modelling and computation of dynamic phase transition of ...modelling and computation of dynamic...

30
Technische Universität München Lehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik Univ.-Prof. Dr.-Ing. habil. G. H. Schnerr FLM Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - Michael Mihatsch JASS 2009 09.03.-19.03.2008, St. Petersburg, Russia

Upload: others

Post on 26-Mar-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

Modelling and Computation of Dynamic Phase Transition of Liquids- Compressible Flows with Cavitation -

Michael MihatschJASS 2009

09.03.-19.03.2008, St. Petersburg, Russia

Page 2: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

Outline

Introduction Important numbers

Physical effekts

Modeling CATUMCavitation Technische Universität München

Numerical results and validation - Spherical body:

- Hydrofoil

- Prismatic body – cavitation erosion

Page 3: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

initially single-phase liquid fluid pl ≈ O(1-103 bar), T ≈ 300-400 Kpv≈ O(10-2-1 bar)ρv≈ O(10-2-1 kg/m3)ρl ≈ O(103 kg/m3)

void fraction 0 ≤ α ≤ 1speed of sound c ≈ O(1-103 m/s) strong variation of the Mach number M≈ O(0-101)

Dominating - strong density variation ρl/ρv ≈ 104

- strong variation of speed of sound cl/cmin ≈ 103

- coexistence of compressible and weak compressible flow regimes- formation of violent shocks in collapse region- intense noise, vibration and erosion

Physics of cavitating flows

Page 4: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

T

p

liquid

vapour

superheated liquid

approximatelyisothermal

∞,sp

∞,sp coexistence of phasesequilibrium

metastabletime scale of flow

Cavitation dynamics

1. Process

Depressurization - evaporationincrease of volume - 1 : 50000displacement of liquid fluidinstability

2. Process

collapseimplosion of bubbles and cavitation patternsviolent shockserosion

Compressibility

local very low wave speed c ≤ 10 m/sstiffness because of coupling with regimes of c ≈ 1500 m/s

Page 5: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

Nucleation

Homogeneous

Nucleus consists of molecules

Exclusive hom. nucleation allows high surface tention and highly metastablestates

Only important with pure water

Heterogeneous

Impurities like dissolved gas or crevicesat walls or particles act as nucleus

Dominant in most technical applications

Page 6: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

Cavitation phenomena

Vortex

cavitation

Bubble and cloud cavitation

Sheet and cloud cavitation

Supercavitation

Page 7: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

Outline

Introduction Important numbers

Physical effekts

Modeling CATUMCavitation Technische Universität München

Numerical results and validation - Spherical body

- Hydrofoil

- Single bubble collaps

- Prismatic body – cavitation erosion

Page 8: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

Size of cavitation structures

Sphere diameter dsphere=1,5 10-1 m

Size of a fluidemement delement=5,2 10-3m

dsphere

delement

Page 9: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

∫ ⋅=

cellcell V

dVEV

E ρρ 1

Two-phase flow properties via integral averages per cell

subgrid scale structures → integral average properties (FVM)

1 2 3

αcell1 αcell2 αcell3

cell

cell vapor,cell V

V=αVapor volume fraction per cell

αcell1 = αcell2 = αcell3

∫ ⋅=cell

cell V

dVuV

u ρρ 1

Stable thermodynamic conditions constitutive relations (EOS) determine cell variables p, T

),( Tpρρ = ),( Tpee =

∫ ⋅=

cellcell V

dVV

ρρ 1

Page 10: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

- “Equation of state” for liquid water: modified Tait “EOS” (thermal and caloric EOS for pure liquids)

( ) ( )( ) ( ) BT

TpBTpn

satlsat −⎟

⎟⎠

⎞⎜⎜⎝

⎛⋅+=

,,

ρρρ

( ) ( ) reflrefvll eTTcTe ,+−⋅=

- EOS of pure water vapour: perfect gas law (thermal and caloric description of pure vapour)

( ) TRTp v ⋅⋅= ρρ ,

( ) ( ) vrefvrefvvv leTTcTe ++−⋅= ,

For water: B ≈ 3.3 ·108 Pa, n ≈ 7.15, reference state ref.: expected mean temperature (293.15 K).

-EOS for saturated water/vapour: saturation conditions – Oldenbourg polynomials (conditions for saturated mixture of water and water vapour for a void fraction α)

( ) ( ) ( )TT satlsatv ,, 1 ραραρ ⋅−+⋅=

( ) ( ) ( ) ( ) ( ). 1 ,, TeTTeTe lsatlvsatv ⋅⋅−+⋅⋅= ραραρ

( )Tpp sat=

Thermodynamic Equilibrium Conditions - Substitute EOS

Page 11: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

Combined EOS contains relations for:

- pure water → modified Tait equation

- vapour phase → ideal gas law

- two-phase region → saturation conditions

psat(Tsat)

Tsat

Thermodynamic model - EOS

Page 12: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

CATUM - Cavitation Technische Universität München

Finite volume Method

Compressible, frictionless, unsteady flows -> Euler equations

Grid: structured hexagonal cells

Flux function: density based

Solver: mod. Riemann solver

2nd order accurate

explicit

Page 13: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

Outline

Introduction Important numbers

Physical effekts

Modeling CATUMCavitation Technische Universität München

Numerical results and validation - Spherical body

- Hydrofoil

- Single bubble collaps

- Prismatic body – cavitation erosion

Page 14: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

Numerical results – application: two-phase flow

3-D simulation of Branders experiment of cavitation around a sphere

1.3·106 cells

1.2·106 time steps, Δt ≈ 3·10-7 s

84 CPU (Operon) 80 h.

Page 15: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

Numerical results – application: two-phase flow

Comparison of two-phase structures experiment/simulation

Experiment: Brandner, P. A., Walker, G. J., Niekamp, P. N. and Anderson, B., “An Investigation of Cloud Cavitation about a Sphere.” In: 16th Australasian Fluid Mechanics Conference, 2 – 7 December 2007, Crown Placa, Gold Coast, Australia, 2007.

Simulation CATUM: Isosurfaces α=0.05, one instant in time.

Page 16: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

3-D simulation – span/channel width 0.3 m

Numerical results – 2-D hydrofoil

2.4·107 cells6·105 time steps, Δt ≈ 5·10-8 s,

Page 17: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

2.4·107 cells,6·105 time steps, Δt ≈ 5·10-8 s,96/192 CPU (lx64a Opteron) 500 h

Numerical results – 2-D hydrofoil

fzyklus = 100 Hz,

Δtmovie = 3·10-2 s

Page 18: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

12.500 cells

50.000 cells

200.000 cells

800.000 cells

2-D cavitation on 2-D hydrofoil

Numerical results – fragmentation of two-phase flow

Effect of the spatial resolution on the structures of the vapor volume fraction α

C1 C1

C1 C1

Page 19: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

2-D cavitation on 2-D hydrofoil

Numerical results – fragmentation of two-phase flow

Effect of the spatial resolution on the instantaneous maximum loads –pressure footprint over one cycle

12.500 cellspmax≈500 bar

50.000 cellspmax≈800 bar

pmax≈1200 bar

pmax≈2000 bar

200.000 cells

800.000 cells

Page 20: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

12.500 cellspmax≈500 bar

50.000 cellspmax≈800 bar

200.000 cellspmax≈1200 bar

800.000 cellspmax≈2000 bar

2-D cavitation on 2-D hydrofoil

Numerical results – fragmentation of two-phase flow

Effect of the spatial resolution on the instantaneous maximum loads –pressure footprint over one cycle, zooms of previous pictures

Page 21: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

Collaps induced maximum pressure on the suction side - pmax ≈ 2000 bar

Analysed time: one period with Δtzyklus = 10-2 s

2-D hydrofoil – maximum pressure

Page 22: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

Kuiper, G. - MARIN Maritime Research Institute - The Netherlands

Cavitation erosion

Page 23: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

Driving mechanisms of cavitation erosion

Page 24: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

Initial radius R0=0.5 mm, time step ΔtCFD=6.0·10-9 s, collapse time 1.7 ·10-5 s,

Initial pressures pliquid=10.0 bar, pbubble=0.023 bar , T=293 K, water/vapor

J.P. Franc, J.M. Michel: „Fundamentals of Cavitation“, 2004 Simulation CATUM

M4 M5

Single bubble collapse with wall interaction

Page 25: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

0,85 m

0,3 m

0,3 m

uin=11 m/sTin=300 Kσref=1.8

Pout,mix=1.12 bar

3.1·106 cells

106 time steps, Δt ≈ 3·10-7 s

64 CPU (SGI AltixBx2) 240 h.

3-D simulation of the “Obernach-experiment” on cavitation erosion

Numerical results – Erosive two-phase flow

Page 26: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

Perspective view: Two-phase regions and staticpressure at the walls, ΔtMovie=0.17 s.

Top view: Two-phase regions, ΔtMovie=0.17 s.

Numerical results – Erosive two-phase flow

Dynamic phase-transition and related pressure field

Page 27: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

Experiment: Huber R., Geschwindigkeitsmaßstabseffekte bei der Kavitationserosion in der Scherschicht nach prismatischen Kavitatoren, Berichte des Lehrstuhls und der Versuchsanstalt für Wasserbau und Wasserwirtschaft, Hrsg. Univ.-Prof. Dr.-Ing. Th. Strobl, Nr. 102, 2004.

Simulation CATUM: Isosurfaces α=0.01, one instant in time.

Numerical results – Erosive two-phase flow

Comparison of two-phase structures experiment/simulation

Page 28: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

p [bar]> 2

1

0.02

1 2

3

Δt1 2=1.17·10-4 s

Δt2 3=0.58·10-4 s

Numerical results – Erosive two-phase flow

Fragmentation of two-phase structure, collapse, shock formation

pmax = 65 bar

Page 29: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

Experiment: Huber R., Geschwindigkeitsmaßstabseffekte bei der Kavitationserosion in der Scherschicht nach prismatischen Kavitatoren, Berichte des Lehrstuhls und der Versuchsanstalt für Wasserbau und Wasserwirtschaft, Hrsg. Univ.-Prof. Dr.-Ing. Th. Strobl, Nr. 102, 2004.

Simulation CATUM: Collapse induced maximum pressure at the bottomwall of the numerical test-section, analysis interval 0.058 seconds.Stars indicate the barycenters (experimental) of the erosion ares.

Numerical results – Erosive two-phase flow

Areas of intense erosion (experiment) - maximum pressures (simulation)

Page 30: Modelling and Computation of Dynamic Phase Transition of ...Modelling and Computation of Dynamic Phase Transition of Liquids - Compressible Flows with Cavitation - ... Schnerr FLM

Technische Universität MünchenLehrstuhl für Fluidmechanik – Fachgebiet Gasdynamik

Univ.-Prof. Dr.-Ing. habil. G. H. SchnerrFLM

Discussion