micro seismic mapping of hydraulic fracture stimulations

42
Microseismic Mapping of Hydraulic Fracture Stimulations (Applications, Observations, and Conclusions for Optimizing Production) Larry Griffin Pinnacle Technologies SPE Egyptian Section Meeting Cairo, Egypt 6 December 2006

Upload: qinglu-cheng

Post on 10-Oct-2014

74 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Microseismic Mapping of Hydraulic Fracture Stimulations

(Applications, Observations, and Conclusions for Optimizing Production)

Larry GriffinPinnacle Technologies

SPE Egyptian Section MeetingCairo, Egypt

6 December 2006

Page 2: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Presentation Outline

I. IntroductionII. Microseismic Technology and

Deployment III. Application of MS TechnologyIV. Appling MS mapping in EgyptV. ConclusionsVI. Questions

Page 3: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Introduction

Page 4: Micro Seismic Mapping of Hydraulic Fracture Stimulations

The Evolution of Hydraulic Fracturing• First Frac was in 1947• Rapidly proved to be one of the most cost effective

production enhancement techniques• Tremendous advancements made since inception:

– Equipment– Designer Fluids and Proppants– Wide Range of Applications

• Most reservoirs could benefit from placing an optimally designedstimulation

• Over 70% of wells in North America Frac

– Stimulation Models• Now most of the models are 3D• Pressure matching

• What is Missing?

Page 5: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Perfectly confined frac

We Know Everything About Fractures Now Except…

Out-of-zonegrowth

Twistingfractures

Poor Interval Coverage

T-shapedfractures

Horizontalfractures

Multiple fracturesdipping from vertical

Partial Zonal Coverage

Page 6: Micro Seismic Mapping of Hydraulic Fracture Stimulations

We Know Everything About Fractures Now Except…

The fracture half-length,the fracture height,

the fracture orientation,and

the fracture location once it leaves the wellbore

Page 7: Micro Seismic Mapping of Hydraulic Fracture Stimulations

What are the actual dimensions of the fracture and where is it located?

Far-field Fracture mapping technologies for answering this question are now where the most important advancements are being made in hydraulic fracturing.

Fracture Mapping (Monitoring)The Current Advancement Frontier Technology for Fracturing

Fracture model prediction

Calibr ated fr actur e model matches micr oseismic mapping r esults

9 200

9 300

9 400

9 500

9 600

9 700

9 800

9 900

20 20 0GR

0.5 0NEU T

9200

9300

9400

9500

9600

9700

9800

9900

Sa n dSa n dSa n dSa n d

Sa n dSa n d

Sa n dSa n d

Sa n dSa n d

Sa n dSa n d

Sa n dSa n d

Sa n dSa n d

Sh a l eS h a l eSa n d 2Sa n d 2

Sa n d 2Sa n d 2

Sh a l eS h a l e

Sa n dSa n d

Rock type 50 00 7000Stress (psi ( M odulus (psi (

0 0. 5Pore Pe rmea . . .

Concent ration of Proppant in Fractu re (lb/ft² (

100 200 300

92 00

93 00

94 00

95 00

96 00

97 00

98 00

99 000 0 .1 5 0 .3 0 0 .4 5 0 .6 0 0 .7 5 0 .9 0 1 .1 1 . 2 1 .4 1 .5

P ro p p an t C o n cen tratio n (lb /ft² (

Width P rofile (in (

0. 500.5

920 0

930 0

940 0

950 0

960 0

970 0

980 0

990 0

Page 8: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Motivation for Frac Engineering & Diagnostics

Hydraulic fracturing is done for well stimulation

NOT

for proppant disposal

Page 9: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Deformation (Tilt)

MicroseismicAcoustic, Micro-Earthquake, Passive Seismic Monitoring

Far-Field Fracture Monitoring

Page 10: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Microseismic Technology and Deployment

Page 11: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Microseismic MappingConcept/Principle

Microseisms Originate in an Envelope Surrounding the Fracture

P

S

SHEAR SLIPPAGE

P(t1)S(t1)

P(t2)S(t2)

RECEIVERXY

• Slippage Emits Both P & S Waves (Compressional & Shear)

• Velocities Are DifferentP Wave > S Wave

• Detected At Tri-Axial Receiver

Page 12: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Microseismic Mapping Obtaining Data From an Offset Observation Well

• Fiber optic wireline• 12-20 Levels, 3 Component

Sensors• Mechanically Coupled• Can be deployed under pressure

Page 13: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Microseismic Mapping Determining Distance and Elevation

• Slippage Emits Both P & S Waves (Compressional & Shear)

• Velocities Are DifferentP Wave > S Wave

• Detected At Tri-Axial Receiver

P

S

SHEAR SLIPPAGE

P(t1)S(t1)

P(t2)S(t2)

RECEIVER

XY

Page 14: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Microseismic MappingExample Recorded MS Event

Page 15: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Microseismic MappingVelocity Model

Microseismic Event

Receivers

Ray Paths

V1

V2

V4

V3

Page 16: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Microseismic MappingAzimuth Determination

The Direction to a Microseismic Source Is Found by Examining the Particle Motion of the P Wave, Which Is Always Directed Radially Outward from the Source.

Time

Ampl

itude

xy

t x y0 0 01 10 42 20 93 30 144 36 185 30 166 20 127 10 88 0 49 -10 010 -20 -611 -30 -1212 -34 -1813 -30 -1814 -20 -1415 -10 -816 0 -4

While Many Techniques Are Available to Determine the Direction, the Simplest Representation Is a Hodogram, which is a Crossplot of the Amplitudes.

Example HodogramData

Waveform

X Amplitude

Y A

mpl

itude

Anglefrom

x Axis

Page 17: Micro Seismic Mapping of Hydraulic Fracture Stimulations

-25.5-31.4-37.0-34.4-34.4-28.4-28.3-32.6-38.0-31.1-38.2-30.9

Avg=-32.5St Dev=3.9

Microseismic MappingHodogram Analysis

Page 18: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Appling Microseismic Mapping

Determining Fracture Growth

Page 19: Micro Seismic Mapping of Hydraulic Fracture Stimulations

East Texas ExamplesBossier and Cotton Valley

Page 20: Micro Seismic Mapping of Hydraulic Fracture Stimulations

-1400

-1200

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

1200

-180

0

-160

0

-140

0

-120

0

-100

0

-800

-600

-400

-200 0

200

400

600

800

9800

10000

10200

10400

10600

10800

11000

11200

11400

11600

11800

12000

-160

0

-140

0

-120

0

-100

0

-800

-600

-400

-200 0

200

400

600

D istance (ft)

Dept

h (ft

)

Microseismic Mapping Results – Taylor Sands

Observation Well B

Well A

Well B Well A

C-Lime Mar ker

L1

L3

Bossier Shale

L2

Events related to casing deformation

N71°E1500’ Xf

Page 21: Micro Seismic Mapping of Hydraulic Fracture Stimulations

-700

-600

-500

-400

-300

-200

-100

0

100

200

300

400

500

600

-700 -600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600West-East (ft)

Sou

th-N

orth

(ft)

APC Anderson #2York Frac – Map View

Azimuth = N91oE

Anderson #2

Anderson #1

275 ft*550 ft*

* wing lengths from York-only events

DE-PS26-01NT41121SPE 89876

SPE 84876

Page 22: Micro Seismic Mapping of Hydraulic Fracture Stimulations

12500

12600

12700

12800

12900

13000

13100

13200

13300

13400

13500-700 -600 -500 -400 -300 -200 -100 0 100 200 300

Distance Along Fracture (ft)

Dept

h (f

t)

APC Anderson #2York Frac – Side View

Communicating fault between the York and Bonner

York

Bonner

Non-communicating fault, attenuation noted in MS signals

DE-PS26-01NT41121SPE 89876

SPE 84876

Page 23: Micro Seismic Mapping of Hydraulic Fracture Stimulations

-700

-600

-500

-400

-300

-200

-100

0

100

200

300

400

500

600

-700 -600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600West-East (ft)

Sout

h-N

orth

(ft)

APC Anderson #2 Map ViewYork and Bonner Fracs

Anderson #1

Anderson #2

York Frac – Blue Events Bonner Frac – Red Events

Bonner Azimuth = N87oEYork Azimuth = N91oE

DE-PS26-01NT41121SPE 89876

SPE 84876

Page 24: Micro Seismic Mapping of Hydraulic Fracture Stimulations

12200

12300

12400

12500

12600

12700

12800

12900

13000

13100

13200

13300

13400

13500-700 -600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600

Distance Along Fracture (ft)

Dep

th (f

t)

APC Anderson #2 Side ViewYork and Bonner Fracs

York

Bonner

Moore

BM

Non-communicating fault in the York, attenuation noted in

MS signals

Communicating fault between York and Bonner

Communicating fault from the Bonner to the

Moore and BM

York Frac – Blue Events Bonner Frac – Red Events

DE-PS26-01NT41121SPE 89876

SPE 84876

Page 25: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Plan View Well B Stimulation

-400

-300

-200

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

-100

0

-900

-800

-700

-600

-500

-400

-300

-200

-100 0

100

200

300

400

500

West - East (ft)

Sout

h -N

orth

(ft)

9:0 5-10:08a m

10:08-11:05 am

11:05-12:13 pm

Observation Well

Well B

Azimuth=N81E

615’

750’

Late events af ter net pressure drop

-400

-300

-200

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

-100

0

-900

-800

-700

-600

-500

-400

-300

-200

-100 0

100

200

300

400

500

West - East (ft)

-400

-300

-200

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

-100

0

-900

-800

-700

-600

-500

-400

-300

-200

-100 0

100

200

300

400

500

West - East (ft)

Sout

h -N

orth

(ft)

9:0 5-10:08a m

10:08-11:05 am

11:05-12:13 pm

Observation Well

Well B

Azimuth=N81E

615’

750’

Late events af ter net pressure drop

Xf = 615’ West and 750’ East

Time (min)

Net Pressure (psi) Slurry Rate (bpm)Prop Conc (ppg) Observed Net (psi)

0.0 40.0 80.0 120.0 160.0 200

20

40

60

80

100

0.0

2.0

4.0

6.0

8.0

10.0

SPE 84489

Page 26: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Side/Edge View Well B1170 0

1180 0

1190 0

1200 0

1210 0

1220 0

1230 0

1240 0

1250 0

1260 0

1270 0

1280 0

1290 0

1300 0

1310 0

1320 0

1330 0

-800

-700

-600

-500

-400

-300

-200

-100 0

100

200

300

400

500

600

700

800

Distance Along Fracture (ft)

MD

(ft)

9:05-10:08am

10:08-11:05am

11:05-12:13pm

pe rfs

11700

11800

11900

12000

12100

12200

12300

12400

12500

12600

12700

12800

12900

13000

13100

13200

13300

-300

-200

-100 0

100

200

300

Distance Across Fractu re (ft)

MD

(ft)

GR

B.M.Moore

Bonner

York

Cotton Valley

Late events af ter net p ressure drop

615’

450’

750’

1170 0

1180 0

1190 0

1200 0

1210 0

1220 0

1230 0

1240 0

1250 0

1260 0

1270 0

1280 0

1290 0

1300 0

1310 0

1320 0

1330 0

-800

-700

-600

-500

-400

-300

-200

-100 0

100

200

300

400

500

600

700

800

Distance Along Fracture (ft)

MD

(ft)

9:05-10:08am

10:08-11:05am

11:05-12:13pm

pe rfs

11700

11800

11900

12000

12100

12200

12300

12400

12500

12600

12700

12800

12900

13000

13100

13200

13300

-300

-200

-100 0

100

200

300

Distance Across Fractu re (ft)

MD

(ft)

GR

B.M.Moore

Bonner

York

Cotton Valley

Late events af ter net p ressure drop

615’

450’

750’

1170 0

1180 0

1190 0

1200 0

1210 0

1220 0

1230 0

1240 0

1250 0

1260 0

1270 0

1280 0

1290 0

1300 0

1310 0

1320 0

1330 0

-800

-700

-600

-500

-400

-300

-200

-100 0

100

200

300

400

500

600

700

800

Distance Along Fracture (ft)

MD

(ft)

9:05-10:08am

10:08-11:05am

11:05-12:13pm

pe rfs

11700

11800

11900

12000

12100

12200

12300

12400

12500

12600

12700

12800

12900

13000

13100

13200

13300

-300

-200

-100 0

100

200

300

Distance Across Fractu re (ft)

MD

(ft)

GR

B.M.Moore

Bonner

York

Cotton Valley

Late events af ter net p ressure drop

615’

450’

750’

- 8 perf clusters in the BM/Moore York- Xf = 615’ West and 750’ East- H = 450’- Note events in Shales- Minor stimulation of the York

Time (min)

Net Pressure (psi) Slurry Rate (bpm)Prop Conc (ppg) Observed Net (psi)

0.0 40.0 80.0 120.0 160.0 200

20

40

60

80

100

0.0

2.0

4.0

6.0

8.0

10.0

SPE 84489

Page 27: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Appling Microseismic Mapping

Model Calibration

Page 28: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Fracture Model Calibration?

History match the OBSERVED net pressure responses with the DIRECTLY measured fracture dimensions using a 3D fracture simulator to develop a reliable tool for understanding and predicting fracture growth.

Page 29: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Modeling Versus Measuring

Calibrated models more realistically predict how fractures will physically

grow for alternative designs

Fracture growth modelsincomplete physical

understanding

Direct diagnostics not predictive

Page 30: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Microseismic Fracture MappingCotton Valley Sandstone

Fracture model prediction

Calibrated fracture model matches microseismic mapping results

Page 31: Micro Seismic Mapping of Hydraulic Fracture Stimulations

12800

12900

13000

13100

13200

13300

13400

0 150GR

Rockt... Stress... Modul...0 1Perme...

0 200Comp...

FracproPT Layer Properties

Shale

Shale

Shale

Shale

Shale

Upper Y...

Lower Y...

Shale

Shale

Shale

Shale

100 200 300 400 500 600

Concentration of Proppant in Fracture (lb/ft²)

0 0.20 0.40 0.60 0.80 1.0

Proppant Concentration (lb/ft²)

12800

12900

13000

13100

13200

13300

13400

0

Width Prof...

Bossier SandCalibrated Modeling Results for Well C

Before model calibration

12700

12800

12900

13000

13100

13200

13300

13400

0 150GR

Rockt... Stress... Modul...0 1Perme...

0 200Comp...

FracproPT Layer Properties

Shale

Shale

Shale

Shale

Shale

Shale

Upper Y...

Lower Y...

Shale

Shale

Shale

100 200 300 400 500 600

Concentration of Proppant in Fracture (lb/ft²)

0 0.20 0.40 0.60 0.80 1.0

Proppant Concentration (lb/ft²)

12800

12900

13000

13100

13200

13300

13400

0

Width Prof... After model calibration

More confinement than can be attributed to stress contrast, permeability or modulus.

Composite layering

Width decoupling

SPE 84489

Page 32: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Confined Fracture Height Growth• Hard to explain confinement with current “essential physics” if

– Net fracturing pressures are higher than measured/estimated closure stress contrasts– No known “permeability barriers” exist

• Is there another containment mechanism?

Increased fractureclosure stress

Interfaceslippage

Compositelayering

Page 33: Micro Seismic Mapping of Hydraulic Fracture Stimulations

FRACTURE COMPLEXITY

HYDRAULIC FRACTUREMINEBACK

Page 34: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Applying Microseismic Technology In Egypt

Can it be applied it Egypt?

Page 35: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Reservoirs Where Microseismic Mapping has Been Successfully Applied

Oil/Gas/Geothermal/Disposal

Lithologies• Granites (Geothermal) • Shales• Sandstone/Shale• Carbonates• Coal Bed Methane• Chalk• Unconsolidated Sands

Page 36: Micro Seismic Mapping of Hydraulic Fracture Stimulations

How Far Can Microseismic See?Microseismic Observation Distance

Range from <100m to over >>1,500m

Observation Distance Depends on:1. Size (Amplitude) of the Microseism

FormationTreatment size and rate

2. Attenuation Formation property

3. Background noiseQuiet WellboreField ActivitiesSame pad operations

Page 37: Micro Seismic Mapping of Hydraulic Fracture Stimulations

How Far Can Microseismic See?Actual Observation Distances:

• Granites (Geothermal) >>1500m• Shales 900 - 750m• Sandstone/Shale 350 - 450m• Carbonates 300m• Coal Bed Methane 250m• Chalk <100m*• Unconsolidated Sands <100m*

* Long-term reservoir monitoring has seem significantly large observation distances

Page 38: Micro Seismic Mapping of Hydraulic Fracture Stimulations

ConclusionMicroseismic Mapping Can Be Successfully Applied in Egypt

• Same limitations as found in the North America• Must find suitably near observation wells• There is not a technology problem• Must mobilize specialized FBO equipment to Egypt• Need technology leader (early adopter) to decide to do this in Egypt

The Egyptian Western Desert Should Work Well• Typical Sand/Shale sequences• Reasonably large treatments• Not same pad operations (low noise levels)• Would anticipate observation distances of ~450m

Page 39: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Questions?

Page 40: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Future Advances

Page 41: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Microseismic Mapping From an Active Treatment WellCurrently only Available in North America

Fiber optic wirelineMechanically Coupled geophones

using blocksTypically run 10 tools with ~200’

apertureOnly obtain usable data during SI

timeTools run pulled under pressure

Page 42: Micro Seismic Mapping of Hydraulic Fracture Stimulations

Microseismic Mapping From A Horizontal WellCurrently only Available in North America

Deployed on tractorCan also be done on treatment

wells

Gravity Coupled geophones using blocks

Typically run 5 tools with ~700’aperture