mit15_093j_f09_sdp

Upload: chuchomat87

Post on 03-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 MIT15_093J_F09_sdp

    1/51

    Introduction to Semidefinite Programming (SDP)

    RobertM.Freund

    1 Introduction

    Semidefinite programming (SDP) isthemost exciting development inmath-ematicalprogramminginthe1990s.SDPhasapplicationsinsuchdiversefields astraditionalconvex constrained optimization, controltheory, andcombinatorial optimization. BecauseSDP is solvable via interior pointmethods,mostoftheseapplicationscanusuallybesolvedveryefficientlyinpracticeaswellasintheory.

    2 Review of Linear Programming

    Considerthelinearprogrammingprobleminstandardform:

    LP : minimize c xs.t. ai x=bi, i= 1, . . . ,m

    n+.x

    Herexisavectorofnvariables,andwewritec xfortheinnerproduct

    jn=1cjxj,etc.

    Also,n+ n x0},andwecalln+thenonnegativeorthant.n

    :={x |In fact, isaclosed convex cone, whereKiscalledaclosedaconvexcone+ifKsatisfiesthefollowingtwoconditions:

    1

  • 8/12/2019 MIT15_093J_F09_sdp

    2/51

    3

    Ifx,wK,thenx +wKforallnonnegativescalarsand.Kisaclosedset.

    Inwords,LP isthefollowingproblem:

    Minimize the linear function c x, subject to the condition that xmust solvemgiven equations ai x=bi, i= 1, . . . , m, and that xmust lie in the closedconvex cone K= n .+

    Wewillwritethestandardlinearprogrammingdualproblemas:

    m

    LD: maximize yibii=1

    m

    s.t. yiai +s=ci=1

    n+.s

    GivenafeasiblesolutionxofLP anda feasiblesolution (y, s)ofLD,the

    duality gap issimplyc xmi=1yibi = (cmi=1yiai) x=s x0,because x0ands0.WeknowfromLPdualitytheorythatsolongasthepri-malproblemLP isfeasibleandhasboundedoptimalobjectivevalue,thenthe primalandthe dual bothattain theiroptimawithno duality gap.Thatis,thereexistsx and (y, s) feasiblefortheprimalanddual,respectively,

    m suchthatc x i=1yi bi =s x = 0.

    Facts about Matrices and the Semidefinite Cone

    IfXisannnmatrix,thenXisa positivesemidefinite (psd)matrix ifnvTXv0 forany v .

    2

  • 8/12/2019 MIT15_093J_F09_sdp

    3/51

    IfXisannnmatrix,thenXisa positive definite (pd)matrix ifnvTXv>0 forany v , v= 0.

    LetSn nmatrices, and letSn +thesetof positivesemidefinite (psd)nnsymmetricmatrices. SimilarlyletSn denote thesetof positive definite (pd) n

    nsymmetricmatrices.++

    LetXandY beanysymmetricmatrices.WewriteX0todenotethatX issymmetricandpositivesemidefinite,andwewriteXYtodenotethatXY 0.WewriteX0todenotethatX issymmetricandpositivedefinite,etc.

    2Remark1 Sn+

    denote the set of symmetricn denote

    {X Sn | X 0} is a closed convex cone in n(n+ 1)/2. of=dimension n

    nTo see whythis remark is true, suppose thatX,W S

    +

    ,0.Foranyv n,wehave:vT(X+W)v=vTXv+vTWv0,

    . Pickanyscalars

    wherebyX n nW S This shows thatS+ +++forwardtoshowthatSn

    Recallthefollowingpropertiesofsymmetricmatrices:

    IfX Sn,thenX =QDQT forsomeorthonormalmatrixQandsomediagonalmatrixD. (RecallthatQisorthonormalmeansthatQ1=QT,andthatDisdiagonalmeansthattheoffdiagonalentriesofDareallzeros.)

    3

    isacone.Itisalsostraight-.isaclosedset.

  • 8/12/2019 MIT15_093J_F09_sdp

    4/51

    4

    If X = QDQT

    asabove, then the columns ofQ forma set of n orthogonaleigenvectorsofX,whoseeigenvaluesarethecorrespondingdiagonalentriesofD.

    X 0ifandonlyifX = QDQT wherethe eigenvalues (i.e., thediagonalentriesofD) areallnonnegative.

    X 0ifandonlyifX = QDQT wherethe eigenvalues (i.e., thediagonalentriesofD) areallpositive.

    IfX0andifXii = 0,thenXij =Xji = 0forallj = 1, . . . , n.ConsiderthematrixMdefinedasfollows:

    P vM= T ,v d

    whereP 0,v isavector,andd isascalar. ThenM 0ifandonlyifd vTP1v >0.Semidefinite Programming

    LetXSn.WecanthinkofXasamatrix,orequivalently,asanarrayofn2 componentsofthe form (x11, . . . , xnn). Wecanalso justthinkofXasanobject (avector)in thespaceSn. AllthreedifferentequivalentwaysoflookingatXwillbeuseful.

    WhatwillalinearfunctionofXlooklike? IfC(X) isalinearfunctionofX,thenC(X) canbewrittenasC X,where

    n n

    C X:= CijXij .i=1j=1

    IfX isasymmetricmatrix,thereisnolossofgeneralityinassumingthat

    4

  • 8/12/2019 MIT15_093J_F09_sdp

    5/51

    thematrixC isalsosymmetric. Withthisnotation,wearenowreadytodefineasemidefinite program. Asemidefinite program (SDP)isanopti-mizationproblemoftheform:

    SDP : minimize C Xs.t. Ai X=bi , i= 1, ... , m,

    X0,

    Notice that inanSDP thatthevariable isthematrixX, butitmightbehelpfultothinkofXasanarrayofn2 numbersorsimplyasavectorinSn.TheobjectivefunctionisthelinearfunctionC XandtherearemlinearequationsthatXmustsatisfy,namelyAi X=bi , i= 1, . . . , m.ThevariableXalsomust lie in the (closedconvex)coneof positivesemidef-initesymmetricmatricesSn NotethatthedataforSDP consistsofthe+.symmetricmatrixC(whichisthedatafortheobjectivefunction) andthemsymmetricmatricesA1, . . . , Am,andthemvectorb,whichformthemlinearequations.

    LetusseeanexampleofanSDP forn=3andm=2. Definethefollowingmatrices:

    1 0 1 0 2 8 1 2 3

    A1=0 3 7, A2=2 6 0, and C=2 9 0,1 7 5 8 0 4 3 0 7

    andb1= 11andb2= 19.ThenthevariableXwillbethe3

    3symmetric

    matrix:

    5

  • 8/12/2019 MIT15_093J_F09_sdp

    6/51

    x11 x12 x13 X= x21 x22 x23 ,x31 x32 x33

    andso,forexample,

    C X = x11+ 2x12+ 3x13+ 2x21+ 9x22+ 0x23+ 3x31+ 0x32+ 7x33= x11+ 4x12+ 6x13+ 9x22+ 0x23+ 7x33.

    since,inparticular,X issymmetric. ThereforetheSDP canbewrittenas:

    SDP: minimize x11+ 4x12+ 6x13+ 9x22+ 0x23+ 7x33

    s.t.x11+ 0x12+ 2x13+ 3x22+ 14x23+ 5x33 = 11

    0x11+ 4x12+ 16x13+ 6x22+ 0x23+ 4x33 = 19 x11 x12 x13

    X=x21 x22 x230.x31 x32 x33

    NoticethatSDP looksremarkablysimilartoalinearprogram. However,thestandardLPconstraintthatxmust lie in the nonnegativeorthant is re-placedbytheconstraintthatthevariableXmust lie in theconeof positivesemidefinitematrices.Justasx0statesthateachofthencomponentsofxmustbenonnegative,itmaybehelpfultothinkofX

    0asstating

    thateachoftheneigenvalues ofXmustbenonnegative.

    6

  • 8/12/2019 MIT15_093J_F09_sdp

    7/51

    Itiseasytoseethata linearprogramLP isaspecialinstanceofanSDP.Toseeonewayof doingthis,suppose that (c, a1, . . . , am, b1, . . . , bm)comprisethedataforLP.Thendefine:

    ai1 0 ... 0

    c1 0 ... 0

    0 ai2 ... 0 0 c2 ... 0

    Ai = ... ... ... ... , i=1, ...,m, and C= ... ... ... ....

    0 0 ... ain 0 0 ... cn

    ThenLP canbewrittenas:

    SDP : minimize C Xs.t. Ai X=bi , i= 1, ... ,m,

    Xij = 0, i= 1, . . . , n, j =i + 1, ... , n,X0,

    withtheassociationthat

    x1 0 . . . 0 0 x2 . . . 0

    X= . . . . .. . . . . . . . 0 0 . . . xn

    Ofcourse,inpracticeonewouldneverwant toconvertaninstanceof LPintoaninstanceofSDP. TheaboveconstructionmerelyshowsthatSDPincludeslinearprogrammingasaspecialcase.

    7

  • 8/12/2019 MIT15_093J_F09_sdp

    8/51

    5 Semidefinite Programming DualityThe dual problemofSDP is defined (or derived fromfirst principles)to be:

    m

    SDD: maximize yibii=1

    m

    s.t. yiAi +S=Ci=1

    S

    0.

    One convenient wayofthinkingabout this problem is as follows.Given mul-mtipliersy1, . . . , ym,theobjective istomaximizethe linear function i=1yibi.

    TheconstraintsofSDDstatethatthematrixSdefinedas

    m

    S=C yiAii=1

    mustbepositivesemidefinite.Thatis,

    m

    C yiAi 0.i=1

    We illustrate this construction with the example presented earlier. Thedualproblemis:

    SDD: maximize 11y1+ 19y2

    1 0 1 0 2 8 1 2 3s.t. y10 3 7+ y22 6 0+ S=2 9 0

    1 7 5 8 0 4 3 0 7

    S0,8

  • 8/12/2019 MIT15_093J_F09_sdp

    9/51

    whichwecanrewriteinthefollowingform:

    SDD: maximize 11y1+ 19y2

    s.t.

    1 1y10y2 2 0y12y2 3 1y18y2 2 0y12y2 9 3y16y2 0 7y10y2 0.3 1y18y2 0 7y10y2 7 5y14y2

    It is often easier toseeandto workwitha semidefinite program whenit is presented in the formatofthe dualSDD,sincethevariablesarethemmultipliersy1, . . . , ym.

    Asinlinearprogramming,wecanswitchfromoneformatofSDP (pri-

    malordual)toanyotherformatwithgreatease,andthereisnolossofgenerality inassuminga particular specific formatfor theprimal orthedual.

    Thefollowingpropositionstates thatweakdualitymustholdfor theprimalanddualofSDP:

    Proposition5.1 Given a feasible solution Xof SDP and a feasible solu-mtion (y, S)of SDD, the duality gap is C X i=1yibi =S X0. If

    m

    C X i=1yibi = 0, then Xand (y, S) are each optimal solutions to SDPand SDD, respectively, and furthermore, SX= 0.

    Inorder to prove Proposition 5.1, itwill beconvenient toworkwiththetrace ofamatrix,definedbelow:

    9

  • 8/12/2019 MIT15_093J_F09_sdp

    10/51

    n

    trace(M) = Mjj .j=1

    Simplearithmeticcanbeusedto establishthefollowingtwo elementaryidentities:

    trace(MN) =trace(NM)A B=trace(ATB)

    Proof of Proposition 5.1. Forthefirstpartoftheproposition,wemustshowthatifS0andX0,thenS X0.LetS=PDPT andX=QEQT whereP,QareorthonormalmatricesandD,Earenonnegativediagonalmatrices.Wehave:

    S X=trace(STX) =trace(SX) =trace(PDPTQEQT)

    n=trace(DPTQEQTP) = Djj (P

    TQEQTP)jj 0,j=1

    wherethelastinequalityfollowsfromthefactthatallDjj 0andthefactthat the diagonalofthe symmetric positivesemidefinite matrixPTQEQTPmustbenonnegative.

    To provethesecond part of the proposition,suppose thattrace(SX) = 0.Thenfromtheaboveequalities,wehave

    n

    Djj (PTQEQTP)jj = 0.

    j=1

    10

  • 8/12/2019 MIT15_093J_F09_sdp

    11/51

    6

    However, thisimplies thatforeachj = 1, . . . , n, eitherDjj =0orthe(PTQEQTP)jj =0. Furthermore,thelattercaseimpliesthatthej

    th rowofPTQEQTP is allzeros. ThereforeDPTQEQTP =0, andsoSX =PDPTQEQT = 0.

    q.e.d.

    Unlikethecaseof linear programming,wecannot assertthateitherSDP

    orSDDwillattaintheirrespectiveoptima,and/orthattherewillbenodualitygap,unlesscertainregularityconditionshold. OnesuchregularityconditionwhichensuresthatstrongdualitywillprevailisaversionoftheSlatercondition,summarizedinthefollowingtheoremwhichwewillnotprove:

    Theorem5.1 Let zP and z denote the optimal objective function valuesD

    of SDPand SDD, respectively. Suppose that there exists a feasible solutionX of SDP such that X 0, and that there exists a feasible solution (y,S)of SDDsuch that S0. Then both SDP and SDDattain their optimal

    values, and zP =zD.

    Key Properties of Linear Programming that do

    not extend to SDPThefollowingsummarizessomeofthemoreimportantpropertiesoflinearprogrammingthatdonotextendtoSDP:

    There maybe afinite or infinite duality gap.The primaland/or dualmayormaynotattain theiroptima. Asnoted above inTheorem5.1, bothprogramswillattaintheircommonoptimal value ifbothprogramshave feasiblesolutions in the interiorof thesemidefinitecone.

    There isnofinite algorithmforsolvingSDP. Thereisa simplexalgorithm,butitisnotafinitealgorithm. ThereisnodirectanalogofabasicfeasiblesolutionforSDP.

    11

  • 8/12/2019 MIT15_093J_F09_sdp

    12/51

    Givenrational data,the feasibleregionmay havenorationalsolutions.Theoptimalsolutionmaynothaverationalcomponentsorrationaleigenvalues.

    Givenrational datawhose binaryencoding issizeL,thenormsofanyfeasibleand/oroptimalsolutionsmayexceed22

    L(orworse).

    Givenrational datawhose binaryencoding issizeL,thenormsofanyfeasibleand/oroptimalsolutionsmaybelessthan22

    L(orworse).

    7 SDP in Combinatorial Optimization

    SDP haswideapplicability incombinatorialoptimization. AnumberofNPhard combinatorialoptimization problems haveconvexrelaxationsthataresemidefiniteprograms. Inmanyinstances,theSDP relaxationisverytight in practice,and in certain instances in particular, theoptimalsolutiontotheSDP relaxationcanbeconvertedtoafeasiblesolutionfortheorigi-nalproblemwithprovablygoodobjectivevalue. AnexampleoftheuseofSDP incombinatorialoptimizationisgivenbelow.

    7.1 An SDP Relaxation of the MAX CUT Problem

    LetGbeanundirectedgraphwithnodesN=

    {1, . . . , n

    },andedgesetE.

    Letwij =wji betheweightonedge (i, j),for (i, j)E. Weassumethatwij 0 forall (i, j) E.TheMAXCUTproblemistodetermineasubsetSofthenodesN forwhichthesumoftheweightsoftheedgesthatcrossfromStoitscomplementS ismaximized (where (S:=N\S) .WecanformulateMAXCUT asanintegerprogramasfollows.Letxj = 1

    forjSandxj =1forjS.Thenourformulationis:n n

    MAXCUT: maximizex1 wij(1 xixj)4

    i=1j=1

    s.t. xj {1, 1}, j = 1, ... , n.

    12

  • 8/12/2019 MIT15_093J_F09_sdp

    13/51

    Nowlet

    Y=xxT ,

    whereby

    Yij =xixj i= 1, . . . , n, j = 1, ... , n.

    AlsoletW bethematrixwhose(i, j)th element iswij for i = 1, . . . , n andj = 1, . . . , n.ThenMAXCUTcanbeequivalentlyformulatedas:

    n n

    MAXCUT : maximizeY,x1

    i=1j=1wij WY4

    s.t. xj {1, 1}, j = 1, . . . , n

    Y=

    xx

    T

    .

    Notice inthisproblem that thefirst set ofconstraintsare equivalent toYjj = 1, j= 1, . . . , n.Wethereforeobtain:

    n n

    MAXCUT: maximizeY,x1

    i=1j=1wij WY4

    s.t. Yjj = 1, j = 1, . . . , n

    Y=xxT .

    13

  • 8/12/2019 MIT15_093J_F09_sdp

    14/51

    8

    Lastofall,noticethatthematrix Y =xxT

    isasymmetricrank1posi-tivesemidefinitematrix. Ifwerelax thisconditionbyremovingtherank-1restriction,weobtainthefollowingrelaxtionofMAXCUT,whichisasemidefiniteprogram:

    n n

    RELAX: maximizeY14 wij W Y

    i=1j=1

    s.t. Yjj = 1, j = 1, . . . , n

    Y0.

    ItisthereforeeasytoseethatRELAXprovidesanupperboundonMAX-CUT,i.e.,

    MAXCUTRELAX.

    Asitturnsout,onecanalsoprovewithouttoomucheffortthat:

    0.87856RELAXMAXCUTRELAX.

    Thisisanimpressiveresult,inthatitstatesthatthevalueofthesemidefi-niterelaxation is guaranteedto benomore than 12% higher than thevalueofNPhardproblemMAXCUT.

    SDP in Convex Optimization

    Asstatedabove,SDP hasverywideapplicationsinconvexoptimization.The typesof constraintsthatcan bemodeled in theSDPframework include:linear inequalities, convexquadraticinequalities,lowerboundsonmatrix

    14

  • 8/12/2019 MIT15_093J_F09_sdp

    15/51

    norms, lowerboundsondeterminantsof symmetricpositive semidefinitematrices, lower bounds on the geometricmeanofanonnegativevector, plusmanyothers. Usingtheseandotherconstructions,thefollowingproblems(amongmanyothers)canbecastintheformofasemidefiniteprogram:linearprogramming,optimizingaconvexquadraticformsubjecttoconvexquadraticinequalityconstraints,minimizingthevolumeofanellipsoidthatcoversagiven setofpointsandellipsoids,maximizingthevolumeofanellipsoidthatiscontainedinagivenpolytope,plusavarietyofmaximumeigenvalueandminimumeigenvalueproblems.InthesubsectionsbelowwedemonstratehowsomeimportantproblemsinconvexoptimizationcanbereformulatedasinstancesofSDP.

    8.1 SDP for Convex Quadratically Constrained Quadratic

    Programming, Part I

    Aconvexquadraticallyconstrainedquadraticprogramisaproblemoftheform:

    QCQP: minimize xTQ0x+q0Tx+c0

    xs.t. xTQix+qi

    Tx+ci 0 , i= 1, ... , m,

    wheretheQ00andQi 0, i= 1, . . . , m.Thisproblemisthesameas:

    QCQP: minimize x,s.t. xTQ0x+q0

    Tx+c00xTQix+qi

    Tx+ci 0 , i= 1, ... , m.

    WecanfactoreachQi into

    Qi =MiTMi

    15

  • 8/12/2019 MIT15_093J_F09_sdp

    16/51

    forsomematrixMi.Thennotetheequivalence:

    xTIMi

    T ciMixqiTx 0 xTQix+qiT x+ci 0.

    InthiswaywecanwriteQCQPas:

    QCQP: minimize x,s.t.

    I M0xxTM0

    T c0q0Tx+ 0

    I MixxTMT i

    Tx0 , i= 1, ... ,m.

    i ci q

    Noticeintheaboveformulationthatthevariablesare andxandthatallmatrixcoefficientsarelinearfunctionsofandx.

    8.2 SDP for Convex Quadratically Constrained Quadratic

    Programming, Part II

    Asitturnsout,thereisanalternativewaytoformulateQCQPasasemidefiniteprogram.Webeginwiththefollowingelementaryproposition.

    Proposition8.1 Given a vector x k and a matrix W kk, then1 xT 0 ifandonlyif WxxT .x W

    16

  • 8/12/2019 MIT15_093J_F09_sdp

    17/51

    Usingthis proposition, it isstraghtforwardtoshowthatQCQPisequiv-alenttothefollowingsemidefiniteprogram:

    QCQP: minimize x,W,

    s.t.

    c01 12q0T 1 xT 0q0 Q0

    x W2

    ci 21qiT 1 xT1qi Qi x W 0 , i= 1, . . . ,m2

    1 xT.0

    x W

    Noticeinthisformulationthattherearenow(n+1)(2n+2) variables,butthat

    theconstraintsareall linear inequalitiesasopposedtosemidefinite inequal-ities.

    8.3 SDP for the Smallest Circumscribed Ellipsoid Problem

    A givenmatrixR0anda given pointzcanbeusedtodefineanellipsoidinn:

    ER,z :={y|(y z)TR(y z) 1}.

    OnecanprovethatthevolumeofER,z isproportionaltodet(R1).

    17

  • 8/12/2019 MIT15_093J_F09_sdp

    18/51

    SupposewearegivenaconvexsetX n

    describedastheconvexhullofkpoints c1, . . . , ck. We would like tofind an ellipsoidcircumscribingthesekpoints that hasminimumvolume.Our problemcan bewritten in the fol-lowingform:

    MCP : minimize vol (ER,z)R,zs.t. ci ER,z, i= 1, ... , k,

    whichisequivalentto:

    MCP : minimize ln(det(R))R,zs.t. (ci z)TR(ci z) 1, i= 1, . . . , k

    R0,

    Now factorR =M2 whereM 0(thatis,M isasquarerootof R),andnowMCPbecomes:

    MCP: minimize ln(det(M2))M,zs.t. (ci z)TMTM(ci z) 1, i= 1, ... , k,

    M0.

    Nextnoticetheequivalence:

    I Mci Mz(Mci Mz)T 1 0 (ci z)TMTM(ci z) 1

    18

  • 8/12/2019 MIT15_093J_F09_sdp

    19/51

    InthiswaywecanwriteMCPas:

    MCP: minimizeM,z

    2 ln(det(M))

    s.t.I

    (Mci Mz)TMci Mz

    10, i=1, ..., k,

    M0.

    Lastofall,makethesubstitutiony=Mztoobtain:

    MCP: minimize 2 ln(det(M))M,y

    s.t.(Mci

    Iy)T Mci1y 0, i= 1, ... , k,

    M0.

    NoticethatthislastprograminvolvessemidefiniteconstraintswhereallofthematrixcoefficientsarelinearfunctionsofthevariablesMandy.How-ever, theobjective function isnot a linear function.It is possible toconvertthis problem further intoa genuine instanceofSDP, because there is awaytoconvertconstraintsoftheform

    ln(det(X))

    toasemidefinitesystem. Nevertheless,thisisnotnecessary, either from

    a theoreticalor a practicalviewpoint, because it turns out that the functionf(X) =ln(det(X)) is extremelywellbehavedand is veryeasyto optimize(bothintheory andinpractice).

    19

  • 8/12/2019 MIT15_093J_F09_sdp

    20/51

    Finally,notethataftersolvingtheformulationofMCP above,wecanrecoverthematrixRandthecenterzoftheoptimalellipsoidbycomputing

    R=M2 and z=M1y.

    8.4 SDP for the Largest Inscribed Ellipsoid Problem

    RecallthatagivenmatrixR0andagivenpointzcanbeusedtodefineanellipsoidinn:

    ER,z :={x|(xz)TR(xz) 1},

    andthatthevolumeofER,z isproportionaltodet(R1).

    Supposewearegivenaconvexset X n describedastheintersectionofkhalfspaces{x|(ai)Txbi}, i= 1, . . . , k,thatis,

    X={x|Axb}

    wherethe ith rowof thematrix A consists of the entriesof the vectorai, i= 1, . . . , k. WewouldliketofindanellipsoidinscribedinXofmaxi-mumvolume.Ourproblemcanbewritteninthefollowingform:

    MIP : maximize vol(ER,z)R,z

    s.t. ER,z X,whichisequivalentto:

    20

  • 8/12/2019 MIT15_093J_F09_sdp

    21/51

    MIP : maximize det(R1)R,zs.t. ER,z {x|(ai)Txbi}, i=1, ..., k

    R0,

    whichisequivalentto:

    MIP : maximize ln(det(R1))R,zs.t. maxx{aiTx|(xz)TR(xz) 1} bi, i= 1, . . . , k

    R0.

    Foragiven i= 1, . . . , k,thesolutiontotheoptimizationproblemintheithconstraintis

    R1aix =z+aTR1aii

    withoptimalobjectivefunctionvalue

    aiT z+ ai

    TR1ai ,

    andsoMIP canberewrittenas:

    21

  • 8/12/2019 MIT15_093J_F09_sdp

    22/51

    MIP : maximize ln(det(R1))R,z

    s.t. aTi z+ aTi R

    1ai bi, i= 1, . . . , k R0.

    NowfactorR1=M2whereM0 (thatis,M isasquarerootofR1),andnowMIPbecomes:

    MIP : maximize ln(det(M2))M,z

    s.t. aTi z+ aTi M

    TMai bi, i= 1, . . . , k M0,

    whichwecanrewriteas:

    MIP : maximize 2 ln(det(M))M,zs.t. aTMTMai (bi aiTz)2, i= 1, . . . , k i

    bi aiTz0, i= 1, . . . , k M0.

    Nextnoticetheequivalence:

    (bi ai z)I Mai aTMTMai (bi aTi z)2 T i (Mai)

    Ti z)

    0 and (bi aT bi aiTz0.

    22

  • 8/12/2019 MIT15_093J_F09_sdp

    23/51

    InthiswaywecanwriteMIPas:

    MIP : minimize 2 ln(det(M))M,z

    (bi aiTz)I Mais.t.(Mai)

    T (bi aTi z) 0, i= 1, ... , k,M0.

    NoticethatthislastprograminvolvessemidefiniteconstraintswhereallofthematrixcoefficientsarelinearfunctionsofthevariablesMandz.How-ever,theobjectivefunctionisnotalinearfunction. Itispossible,butnotnecessary in practice,toconvertthis problem further intoa genuine instanceofSDP,becausethereisawaytoconvertconstraintsoftheform

    ln(det(X))

    toa semidefinitesystem. Suchaconversionisnotnecessary,eitherfroma theoreticalor a practicalviewpoint, because it turns out that the functionf(X) =ln(det(X)) is extremelywellbehavedand is veryeasyto optimize(bothintheory andinpractice).

    Finally,notethataftersolvingtheformulationof MIP above,wecanrecoverthematrixRoftheoptimalellipsoidbycomputing

    R=M2.

    8.5 SDP for Eigenvalue Optimization

    Therearemanytypesofeigenvalueoptimizationproblemsthatcanbefor-mualatedasSDPs.Atypicaleigenvalueoptimizationproblemistocreate

    23

  • 8/12/2019 MIT15_093J_F09_sdp

    24/51

    amatrix

    k

    S:=B wiAii=1

    givensymmetric datamatrices BandAi, i= 1, . . . , k,usingweightsw1, . . . , wk,insuchawaytominimizethedifferencebetweenthelargestandsmallesteigenvalueofS.Thisproblemcanbewrittendownas:

    EOP : minimizew,S

    max(S) min(S)k

    s.t. S=Bi=1

    wiAi,

    wheremin(S)andmax(S)denotethesmallestandthelargesteigenvalueofS,respectively.WenowshowhowtoconvertthisproblemintoanSDP.

    RecallthatScanbefactoredintoS=QDQT whereQisanorthonor-malmatrix (i.e.,Q1=QT)andDisadiagonalmatrixconsistingoftheeigenvaluesofS.Theconditions:

    ISI

    canberewrittenas:

    Q(I)QT QDQT Q(I)QT .

    After premultiplyingtheaboveQT and postmultiplyingQ,theseconditionsbecome:

    24

  • 8/12/2019 MIT15_093J_F09_sdp

    25/51

    9

    IDI

    whichareequivalentto:

    min(S) and max(S) .

    ThereforeEOPcanbewrittenas:

    EOP : minimize w,S,,

    k

    s.t. S=B wiAii=1

    ISI.

    Thislastproblemisasemidefiniteprogram.

    Usingconstructssuchasthoseshownabove,verymanyothertypesofeigenvalueoptimizationproblemscanbeformulatedasSDPs.

    SDP in Control Theory

    Avarietyofcontrolandsystem problemscan becastandsolvedas instancesofSDP.However,thistopicisbeyondthescopeofthesenotes.

    25

  • 8/12/2019 MIT15_093J_F09_sdp

    26/51

    10 Interiorpoint Methods for SDPAttheheartofaninteriorpointmethodisabarrierfunctionthatexertsarepellingforcefromtheboundaryofthefeasibleregion. ForSDP,weneedabarrierfunctionwhosevaluesapproach+ aspointsXapproachtheboundaryofthesemidefiniteconeSn+.

    LetX S+n . ThenX willhaveneigenvalues, say1(X), . . . , n(X)(possiblycountingmultiplicities). Wecancharacterizetheinteriorofthesemidefiniteconeasfollows:

    intSn 1(X) >0, . . . , n(X)+={XSn | >0}.

    AnaturalbarrierfunctiontousetorepelX fromtheboundaryofSn+thenis

    n n

    ln(

    i(X)) =

    ln(

    i(X)) =

    ln(det(X)).

    j=1 j=1

    ConsiderthelogarithmicbarrierproblemBSDP()parameterizedbythepositivebarrierparameter:

    BSDP() : minimize C X ln(det(X))s.t. Ai X=bi , i= 1, ... ,m,

    X0.

    Letf(X)denotetheobjectivefunctionofBSDP(). Thenitisnottoodifficulttoderive:

    26

  • 8/12/2019 MIT15_093J_F09_sdp

    27/51

    f(X) =CX1, (1)

    andsotheKarushKuhnTuckerconditionsforBSDP() are:

    Ai X=bi , i= 1, ... ,m,

    X

    0, (2) m CX1= yiAi.

    i=1

    BecauseX issymmetric,we can factorizeX intoX = LLT . We thencandefine

    S=X1=LTL1,

    whichimplies

    1LTSL=I,

    andwecanrewritetheKarushKuhnTuckerconditionsas:

    27

  • 8/12/2019 MIT15_093J_F09_sdp

    28/51

    Ai X=bi , i= 1, ... ,m, X0,X=LLT(3)m yiAi +S=C i=1 1I

    LTSL= 0.

    From the equationsof (3)it follows that if (X,y,S) is a solutionof (3), thenXisfeasibleforSDP, (y, S) isfeasibleforSDD,andtheresultingdualitygapis

    n n n n

    S X= SijXij = (SX)jj = =n.i=1j=1 j=1 j=1

    Thissuggeststhatwe try solvingBSDP() for avariety ofvaluesof as 0.

    However,wecannot usuallysolve (3)exactly, because the fourthequationgroup is not linear in the variables.We will instead define aapproximatesolutionoftheKarushKuhnTuckerconditions(3). Beforedoingso,weintroducethefollowingnormonmatrices,calledtheFrobeniusnorm:

    n nM:=M M= M2 . ij

    i=1j=1

    Forsome important propertiesof the Frobeniusnorm,seethe lastsubsection

    ofthissection. AapproximatesolutionofBSDP() isdefinedasanysolution (X,y,S) of

    28

  • 8/12/2019 MIT15_093J_F09_sdp

    29/51

    Ai X=bi , i= 1, ... ,m, X0,X=LLT(4)m yiAi +S=C i=1 1I

    LTSL .

    Lemma10.1 If (X, y,S) is a approximate solution of BSDP()and

  • 8/12/2019 MIT15_093J_F09_sdp

    30/51

    10.1 The AlgorithmBasedon the analysis just presented,we are motivated to developthe fol-lowingalgorithm:

    Step 0 . Initialization. Datais(X0, y0, S0, 0). k=0. Assumethat(X0, y0, S0) isa approximatesolutionofBSDP(0) forsome knownvalueofthatsatisfies

  • 8/12/2019 MIT15_093J_F09_sdp

    31/51

    Apictureofthisalgorithmlookssomethinglikethis:

    31

  • 8/12/2019 MIT15_093J_F09_sdp

    32/51

    Someoftheunresolvedissuesregardingthisalgorithminclude:

    howtosetthefractionaldecreaseparameter thederivationoftheNewtonstepD andthemultipliersy

    whetherornotsuccessive iterativevalues (Xk, yk, Sk) areapproximatesolutionstoBSDP(k),and

    howtogetthemethodstartedinthefirstplace.10.2 The Newton Step

    SupposethatX isafeasiblesolutiontoBSDP():

    BSDP() : minimize C X ln(det(X))s.t. Ai X=bi , i= 1, ... ,m,

    X0.

    LetusdenotetheobjectivefunctionofBSDP() byf(X),i.e.,

    f(X) =C X ln(det(X)).

    Thenwecanderive:

    f(X) =CX1

    andthequadraticapproximationofBSDP()atX=X canbederivedas:

    32

  • 8/12/2019 MIT15_093J_F09_sdp

    33/51

    minimize f(X) + (CX1) (XX) + 1X1(XX) X1(XX) 2 X

    s.t. Ai X=bi, i= 1, ... , m.LettingD=XX,thisisequivalentto:

    minimize (CX1) D +21X1D X1DD

    s.t. Ai D= 0, i= 1, ... , m.

    Thesolutionto thisprogramwillbetheNewtondirection. TheKarushKuhnTuckerconditionsforthisprogramarenecessaryandsufficient,andare:

    m X1 X1 +X1D = yiAi Ci=1 (8)

    Ai D= 0, i= 1, ... ,m.TheseequationsarecalledtheNormal Equations.LetD andy denotethesolution to the Normal Equations.Note in particular from thefirstequationin (8)thatD must besymmetric.Suppose that (D,y) is the (unique)so-lutionof the Normal Equations (8).Weobtain thenewvalueofthe primalvariableXbytakingtheNewtonstep,i.e.,

    X =X+D .

    Wecan producenewvaluesofthe dualvariables (y, S)bysettingthenewm

    valueofytobey andbysettingS =C y Ai. Using (8),then,wei=1

    havethat

    33

  • 8/12/2019 MIT15_093J_F09_sdp

    34/51

    S =X1X1D X1. (9)

    Wehave thefollowingverypowerfulconvergence theoremwhichdemon-strates the quadraticconvergence ofNewtonsmethod forthisproblem,withanexplicit guaranteeoftherange inwhich quadraticconvergencetakesplace.

    Theorem10.1 (ExplicitQuadraticConvergenceofNewtonsMethod). Suppose that (X,y, is a approximate solution of BSDP() and

  • 8/12/2019 MIT15_093J_F09_sdp

    35/51

    S

    =X1

    X1D

    X1

    =LT

    (IL1D

    LT

    )L1

    .Wewillfirstshowthat L1DLT . It turnsoutthat thisisthecrucialfact fromwhicheverythingwillfollownicely. Toprovethis,notethat

    m m m

    yiAi +S =C= yi

    Ai +S =

    yiAi +LT(IL1D LT)L1.

    i=1 i=1 i=1

    TakingtheinnerproductwithD yields:

    S D

    =LTL1 D LTL1DLTL1 D,

    whichwecanrewriteas:

    LTSL L1D

    LT =I L1D

    LT L1D LT L1D LT ,whichwefinallyrewriteas:

    L1D LT 2= I

    1LTSL L1DLT .

    InvokingtheCauchySchwartzinequalityweobtain:

    L1D

    LT

    2

    I

    1LTSL

    L1DLT

    L1D

    LT

    ,

    fromwhichweseethatL1D LT .Itthereforefollowsthat

    X

    =L(I+L1D

    LT)LT 0and

    S

    =LT(IL1D LT)L10,sinceL1D LT

  • 8/12/2019 MIT15_093J_F09_sdp

    36/51

    wherewedefineL =LM.Thennotethat

    I

    1(L

    )TSL

    =I

    1MLTSLM

    L1) LT)M=I1MLT(LT(IL1DLT) LM=IM(IL1D

    =IMM+M(L1D LT)M=IMM+M(MMI)M= (IMM)(IMM)= (L1D

    LT)(L1D

    LT).

    Fromthiswenexthave:

    1

    I (L)

    T

    S

    L=(L

    1

    D

    LT

    )(L1

    D

    LT

    ) (L1

    D

    LT

    )2

    2

    .

    Thisshows that (X

    , y

    , S

    ) isa2approximatesolutionofBSDP().q.e.d.

    10.3 Complexity Analysis of the Algorithm

    Theorem10.2 (Relaxation Theorem). Suppose that (X, y,S)is a -approximate solution of BSDP() and

  • 8/12/2019 MIT15_093J_F09_sdp

    37/51

    + 1

    n = +

    n n

    = +

    n n= .

    q.e.d.

    Theorem10.3 (ConvergenceTheorem). Suppose that (X0, y0, S0) is aapproximate solution of BSDP(0) and

  • 8/12/2019 MIT15_093J_F09_sdp

    38/51

    Abetterpictureofthisalgorithmlookssomethinglikethis:

    38

  • 8/12/2019 MIT15_093J_F09_sdp

    39/51

    Theorem10.4 (ComplexityTheorem). Suppose that (X0, y0, S0)is a= 14approximate solution of BSDP(0). In order to obtain primal anddual feasible solutions (Xk, yk, Sk) with a duality gap of at most , one needsto run the algorithm for at most

    k= 6

    n ln1.25X0S00.75

    iterations.

    Proof: Letkbeasdefinedabove.Notethat1 1

    = 1

    +

    n= 1 2+4n = 1 2 + 41n1 6

    1

    n.12

    Therefore

    k 1 61

    n

    k0.

    Thisimpliesthat

    CXk m biyik =Xk Sk kn(1 + ) 1

    61

    n

    k(1.25n0)

    i=1

    k1 X0 S0 1 6n (1.25n) 0.75n ,

    from (5).Takinglogarithms,weobtain

    m ln C Xk

    biy

    k k ln 1 + ln 1.25X0 S0 i 1 6n 0.75 i=1

    1.25X0

    6

    kn

    + ln0.75

    S01.25X0 S0 1.25 ln0.75

    + ln

    0.75X0S0 = ln().

    m

    ThereforeCXk i=1

    biyik .

    q.e.d.

    39

  • 8/12/2019 MIT15_093J_F09_sdp

    40/51

    10.4 How to Start the Method from a Strictly Feasible PointThealgorithmand its performancerelieson having astarting point (X0, y0, S0)thatisaapproximatesolutionofthe problemBSDP(0).Inthissubsec-tion,weshowhowtoobtainsuchastartingpoint,givenapositivedefinitefeasiblesolutionX0ofSDP.

    Wesupposethatwearegivenatargetvalue0 ofthebarrierparam-eter, andwearegivenX = X0 that isfeasible forBSDP(0), that is,Ai X

    0=bi, i= 1, . . . , m,andX00. Wewillattempttoapproximately

    solveBSDP(0)startingatX=X0,usingtheNewtondirectionateachiteration.Theformalstatementofthealgorithmisasfollows:

    Step0. Initialization. Datais (X0, 0).k= 0.AssumethatX0satisfiesAi X

    0=bi, i= 1, ... ,m,X00.

    Step1. SetCurrentvalues. X =Xk.FactorX =LLT .Step2. ComputeNewtonDirectionandMultipliers. ComputetheNewtonstepD

    forBSDP(0) atX=X bysolvingthefollowingsystemofequations in thevariables (D, y):

    m X1+0X1DX1 C0 = yiAii=1 (10)

    Ai D= 0, i= 1, ... , m.

    Denote thesolution to thissystem by (D,y).Set

    m

    S =C yiAi.i=1

    Step 3. Test the Current Point. IfL1D LT 1 ,stop. Inthis4case,X isa14 approximatesolutionofBSDP(

    0),along withthedualval-

    ues (y,S).

    40

  • 8/12/2019 MIT15_093J_F09_sdp

    41/51

    Step4. UpdatePrimalPoint.X =X+D

    where0.2

    = .L1D LTAlternatively,canbecomputedbyalinesearchoff0(X+ D).

    Step 5. Reset Counter and Continue. Xk+1 X , k k+1. GotoStep1.

    ThefollowingpropositionvalidatesStep3ofthealgorithm:

    Proposition10.1 Suppose that (D,y) is the solution of the Normal equa-tions (10) for the point X for the given value 0 of the barrier parameter,and that

    L1DLT 14.

    Then X is a 14approximate solution of BSDP(0).

    m

    Proof: Wemustexhibitvalues (y, S) thatsatisfy yiAi +S=Candi=1

    1LTSL 1.I0 4m

    Let (D,y) solvethe Normalequations (10),and letS =C yiAi.Then

    i=1

    wehavefrom (10)that

    1 1I

    0LTS

    L =I0

    LT(0(LTL1LTL1D LTL1))L =L1DLT ,

    whereby

    I10 L

    T

    S

    L=L1D

    LT

    41.

    q.e.d.

    41

  • 8/12/2019 MIT15_093J_F09_sdp

    42/51

    ThenextpropositionshowsthatwheneverthealgorithmproceedstoStep4,thentheobjectivefunctionf0(X) decreasesbyatleast0.0250:

    Proposition10.2 Suppose that X satisfies Ai X =bi, i= 1, . . . , m, andX0. Suppose that (D,y)is the solution of the Normal equations (10)

    for the point X for a given value 0of the barrier parameter, and that

    L1DLT>1.4

    Then for all [0, 1), 2

    f0 X +L1

    D

    LT

    D

    f0(X) + 0

    L1D

    LT

    +

    2(1 ).

    In particular,

    0.2 f0 X + L1D LT D f0(X) 0.0250. (11)

    Inorderto provethis proposition,wewillneedtwo powerful factsaboutthelogarithmfunction:

    Fact1. Supposethat|x|

  • 8/12/2019 MIT15_093J_F09_sdp

    43/51

    q.e.d.Fact2. SupposethatRSn andthatR

  • 8/12/2019 MIT15_093J_F09_sdp

    44/51

    Then

    f0 X +L1D

    LTD

    = f0 X +D

    = C X +C D 0ln(det(L(I+L1DLT)LT))

    = C X 0ln(det(X)) + C D 0ln(det(I+L1D LT)) f0(X) + CD 0IL1D LT +0 22(1)= f0(X) + C D

    0LTL1 D +0

    2(1

    2)

    = f0(X) + C0X1 D +0 2 2(1) .

    Now, (D , y) solvetheNormalequations:

    m X1+0X1D X1 C0 =y Ai ii=1 (12)

    Ai D = 0, i= 1, ... ,m.

    Takingtheinnerproductofbothsidesofthefirstequationabovewith Dandrearrangingyields:

    0X1D

    X1D

    =(C0X1) D .Substitutingthisinourinequalityaboveyields:

    44

  • 8/12/2019 MIT15_093J_F09_sdp

    45/51

    f0 X +L1D

    LTD

    f0(X) 0X1D X1D +0 2(12)= f0(X) 0L1D LT L1D LT +0 2(12)= f0(X) 0L1D LT2+0 2(12)= f0(X) 0L1D LT+0 22(1)

    = f0(X

    ) +

    0

    L1

    D

    LT

    +2(1

    2) .

    Subsituting= 0.2andandL1DLT>14 yieldsthefinalresult.q.e.d.

    Lastofall,weproveaboundonthenumberofiterationsthatthealgo-rithmwillneedinordertofinda14 approximatesolutionofBSDP(

    0):

    Proposition10.3 Suppose that X0satisfies Ai X0=bi, i= 1, . . . , m, andX00. Let 0 be given and let f

    0 be the optimal objective function valueof BSDP(0). Then the algorithm initiated at X0will find a 14approximate

    solution of BSDP(0) in at most

    f0(X0) fk=

    00.0250

    iterations.

    Proof: This follows immediatelyfrom (11).Each iteration that isnota14-approximatesolutiondecreasestheobjectivefunctionf0(X) ofBSDP(0)byatleast0.0250.Therefore,therecannotbemorethan

    f0(X0) f00.025

    0

    iterationsthatarenot14 approximatesolutionsofBSDP(0).

    q.e.d.

    45

  • 8/12/2019 MIT15_093J_F09_sdp

    46/51

    10.5 Some Properties of the Frobenius NormProposition10.4 If MSn, then

    n

    1. M = (j(M))2,where 1(M), 2(M), . . . , n(M) is an enu-j=1

    meration of the neigenvalues of M.

    2. If is any eigenvalue of M, then || M.3. |trace(M)| nM.4. If M0,andsoM0.q.e.d.

    Proposition10.5 If A,BSn, then AB AB.Proof: Wehave 2 n n n

    AB= AikBkji=1j=1 k=1

    46

  • 8/12/2019 MIT15_093J_F09_sdp

    47/51

    = =

    n n n n

    ik kj A2 B2i=1j=1 k=1 k=1

    n n n nA2 B2ik kj AB.

    i=1k=1 j=1k=1

    q.e.d.

    11 Issues in Solving SDP using the Ellipsoid Al-gorithm

    Toseehowtheellipsoidalgorithmisusedtosolveasemidefiniteprogram,assumeforconveniencethattheformatoftheproblemisthatofthedualproblemSDD.Thenthefeasibleregionoftheproblemcanbewrittenas:

    m

    F= (y1, . . . , ym) m |Ci=1

    yiAi 0 ,

    andtheobjectivefunctionis mi=1yibi. NotethatF isjustaconvexre-gioninm.

    Recallthatatany iterationoftheellipsoidalgorithm,thesetofsolutionsofSDDis knownto lie inthecurrentellipsoid,andthecenterofthecurrentellipsoidis,say,y= (y1, . . . ,ym). Ify F,thenweperformanoptimality

    m mcutoftheform i=1yibi i=1yibi,andusestandardformulastoupdatetheellipsoidanditsnewcenter.If F,thenweperformafeasibilitycuty /bycomputingavectorh m suchthathTy > hTy forallyF.

    TherearefourissuesthatmustberesolvedinordertoimplementtheaboveversionoftheellipsoidalgorithmtosolveSDD:

    47

  • 8/12/2019 MIT15_093J_F09_sdp

    48/51

    1.Testingify F. ThisisdonebycomputingthematrixS=Cmi=1yiAi. IfS 0,then y F. TestingifthematrixS 0can

    bedonebycomputinganexactCholeskyfactorizationofS,whichtakesO(n3) operations,assumingthatcomputingsquarerootscanbeperformed (exactly)inoneoperation.

    2.Computingafeasibilitycut. Asabove,testingifS 0canbecom-puted inO(n3) operations.IfS0,thenagainassumingexactarith-metic,wecanfindannvectorvsuchthatTS 3)oper-v v

  • 8/12/2019 MIT15_093J_F09_sdp

    49/51

    determinedbyexaminingtheinputlengthofthedata,asisthecaseinlinearprogramming.Oneneedstoknowsomespecialinformationabout the specificproblemathand inorderto determinerbeforesolvingthesemidefiniteprogram.

    12 Current Research in SDP

    Therearemanyveryactiveresearchareasinsemidefiniteprogramminginnonlinear (convex) programming, in combinatorialoptimization,and in con-troltheory. Intheareaofconvexanalysis,recentresearchtopicsincludethe geometryand the boundarystructureofSDPfeasibleregions (including

    notionsofdegeneracy)andresearchrelatedtothecomputationalcomplex-ityofSDP suchasdecidabilityquestions,certificatesofinfeasibility,anddualitytheory. Intheareaofcombinatorialoptimization,therehasbeenmuchresearchonthe practicalandthetheoreticaluseofSDPrelaxationsofhardcombinatorialoptimizationproblems.Asregardsinteriorpointmeth-ods,thereareahostofresearchissues,mostlyinvolvingthedevelopmentofdifferentinteriorpointalgorithmsandtheirproperties,includingratesofconvergence,performanceguarantees,etc.

    13 Computational State of the Art of SDP

    BecauseSDPhas so manyapplications,and because interior pointmethodsshowsomuchpromise,perhapsthemostexcitingareaofresearchonSDPhas to do withcomputation and implementationof interior pointalgorithmsforsolvingSDP. MuchresearchhasfocusedonthepracticalefficiencyofinteriorpointmethodsforSDP. However, intheresearchtodate,com-putationalissueshavearisenthataremuchmorecomplexthanthoseforlinearprogramming,andthesecomputationalissuesareonlybeginningtobe wellunderstood.They probablystem from a varietyof factors, includingthe factthatSDPisnot guaranteedto havestrictlycomplementaryoptimalsolutions (as is the case in linear programming). Finally, becauseSDP is

    suchanewfield,thereisnorepresentativesuiteofpracticalproblemsonwhichtotestalgorithms,i.e.,thereisnoequivalentversionofthe netlibsuiteofindustriallinearprogrammingproblems.

    49

  • 8/12/2019 MIT15_093J_F09_sdp

    50/51

    Agoodwebsiteforsemidefiniteprogrammingis:

    50

  • 8/12/2019 MIT15_093J_F09_sdp

    51/51

    MIT OpenCourseWarehttp://ocw.mit.edu

    15.093J / 6.255J Optimization Methods

    Fall2009

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/