π‘Ÿ + π’ˆ 𝜼 = π‰π‘€π‘Žπ‘£π‘’ + π‰π‘π‘Ÿπ‘œπ‘π‘’π‘™π‘ π‘–π‘œπ‘›

𝑴 π‘ͺ π’—π‘Ÿ

Mobile & Marine Robotics Research Centre

University of Limerick

Dynamics6 DoF Equations of Motion (ROV)

Modelling of Ocean Waves

Reference:T. Perez. Ship Motion Control Course Keeping and Roll Stabilisation using Rudders and Fins. Springer, 2005.

Mobile & Marine Robotics Research Centre

University of Limerick

Dynamics6 DoF Equations of Motion (ROV)

Modelling of Ocean Waves

Mobile & Marine Robotics Research Centre

University of Limerick

Dynamics6 DoF Equations of Motion (ROV)

Waves in short-crested seas

Wave spectrum (mean direction 45Β°)

Elevation of the surface (200 components)

Potential (z = 0m) Pressure (z = 0m)

Waves in long-crested seas

Wave spectrum (direction 45Β°)

Elevation of the surface (20 components)

Potential (z = 0m) Pressure (z = 0m)

Reference:O. Smogeli. Marine Systems Simulator (MSS), Norwegian University of Science and Technology, Trondheim, 2006.

N

E

Mobile & Marine Robotics Research Centre

University of Limerick

KinematicsTransformations BODY-NEDQuaternions

Wave

Spectrum

1st order

Force RAO

Sea

State

𝑆 πœ”

𝐻𝑠, 𝑇𝑧

Wave

Amplitude

2nd order

Force RAO

1st order Wave

Induced Force

π΄π‘˜

2nd order Wave

Drift Force

π‰π‘€π‘Žπ‘£π‘’1

π‰π‘€π‘Žπ‘£π‘’2

Force RAO: Wave Amplitude ↔ Wave-Induced Force

Mobile & Marine Robotics Research Centre

University of Limerick

DynamicsPropulsion System

Propulsion System

6 DoF Equations of Motion including Ocean Currents (ROV)

𝑴𝑅𝐡 +𝑴𝐴 αˆΆπ‚ + π‘ͺ𝑅𝐡 π’—π‘Ÿ + π‘ͺ𝐴 π’—π‘Ÿ π’—π‘Ÿ +𝑫 π’—π‘Ÿ π’—π‘Ÿ + π’ˆ 𝜼 = π‰π‘€π‘Žπ‘£π‘’ + π‰π‘π‘Ÿπ‘œπ‘π‘’π‘™π‘ π‘–π‘œπ‘›

𝑴 π‘ͺ π’—π‘Ÿ

Mobile & Marine Robotics Research Centre

University of Limerick

Thruster Modelling

Propeller Thrust:

Propeller Torque:

Propeller Efficiency:

Advance Ratio:

β†’

Bilinear Thruster Model:Linear approximation:

β†’

Affine Thruster Model:

Reference:Fossen, T.I. and Sagatun, S.I. Adaptive Control of Nonlinear Underwater Robotic Systems. Proceedings of the IEEE International Conference on Robotics and Automation, Sacramento, CA, 1991, pp. 1687-1694.

DynamicsPropulsion System

Mobile & Marine Robotics Research Centre

University of Limerick

Bilinear Thruster Model

DynamicsPropulsion System

Mobile & Marine Robotics Research Centre

University of Limerick

Affine Thruster Model

DynamicsPropulsion System

Mobile & Marine Robotics Research Centre

University of Limerick

Affine Thruster Model

DynamicsPropulsion System

Mobile & Marine Robotics Research Centre

University of Limerick

Affine Thruster Model

DynamicsPropulsion System

Mobile & Marine Robotics Research Centre

University of Limerick

DynamicsPropulsion System

Full Thruster Model

Mobile & Marine Robotics Research Centre

University of Limerick

DynamicsSimulation Diagrams

Nonlinear 6DoF ROV model (Euler Angles)

αˆΆπ‚ = 𝑴𝑅𝐡 +π‘΄π΄βˆ’1 π‰π‘€π‘Žπ‘£π‘’ + π‰π‘π‘Ÿπ‘œπ‘π‘’π‘™π‘ π‘–π‘œπ‘› βˆ’ π‘ͺ𝑅𝐡 π’—π‘Ÿ + π‘ͺ𝐴 π’—π‘Ÿ π’—π‘Ÿ βˆ’ 𝑫 π’—π‘Ÿ π’—π‘Ÿ βˆ’ π’ˆ 𝜼

v Ξ· Ξ·

Gain Integrator

0Ξ· 0v

v

Gain

KINEMATICSDYNAMICS

+π‰π‘π‘Ÿπ‘œπ‘

GainIntegrator

n

cnb

n

b

n

cnb

b

n

b

c

b

c vΞΈRvΞΈRv0

vv

13

c

1

v

+

βˆ’

𝑴𝑅𝐡 +π‘΄π΄βˆ’1

π‰π‘€π‘Žπ‘£π‘’

Gaincr vvv

π‘ͺ𝑅𝐡 + π‘ͺ𝐴

βˆ’

𝑫

βˆ’βˆ’

π’ˆ

b

nb

b

nb

/

/

w

vv

nb

n

nb

ΞΈ

pΞ· /

+

Mobile & Marine Robotics Research Centre

University of Limerick

DynamicsSimulation Diagrams

Nonlinear 6DoF ROV model (Quaternions)

αˆΆπ‚ = 𝑴𝑅𝐡 +π‘΄π΄βˆ’1 π‰π‘€π‘Žπ‘£π‘’ + π‰π‘π‘Ÿπ‘œπ‘π‘’π‘™π‘ π‘–π‘œπ‘› βˆ’ π‘ͺ𝑅𝐡 π’—π‘Ÿ + π‘ͺ𝐴 π’—π‘Ÿ π’—π‘Ÿ βˆ’ 𝑫 π’—π‘Ÿ π’—π‘Ÿ βˆ’ π’ˆ 𝜼

v Ξ· Ξ·

Gain Integrator

0Ξ· 0v

v

Gain

KINEMATICSDYNAMICS

+π‰π‘π‘Ÿπ‘œπ‘

GainIntegrator

n

c

n

b

n

c

b

n

b

c

b

c vqRvqRv0

vv

13

c

1

v

+

βˆ’

𝑴𝑅𝐡 +π‘΄π΄βˆ’1

π‰π‘€π‘Žπ‘£π‘’

Gaincr vvv

π‘ͺ𝑅𝐡 + π‘ͺ𝐴

βˆ’

𝑫

βˆ’βˆ’

π’ˆ

b

nb

b

nb

/

/

w

vv

q

pΞ·

n

nb /

+