microscopic approach to large-amplitude deformation ...contents ks & hinohara, nucl. phys. a...

17
Microscopic approach to large-amplitude deformation dynamics with local QRPA inertial functions Koichi Sato (RIKEN Nishina Center) Nobuo Hinohara (RIKEN Nishina Center) Takashi Nakatsukasa (RIKEN Nishina Center) Masayuki Matsuo (Niigata Univ.) Kenichi Matsuyanagi (RIKEN Nishina Center/ YITP Kyoto Univ.)

Upload: others

Post on 12-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Microscopic approach to large-amplitude deformation dynamics with local QRPA inertial functions

Koichi Sato (RIKEN Nishina Center)

Nobuo Hinohara (RIKEN Nishina Center)Takashi Nakatsukasa (RIKEN Nishina Center)Masayuki Matsuo (Niigata Univ.)Kenichi Matsuyanagi (RIKEN Nishina Center/ YITP Kyoto Univ.)

Page 2: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Contents

KS & Hinohara, Nucl. Phys. A 849, 53 (2011)

Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010)

KS et al., in preparation

Application to oblate-prolate shape coexistence (72Kr)

Application to shape transition in neutron-rich Cr isotopes around N=40

Summary

Constrained HFB + Local QRPA method

Microscopic determination of inertial functions in the quadrupole collective Hamiltonian

Page 3: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Shape coexistence

anharmonic effects

spherical

deformed

transitionaltransitional nuclei

deformation

energy

Microscopic approach to large-amplitude collective motion

A new method of determining the 5D quadrupole collective Hamiltonian: Constrained HFB + Local QRPA method

Shape mixing

Beyond small-amplitude approximation

Page 4: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

),(rotvib VTTH 22

vib ),(21),(),(

21 &&&& DDDT

3

1

2rot 2

1k

kkT J

(Generalized Bohr-Mottelson Hamiltonian) :

5D quadrupole collective Hamiltonian

collective potential

vibrational masses

rotational moments of inertia

2 deformation parameters (β, γ)

+ 3 Euler angles Ω

Page 5: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

“CHFB+ LQRPA” method is based on the Adiabatic SCC method

“Constrained HFB+ Local QRPA method”

Matsuo, Nakatsukasa, and Matsuyanagi, Prog.Theor. Phys. 103(2000), 959.N. Hinohara, et al, Prog. Theor. Phys. 117(2007) 451.

LQRPA inertial masses include the contribution from the time-odd components of the mean field unlike the cranking masses.

Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010)

Moving-frame HFB eq.

Moving-frame QRPA eq.

Constrained HFB eq.

Local QRPA eq.

2q1q

TDHFB phase space

ASCC method CHFB+LQRPA method

),( 21 qqPQ

Collective manifold

sin

cos

),( PQ

Hinohara-san’s talk

Page 6: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Local QRPA (LQRPA) equations for vibration:

Constrained HFB (CHFB) equation:

Constrained HFB + Local QRPA method

),( V

Local QRPA equations for rotation:

),( kJ

),( D ),( D ),( D

KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, Phys. Rev. C 82, 064313 (2010)

Page 7: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Derivation of vibrational masses

Scale transformation B=1 1q2q

)(0D

)(22 D

collective coordinates

Vibrational part of collective Hamiltonian

In terms of quadrupole deformation

one-to-one correspondence

Quadrupole def.

qiP

Criterion to choose 2 LQRPA modes:

Take a pair which gives the minimal

LQRPA eq.

),(),(ˆ1,ˆ),(),(ˆ),(ˆ

)(2

)(2

)(2

Pi

DDqq

Dmm

m

Page 8: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Quantized quadrupole collective Hamiltonian):(General Bohr-Mottelson Hamiltonian)

Pauli’s prescription

Classical Quadrupole Collective Hamiltonian:

Collective Schrodinger equation:

Collective wave function:vib. rot.

Page 9: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Application to oblate-prolate shape coexistence

Collective potential

Model details:Effective interaction: P+Q model including quadrupole-pairing int.Model space: two major shells (Nsh=3,4)Single-particle energy: modified oscillatorInteraction strength: adjusted to reproduce Skyrme-HFB gaps and deformation property

Moment of inertia Vib. inertial mass

KS & Hinohara, Nucl. Phys. A 849, 53 (2011)

Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, Phys. Rev. C 82, 064313 (2010) 68,70,72Se:72,74,76Kr:

72Kr

Page 10: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Collective wave functions squared x 4

localization

72KrNormalization of w. f.:

4

Page 11: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Excitation energies and B(E2) values (72Kr)

Time-odd mean field contribution lowers excitation energies

Interband transitions become weaker as angular momentum increases.

EXP:Fischer et al., Phys.Rev.C67 (2003) 064318, Bouchez, et al., Phys.Rev.Lett.90 (2003) 082502.Gade, et al., Phys.Rev.Lett.95 (2005) 022502, 96 (2006) 189901

( ) …B(E2) e2 fm4

effective charge: epol =0.658

Page 12: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Gade et al., Phys.Rev.C81 (2010) 051304(R),N~40

Experimental 2+ excitation energies & E(41+)/ E(21

+) ratios

onset of deformation?

Development of deformation in Cr isotopes around N~40

Sudden rise in R4/2 from to3660 Cr 38

62 Cr

E(21+) decreases with increasing N toward

N=40

R4/2=E(41+)/ E(21

+) increases with increasing N

Page 13: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Collective potential

64Cr4062Cr38

60Cr36

),( V

66Cr42

Model details:

Eff. Int. : P+Q model including the quadrupole pairingModel space: 2 major shells

Int. parameters:62Cr adjusted to reproducethe Skyrme-HFB gaps and deformation

Others : simple A -dep. assumed

58Cr34

Page 14: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

LQRPA rotational MoILQRPA vibrational masses:

N=36

N=38

N=40

),( D 2),( D ),(1 J

Page 15: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

A. Bürger et al., PLB 622 (2005) 29

)2( 1E )2()4( 11

EE

S. Zhu et al., Phys. Rev. C74 (2006) 064315.

)02;2( 11 EB

(en, ep) =(0.5, 1.5)

Application to Cr isotopes

)2( 1Q

N. Aoi et al., PRL 102, 012502 (2009)EXP:Gade et al., Phys.Rev.C81 (2010) 051304(R),

)4( 1E&

Page 16: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Collective wave functions squared4

KIK

2),(

N=36

N=34

N=38

N=40

N=42

(ground band)

Page 17: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Summary

Application to shape mixing dynamics

oblate-prolate shape coexistence in 72Kr

shape transition in neutron-rich Cr isotopes around N=40.

role of rotational motion

LQRPA inertial masses contain the contribution from the time-odd component of the mean field, which increases the inertial masses.

We have proposed a method (CHFB+LQRPA method) for determining the inertial functions in the 5D quadrupole collective Hamiltonian.

2D CHFB +LQPRA method with Skyrme EDF

Future work