mit 2.71/2.710 review lecture p- 1 optics overview

60
1 MIT 2.71/2.710 Review Lecture p- Optics Overview

Upload: luke-bradford

Post on 27-Mar-2015

224 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

1MIT 2.71/2.710Review Lecture p-

Optics Overview

Page 2: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

2MIT 2.71/2.710Review Lecture p-

What is light?

• Light is a form of electromagnetic energy – detected through its effects, e.g. heating of illuminated objects, conversion of light to current, mechanical pressure (“Maxwell force”) etc.

• Light energy is conveyed through particles: “photons” – ballistic behavior, e.g. shadows

• Light energy is conveyed through waves – wave behavior, e.g. interference, diffraction

• Quantum mechanics reconciles the two points of view, through the “wave/particle duality” assertion

Page 3: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

3MIT 2.71/2.710Review Lecture p-

Particle properties of light

Photon=elementary light particle

Mass=0Speed c=3 10⊥ 8m/sec

According to According to Special Relativity, a mass-less particle travellingat light speed can still carry momentum!

Energy E=hν relates the dual particle & wavenature of light;

h=Planck’s constant=6.6262 10⊥ -34 J sec

ν is the temporal oscillationfrequency of the light waves

Page 4: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

4MIT 2.71/2.710Review Lecture p-

Wave properties of lightλ: wavelength

(spatial period)

k=2π/λwavenumber

ν: temporalfrequency

ω=2πνangular frequency

E: electricfield

Page 5: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

5MIT 2.71/2.710Review Lecture p-

Wave/particle duality for light

Photon=elementary light particle

Mass=0Speed c=3⊥108 m/sec

Energy E=hν

h=Planck’s constant=6.6262⊥10-34 J sec

ν=frequency (sec-

1)λ=wavelength (m)

“Dispersion relation”(holds in vacuum

only)

Page 6: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

6MIT 2.71/2.710Review Lecture p-

Light in matter

light in vacuum

Speed c=3108 m/sec

Absorption coefficient 0

Speed c/nn : refractive index(or index of refraction)

Absorption coefficient αenergy decay coefficient,after distance L : e–2αL

light in matter

E.g. vacuum n=1, air n ≈ 1;

glass n≈1.5; glass fiber has α ≈0.25dB/km=0.0288/km

Page 7: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

7MIT 2.71/2.710Review Lecture p-

Materials classification• Dielectrics – typically electrical isolators (e.g. glass, plastics) – low absorption coefficient – arbitrary refractive index

• Metals – conductivity large absorption coefficient

• Lots of exceptions and special cases (e.g. “artificial dielectrics”)

• Absorption and refractive index are related through the Kramers– Kronig relationship (imposed by causality)

absorption

refractive index

Page 8: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

8MIT 2.71/2.710Review Lecture p-

Overview of light sources

non-Laser

Thermal: polychromatic,spatially incoherent(e.g. light bulb)

Gas discharge: monochromatic,spatially incoherent(e.g. Na lamp)

Light emitting diodes (LEDs):monochromatic, spatiallyincoherent

Laser

Continuous wave (or cw):strictly monochromatic,spatially coherent(e.g. HeNe, Ar+, laser diodes)

Pulsed: quasi-monochromatic,spatially coherent(e.g. Q-switched, mode-locked) ~nsec ~psec to few fsec

pulse duration

mono/poly-chromatic = single/multi color

Page 9: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

9MIT 2.71/2.710Review Lecture p-

Monochromatic, spatially coherent

light • nice, regular sinusoid

• λ, ν well defined

• stabilized HeNe laser

good approximation

• most other cw lasers

rough approximation

• pulsed lasers & nonlaser

sources need

more complicated

description

Incoherent: random, irregular waveform

Page 10: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

10MIT 2.71/2.710Review Lecture p-

The concept of a monochromatic

“ray”t=0(frozen)

direction ofenergy

propagation:light ray

wavefronts

In homogeneous media,light propagates in rectilinear paths

Page 11: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

11MIT 2.71/2.710Review Lecture p-

The concept of a monochromatic

“ray”t=Δt(advanced)

direction ofenergy

propagation:light ray

wavefronts

In homogeneous media,light propagates in rectilinear paths

Page 12: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

12MIT 2.71/2.710Review Lecture p-

The concept of a polychromatic “ray”

t=0(frozen)

wavefronts

energy frompretty much

all wavelengthspropagates along

the ray

In homogeneous media,light propagates in rectilinear paths

Page 13: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

13MIT 2.71/2.710Review Lecture p-

Fermat principle

Γ is chosen to minimize this“path” integral, compared to

alternative paths

(aka minimum path principle)Consequences: law of reflection, law of refraction

Page 14: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

14MIT 2.71/2.710Review Lecture p-

The law of reflection

a) Consider virtual source P”instead of P

b) Alternative path P”O”P’ islonger than P”OP’

c) Therefore, light follows thesymmetric path POP’.

mirror

Page 15: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

15MIT 2.71/2.710Review Lecture p-

The law of refractionreflected

incident

reflected

Snell’s Law of Refraction

Page 16: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

16MIT 2.71/2.710Review Lecture p-

Total Internal Reflection (TIR)

becomes imaginary when

refracted beam disappears, all energy is reflected

Page 17: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

17MIT 2.71/2.710Review Lecture p-

Prisms

air air

air air

air air

glass

glass

Page 18: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

18MIT 2.71/2.710Review Lecture p-

DispersionRefractive index n is function of the wavelength

white light(all visiblewavelengt

hs)

Newton’s prism

air glass

red

green

blue

Page 19: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

19MIT 2.71/2.710Review Lecture p-

Frustrated Total Internal Reflection

(FTIR)Reflected rays are missingwhere index-matched surfacestouch shadow is formed

Angle of incidenceexceeds critical angle

glass other

material

air gap

Page 20: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

20MIT 2.71/2.710Review Lecture p-

Fingerprint sensor

airfinger

glass | air glass | finger

TIR occurs TIR does not occurs (FTIR)

Page 21: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

21MIT 2.71/2.710Review Lecture p-

Optical waveguide

• Planar version: integrated optics• Cylindrically symmetric version: fiber optics• Permit the creation of “light chips” and “light cables,” respectively, wherelight is guided around with few restrictions• Materials research has yielded glasses with very low losses (<0.25dB/km)• Basis for optical telecommunications and some imaging (e.g. endoscopes)and sensing (e.g. pressure) systems

Page 22: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

22MIT 2.71/2.710Review Lecture p-

Refraction at a spherical surface

pointsource

Page 23: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

23MIT 2.71/2.710Review Lecture p-

Imaging a point source

pointsource

pointsource

Lens

Page 24: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

24MIT 2.71/2.710Review Lecture p-

Model for a thin lens

point object at 1st FP

1st FP

focal length fplane wave (or parallel ray bundle);

image at infinity

Page 25: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

25MIT 2.71/2.710Review Lecture p-

Model for a thin lens

point image at 2nd FP

focal length fplane wave (or parallel ray bundle);

object at infinity

Page 26: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

26MIT 2.71/2.710Review Lecture p-

Types of lenses

Figure 2.12 The location of the focal points and principal points for several shapes of converging and diverging elements.

BICONVEX BICONCAVE

PLANO CONVEX PLANO CONCAVE

POSITIVE MENISCUS NEGATIVE MENISCUS

positive(f > 0)

negative(f < 0)

from Modern OpticalEngineeringby W. Smith

Page 27: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

27MIT 2.71/2.710Review Lecture p-

Huygens principleEach point on the wavefrontacts as a secondary light sourceemitting a spherical wave

The wavefront after a shortpropagation distance is theresult of superimposing allthese spherical wavelets

opticalwavefronts

Page 28: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

28MIT 2.71/2.710Review Lecture p-

Why imaging systems are needed• Each point in an object scatters the incident illumination into a sp

herical wave, according to the Huygens principle.• A few microns away from the object surface, the rays emanating from all object points become entangled, delocalizing object details.• To relocalize object details, a method must be found to reassign (“focus”) all the rays that emanated from a single point object into another point in space (the “image.”)• The latter function is the topic of the discipline of Optical Imaging.

Page 29: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

29MIT 2.71/2.710Review Lecture p-

Imaging condition: ray-tracing

• Image point is located at the common intersection of all rays which

emanate from the corresponding object point

• The two rays passing through the two focal points and the chief ray

can be ray-traced directly

• The real image is inverted and can be magnified or demagnified

thin lens (+)

2nd FP

1nd FP

image(real)

object

Page 30: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

30MIT 2.71/2.710Review Lecture p-

Imaging condition: ray-tracing

thin lens (+)

2nd FP

1nd FP

image

object

Lens Law Lateral Angular Energy magnification magnification conservation

Page 31: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

31MIT 2.71/2.710Review Lecture p-

Imaging condition: ray-tracingthin lens (+)

Image(virtu

al) 2nd FP

1st FP object

• The ray bundle emanating from the system is divergent; the virtual image is located at the intersection of the backwards-extended rays• The virtual image is erect and is magnified• When using a negative lens, the image is always virtual, erect, and demagnified

Page 32: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

32MIT 2.71/2.710Review Lecture p-

Tilted object:the Scheimpflug condition

LENS PLANE

IMAGE PLANE

OBJECT LANE

OPTICAL

AXIS

The object plane and the image planeintersect at the plane of the thin lens.

Page 33: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

33MIT 2.71/2.710Review Lecture p-

Lens-based imaging

• Human eye

• Photographic camera

• Magnifier

• Microscope

• Telescope

Page 34: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

34MIT 2.71/2.710Review Lecture p-

The human eyeAnatomy

AQUEOUSCORNEA

IRIS

LENS LIGAMENTS

MUSCLE

SCLERA

RETINA

MACULA-FOVEA

OPTIC NERVE

BLINDSPOT

Remote object (unaccommodated eye)

Near object (accommodated eye)Near point (comfortable viewing)

~25cm from the cornea

Page 35: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

35MIT 2.71/2.710Review Lecture p-

Eye defects and their correction

from Fundamentalsof Opticsby F. Jenkins & H.White

Hypermetropia, farsighted Myopia, nearsighted

Farighted eye corrected Nearsighted eye corrected

FIGURE 10KTypical eye defects, largely present in the adult population.

FIGURE 10LTypical eye defects can be corrected by spectacle lenses.

Page 36: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

36MIT 2.71/2.710Review Lecture p-

The photographic camera

meniscuslensor

(nowadays)zoom lens Film

or

Object

Axis

Stop

Bellows

Focalplane

“digital imaging” detector array (CCD or CMOS)

Page 37: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

37MIT 2.71/2.710Review Lecture p-

The magnifier

FIGURE 10IThe angle subtended by (a) an object at the near point to the naked eye, (b) the virtual image of an object inside the focal point, © the virtual image of an object at the focal point.

from Opticsby M. Klein &T. Furtak

Page 38: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

38MIT 2.71/2.710Review Lecture p-

The compound microscope

from Opticsby M. Klein &T. Furtak

L: distance to near point (10in=254mm)

Objective magnification

Eyepiece magnificationCombined magnification

Page 39: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

39MIT 2.71/2.710Review Lecture p-

The telescope(afocal instrument – angular magnifier)

Flg. 3.40 Astronomical telescope.

Flg. 3.41 Galilean telescope (fashioned after the first telescope).

from Opticsby M. Klein &T. Furtak

Page 40: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

40MIT 2.71/2.710Review Lecture p-

The pinhole camera

• The pinhole camera blocks all but one ray per object point from reaching theimage space an image is formed (i.e., each point in image space corresponds toa single point from the object space).• Unfortunately, most of the light is wasted in this instrument.• Besides, light diffracts if it has to go through small pinholes as we will see later;diffraction introduces undesirable artifacts in the image.

opaquescreen image

object

pin-hole

Page 41: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

41MIT 2.71/2.710Review Lecture p-

Field of View (FoV)

FoV=angle that the chief ray from an object can subtendtowards the imaging system

Page 42: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

42MIT 2.71/2.710Review Lecture p-

Numerical Aperture

medium ofrefr. index n

θ: half-angle subtended bythe imaging system froman axial object

Numerical Aperture(NA) = n sinθ

Speed (f/#)=1/2(NA)pronounced f-number, e.g.f/8 means (f/#)=8.

Page 43: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

43MIT 2.71/2.710Review Lecture p-

Resolution

How far can two distinct point objects bebefore their images cease to be distinguishable?

Page 44: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

44MIT 2.71/2.710Review Lecture p-

Factors limiting resolution in an

imaging system• Diffraction• Aberrations• Noise

Intricately related; assessment of imagequality depends on the degree that the “inverse

problem” is solvable (i.e. its condition)2.717 sp02 for details

– electronic noise (thermal, Poisson) in cameras – multiplicative noise in photographic film – stray light – speckle noise (coherent imaging systems only)• Sampling at the image plane – camera pixel size – photographic film grain size

Page 45: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

45MIT 2.71/2.710Review Lecture p-

Point-Spread Function

Point source(ideal)

Light distribution

near the Gaussian

(geometric) focus

(rotationallysymmetric

wrt optical axis)

The finite extent of the PSF causes blur in the image

Page 46: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

46MIT 2.71/2.710Review Lecture p-

Diffraction limited resolution

light

inte

nsi

ty (

arb

itra

ry

un

its)

lateral coordinate at image plane (arbitrary units)

object

spacingδx

Point objects “justresolvable” when

Rayleigh resolutioncriterion

Page 47: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

47MIT 2.71/2.710Review Lecture p-

Wave nature of light

• Polarization: polaroids, dichroics, liquid crystals, ...

• Diffraction

broadening ofpoint images

• Inteference

Michelson interferometer

Fabry-Perot interferometer Interference filter(or dielectric mirror)

diffraction grating

Page 48: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

48MIT 2.71/2.710Review Lecture p-

Diffraction gratingincidentplanewave

Grating spatial frequency: 1/ΛAngular separation between diffracted orders: Δθ ≈1/Λ

“straight-through” order or DC term

Condition for constructive interference:

( m integer)

diffraction order

Page 49: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

49MIT 2.71/2.710Review Lecture p-

polychromatic

(white)light

Anomalous(or negative)

dispersion

Glass prism:normal dispersion

Grating dispersion

Page 50: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

50MIT 2.71/2.710Review Lecture p-

Fresnel diffraction formulae

Page 51: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

51MIT 2.71/2.710Review Lecture p-

Fresnel diffractionas a linear, shift-invariant syst

emThin transparency

impulse responseconvoluti

on

transfer function

multiplication

Fouriertransfor

m

Fouriertransfor

m

(≡plane wave

spectrum)

gx, y

t(x, y)

Page 52: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

52MIT 2.71/2.710Review Lecture p-

The 4F system

object planeFourier plane Image plane

Page 53: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

53MIT 2.71/2.710Review Lecture p-

The 4F system

object planeFourier plane Image plane

Page 54: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

54MIT 2.71/2.710Review Lecture p-

The 4F system with FP aperture

object plane Fourier plane: aperture-limited

Image plane: blurred

(i.e. low-pass filtered)

Page 55: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

55MIT 2.71/2.710Review Lecture p-

The 4F system with FP aperture

Transfer function:circular aperture

Impulse response:Airy function

Page 56: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

56MIT 2.71/2.710Review Lecture p-

Coherent vs incoherent imaging

field in

intensity in

field out

intensity out

Coherent

opticalsystem

Incoherentopticalsystem

Page 57: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

57MIT 2.71/2.710Review Lecture p-

Coherent vs incoherent imaging

Coherent impulse response(field in ⇒field out)

Coherent transfer function(FT of field in ⇒ FT of field out)

Incoherent impulse response(intensity in ⇒intensity out)

Incoherent transfer function(FT of intensity in ⇒ FT of

intensity out)

| u,v: Modulation Transfer Function (MTF)u, v: Optical Transfer Function (OTF)

H~

H~

Page 58: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

58MIT 2.71/2.710Review Lecture p-

Coherent vs incoherent imaging

Coherent illumination Incoherent illumination

Page 59: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

59MIT 2.71/2.710Review Lecture p-

Aberrations: geometrical

Paraxial(Gaussian)image point

Non-paraxial rays“overfocus”

Spherical aberration

• Origin of aberrations: nonlinearity of Snell’s law (n sinθ=const., whereas linearrelationship would have been nθ=const.)• Aberrations cause practical systems to perform worse than diffraction-limited• Aberrations are best dealt with using optical design software (Code V, Oslo,Zemax); optimized systems usually resolve ~3-5λ (~1.5-2.5μm in the visible)

Page 60: MIT 2.71/2.710 Review Lecture p- 1 Optics Overview

60MIT 2.71/2.710Review Lecture p-

Aberrations: waveAberration-free impulse response

Aberrations introduce additional phase delay to the impulse response

Effect of aberrationson the MTF

unaberrated(diffraction

limited)

aberrated