Transcript
Page 1: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Microscopic approach to large-amplitude deformation dynamics with local QRPA inertial functions

Koichi Sato (RIKEN Nishina Center)

Nobuo Hinohara (RIKEN Nishina Center)Takashi Nakatsukasa (RIKEN Nishina Center)Masayuki Matsuo (Niigata Univ.)Kenichi Matsuyanagi (RIKEN Nishina Center/ YITP Kyoto Univ.)

Page 2: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Contents

KS & Hinohara, Nucl. Phys. A 849, 53 (2011)

Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010)

KS et al., in preparation

Application to oblate-prolate shape coexistence (72Kr)

Application to shape transition in neutron-rich Cr isotopes around N=40

Summary

Constrained HFB + Local QRPA method

Microscopic determination of inertial functions in the quadrupole collective Hamiltonian

Page 3: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Shape coexistence

anharmonic effects

spherical

deformed

transitionaltransitional nuclei

deformation

energy

Microscopic approach to large-amplitude collective motion

A new method of determining the 5D quadrupole collective Hamiltonian: Constrained HFB + Local QRPA method

Shape mixing

Beyond small-amplitude approximation

Page 4: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

),(rotvib VTTH 22

vib ),(21),(),(

21 &&&& DDDT

3

1

2rot 2

1k

kkT J

(Generalized Bohr-Mottelson Hamiltonian) :

5D quadrupole collective Hamiltonian

collective potential

vibrational masses

rotational moments of inertia

2 deformation parameters (β, γ)

+ 3 Euler angles Ω

Page 5: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

“CHFB+ LQRPA” method is based on the Adiabatic SCC method

“Constrained HFB+ Local QRPA method”

Matsuo, Nakatsukasa, and Matsuyanagi, Prog.Theor. Phys. 103(2000), 959.N. Hinohara, et al, Prog. Theor. Phys. 117(2007) 451.

LQRPA inertial masses include the contribution from the time-odd components of the mean field unlike the cranking masses.

Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010)

Moving-frame HFB eq.

Moving-frame QRPA eq.

Constrained HFB eq.

Local QRPA eq.

2q1q

TDHFB phase space

ASCC method CHFB+LQRPA method

),( 21 qqPQ

Collective manifold

sin

cos

),( PQ

Hinohara-san’s talk

Page 6: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Local QRPA (LQRPA) equations for vibration:

Constrained HFB (CHFB) equation:

Constrained HFB + Local QRPA method

),( V

Local QRPA equations for rotation:

),( kJ

),( D ),( D ),( D

KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, Phys. Rev. C 82, 064313 (2010)

Page 7: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Derivation of vibrational masses

Scale transformation B=1 1q2q

)(0D

)(22 D

collective coordinates

Vibrational part of collective Hamiltonian

In terms of quadrupole deformation

one-to-one correspondence

Quadrupole def.

qiP

Criterion to choose 2 LQRPA modes:

Take a pair which gives the minimal

LQRPA eq.

),(),(ˆ1,ˆ),(),(ˆ),(ˆ

)(2

)(2

)(2

Pi

DDqq

Dmm

m

Page 8: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Quantized quadrupole collective Hamiltonian):(General Bohr-Mottelson Hamiltonian)

Pauli’s prescription

Classical Quadrupole Collective Hamiltonian:

Collective Schrodinger equation:

Collective wave function:vib. rot.

Page 9: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Application to oblate-prolate shape coexistence

Collective potential

Model details:Effective interaction: P+Q model including quadrupole-pairing int.Model space: two major shells (Nsh=3,4)Single-particle energy: modified oscillatorInteraction strength: adjusted to reproduce Skyrme-HFB gaps and deformation property

Moment of inertia Vib. inertial mass

KS & Hinohara, Nucl. Phys. A 849, 53 (2011)

Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, Phys. Rev. C 82, 064313 (2010) 68,70,72Se:72,74,76Kr:

72Kr

Page 10: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Collective wave functions squared x 4

localization

72KrNormalization of w. f.:

4

Page 11: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Excitation energies and B(E2) values (72Kr)

Time-odd mean field contribution lowers excitation energies

Interband transitions become weaker as angular momentum increases.

EXP:Fischer et al., Phys.Rev.C67 (2003) 064318, Bouchez, et al., Phys.Rev.Lett.90 (2003) 082502.Gade, et al., Phys.Rev.Lett.95 (2005) 022502, 96 (2006) 189901

( ) …B(E2) e2 fm4

effective charge: epol =0.658

Page 12: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Gade et al., Phys.Rev.C81 (2010) 051304(R),N~40

Experimental 2+ excitation energies & E(41+)/ E(21

+) ratios

onset of deformation?

Development of deformation in Cr isotopes around N~40

Sudden rise in R4/2 from to3660 Cr 38

62 Cr

E(21+) decreases with increasing N toward

N=40

R4/2=E(41+)/ E(21

+) increases with increasing N

Page 13: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Collective potential

64Cr4062Cr38

60Cr36

),( V

66Cr42

Model details:

Eff. Int. : P+Q model including the quadrupole pairingModel space: 2 major shells

Int. parameters:62Cr adjusted to reproducethe Skyrme-HFB gaps and deformation

Others : simple A -dep. assumed

58Cr34

Page 14: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

LQRPA rotational MoILQRPA vibrational masses:

N=36

N=38

N=40

),( D 2),( D ),(1 J

Page 15: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

A. Bürger et al., PLB 622 (2005) 29

)2( 1E )2()4( 11

EE

S. Zhu et al., Phys. Rev. C74 (2006) 064315.

)02;2( 11 EB

(en, ep) =(0.5, 1.5)

Application to Cr isotopes

)2( 1Q

N. Aoi et al., PRL 102, 012502 (2009)EXP:Gade et al., Phys.Rev.C81 (2010) 051304(R),

)4( 1E&

Page 16: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Collective wave functions squared4

KIK

2),(

N=36

N=34

N=38

N=40

N=42

(ground band)

Page 17: Microscopic approach to large-amplitude deformation ...Contents KS & Hinohara, Nucl. Phys. A 849, 53 (2011) Hinohara, KS, Nakatsukasa, Matsuo, Matsuyanagi, PRC 82, 064313 (2010) KS

Summary

Application to shape mixing dynamics

oblate-prolate shape coexistence in 72Kr

shape transition in neutron-rich Cr isotopes around N=40.

role of rotational motion

LQRPA inertial masses contain the contribution from the time-odd component of the mean field, which increases the inertial masses.

We have proposed a method (CHFB+LQRPA method) for determining the inertial functions in the 5D quadrupole collective Hamiltonian.

2D CHFB +LQPRA method with Skyrme EDF

Future work


Top Related