micro interactions and multi dimensional graphical user interfaces in the design of wrist worn...

47
Micro interac+ons and Mul+ dimensional Graphical User Interfaces in the Design of Wrist Worn Wearables Prof. Vivian Genaro Mo? Prof. Kelly Caine Clemson University Los Angeles CA, October 29 th , 2015 Human Centered CompuEng Division School of CompuEng

Upload: vivian-motti

Post on 16-Jan-2017

333 views

Category:

Technology


0 download

TRANSCRIPT

Micro  interac+ons  and  Mul+  dimensional  Graphical  User  Interfaces  in  the  Design  of  

Wrist  Worn  Wearables  

Prof.  Vivian  Genaro  Mo?  Prof.  Kelly  Caine  

Clemson  University  

Los  Angeles  CA,  October  29th,  2015  

Human  Centered  CompuEng  Division    School  of  CompuEng  

 

2  

Advantages  

•  Mount  locaEon  

•  ConEnuous  skin  contact  

•  One  hand  interacEon  

[Rawassizadeh,   R.,   Price,   B.   a.,   and   Petre,  M.  Wearables:   Has   the   Age   of   Smartwatches  Finally  Arrived?  CommunicaEons  of  the  ACM  58,  1  (2014),  45–47.]   3  

Wrist  Worn  Devices  

•  Popular  

•  ConvenEonal  locaEon  •  accessible  

•  Blend  in  to  users’  ou\its  

4  

5  

Wearable  InteracEon  

•  Design  challenges  •  Limited  resources  •  Users  in  dynamic  contexts  •  Lack  of  support  •  ParadigmaEc  shi_s  

6  

Resources  

•  ConnecEvity  

•  Power  

•  InteracEve  Surfaces  

•  Sensors  &  Actuators  

•  Display  

7  

Challenges  

‘Small   screen   size   results   in   restricted   I/O   and  their   small   hardware   results   in   weaker  compuEng   capability   and   especially   limited  bacery  capacity  in  comparison  larger  devices’  

[Rawassizadeh,   R.,   Price,   B.   a.,   and  Petre,  M.  Wearables:  Has   the  Age  of   Smartwatches  Finally  Arrived?  CommunicaEons  of  the  ACM  58,  1  (2014),  45–47.]   8  

Dynamic  Contexts  

•  SituaEonal  Impairments  

•  Transient  Requirements  

•  Dynamic  Constraints  

9  

Lack  of  Support  

•  Guidelines  

•  HeurisEcs  

•  User  centered  design  methods  

•  EvaluaEon  techniques  and  tools  

10  

ParadigmaEc  Shi_s  

•  Gesture  based  interacEon  

•  VibrotacEle  output  responses  

•  MulEmodaliEes  

•  Augmented  reality  

11  

Wearable  CompuEng  

•  Faced  significant  improvements  in  past  decades  •  Power,  form  factors,  connecEvity  

•  InteracEon  design  is  sEll  challenging  •  New  interacEon  paradigms  are  needed  

12  

MoEvaEon  

‘The  screen  restricEon  requires  fresh  thinking  on  user   interface   (UI)   designs   and  new   interac+on  techniques’  

[Rawassizadeh,   R.,   Price,   B.   a.,   and   Petre,  M.  Wearables:   Has   the   Age   of   Smartwatches  Finally  Arrived?  CommunicaEons  of  the  ACM  58,  1  (2014),  45–47.]   13  

Approach  

•  Empirical  analysis  of  wearable  interacEon  

•  IdenEficaEon  and  definiEon  of  interacEon  paradigms  for  wearable  computers  • Wrist  worn  devices  

•  Cross-­‐validaEon  

14  

Related  Work  

•  Industrial  guidelines  

•  ScienEfic  research:  focused  •  One  interacEon  modality  •  Either  input  or  output  

15  

Design  Guidelines  

•  Industry  •  Generic:  suit  different  applicaEons  •  Company-­‐oriented  

•  Academia  •  Specific:  modality,  I/O,  form  factor,  use  case  scenario,  user  populaEon  

16  

Gesture-­‐Based  Interac+on  

[Bernaerts  et  al.  2014.  The  office  smartwatch:  development  and  design  of  a  smartwatch  app  to  digitally  augment  interacEons  in  an  office  environment.  In  DIS'14.  ACM,  New  York,  NY,  USA,  41-­‐44.]   17  

Cross-­‐Device  Interac+on  

[Houben,  S.,  Brudy,  F.,  and  Marquardt,  N.  2015.  Challenges  in  Watch-­‐Centric  Cross-­‐Device  ApplicaEons.  Mobile  Co-­‐Located  InteracEons  Workshop.  CHI’2015.  1–4.]   18  

EdgeTouch  

[Oakley,  I.  and  Lee,  D.  InteracEon  on  the  Edge:  Offset  Sensing  for  Small  Devices.  CHI  ’14,  (2014),  169–178.]   19  

Shimmering  SmartWatches  

[Xu,  C.,  Lyons,  K.,  and  Ave,  F.  Shimmering  Smartwatches  :  Exploring  the  Smartwatch  Design  Space.  TEI,  (2015).]   20  

WatchIt  

•  Gestures  

•  Hands  free  interacEon  

[Simon  T.  Perrault,  Eric  Lecolinet,  James  Eagan,  and  Yves  Guiard.  2013.  Watchit:  simple  gestures  and  eyes-­‐free  interacEon  for  wristwatches  and  bracelets.  In  CHI  '13.  ACM,  New  York,  NY,  USA,  1451-­‐1460.  DOI=10.1145/2470654.2466192]   21  

Drawbacks  

•  Small  interacEve  surfaces  •  Fat  fingers  

•  Incidental  input  •  Midas  gestures  

•  Change  the  wrist  posiEon  •  Interrupts  main  task  

22  

23  

Drawbacks  

•  Small  interacEve  surfaces  •  Fat  fingers  

•  Incidental  input  •  Midas  gestures  

•  Change  the  wrist  posiEon  •  Interrupts  main  task  

24  

Wearable  User  

•  Moving  

•  MulEtasking  

•  Unplanned  InteracEon  •  One  hand  •  Short  Eme  •  Outdoor  and  indoor  

25  

Context  

•  Sitng,  standing,  walking  

•  Driving,  Working,  Running  

•  Watching  TV,  EaEng  

•  Sleeping  

26  

27  

Vision  

•  Design  interacEon  to  maximize  the  device  strengths  and  minimize  its  drawbacks  

28  

Novel  InteracEon  Paradigms  

•  Requirements  •  Generic  to  suit  different  use  case  scenarios  •  User-­‐centric  soluEon  •  Quick,  dynamic  interacEon  •  IntuiEve  •  MulEmodal  •  Context-­‐sensiEve  •  Energy-­‐efficient  

29  

Wrist  worn  InteracEon  Paradigms  

•  Micro  Interac+ons  •  IntuiEve,  efficient,  energy-­‐efficient  

•  Mul+dimensional  User  Interfaces  •  Overcome  display  limitaEons  in  graphic  user  interfaces  

30  

Micro  InteracEons  

•  Limited  to  •  Short  duraEon:  <  4  seconds  •  One  subtask  at  a  Eme  •  Either  display  content  or  provide  navigaEon  features  

•  In  graphic  user  interfaces  •  For  both  input  and  output  

31  

32  

Micro  InteracEons  

•  InteracEons  with  a  device  that  take  less  than  four  seconds  to  iniEate  and  complete  

•  Enable  users  to  safely  split  their  acenEon  span  between  a  wearable  display  and  the  real  world  •  non-­‐main  task  interacEons  •  performed  on  the  go    •  without  distracEon  from  the  main  task  

[Ivan  Golod,  Felix  Heidrich,  ChrisEan  Möllering,  and  MarEna  Ziefle.  2013.  Design  principles  of  hand  gesture  interfaces  for  microinteracEons.  In  DPPI  '13.  ACM,  New  York,  NY,  USA,  11-­‐20.]  33  

Examples  

Modality   Type  Audio   Beeps  Gestures  1D  2D  3D  

 Tap,  touch,  hold,  press,  release  Slide,  pinch,  scroll  Move,  act  

Graphics   Blink,  light,  display  Tac+le   Drag,  slide,  touch,  press  Vibra+on   Buzz  

34  

UI  CharacterisEcs  

•  Glanceable  

•  Relevant  

•  Explicit  

•  EssenEal  

•  Simple  

35  

UI  RecommendaEons  

•  Text  content:  very  brief  

•  Display  content  or  navigaEon  

•  Just  a  few  acEons  at  a  Eme  •  they  remain  consistent  throughout  the  app  to  prevent  confusion  

36  

MulEdimensional  User  Interfaces    

•  Virtual  extensions  for  a  graphic  UI  •  Linear  navigaEon  in  mulEdimensional  direcEons  •  Suitable  for  different  form  factors  •  But  limited  to  GUIs    

37  

38  

SpaEal  Display  Metaphor  

[Am_,  Oliver,  and  Paul  Lukowicz.  "From  backpacks  to  smartphones:  Past,  present,  and  future    of  wearable  computers."  IEEE  Pervasive  CompuEng  3  (2009):  8-­‐13.]   39  

Facet  

[Lyons,  K.,  Nguyen,  D.,  Ashbrook,  D.,  and  White,  S.  Facet:  A  MulE-­‐Segment  Wrist  Worn  System.  UIST  ’12,  (2012),  123–130.]   40  

Peeble  -­‐  Timeline  

41  

Usability  vs.  AestheEcs  

IntenEon  to  use  on-­‐body  products  will  be  greater  if  good  usability   is  perceived   in  conjuncEon  with  good  percepEon  of  visual  appearance  rather  than  good  visual  appearance  exclusively  

 

[Kuru,  A.  and  Erbuğ,  C.  ExploraEons  of  perceived  qualiEes  of  on-­‐body  interacEve  products.    Ergonomics  56,  May  (2013),  906–21.]   42  

InteracEvity  

How  the  product  informs  the  user  about  its  usage  and  how  the  user  receives  feedback  from  the  product  are  powerful  determinants  of  perceived  interacEvity  

 

 

[Kuru,  A.  and  Erbuğ,  C.  ExploraEons  of  perceived  qualiEes  of  on-­‐body  interacEve  products.    Ergonomics  56,  May  (2013),  906–21.]   43  

Conclusion  

•  Micro  interacEons  and  mulE  dimensional  interfaces  fulfill  major  requirements  for  graphic  interfaces  in  wrist  worn  wearables  •  Enabling  quick  interacEon  and  requiring  low  cogniEve  efforts  and  acenEon  from  end  users  

44  

Acknowledgment  

This  material  is  based  upon  work  supported  by  the  NaEonal  Science  FoundaEon  under  Grant  No.  1314342.  Any  opinions,  findings,  and  conclusions  or  recommendaEons  expressed  in  this  material  are  those  of  the  author(s)  and  do  not  necessarily  reflect  the  views  of  the  NaEonal  Science  FoundaEon.  

45  

Q&A  

46  

References  

•  Lyons,  K.,  and  Profita,  H.,  (2014).  The  MulEple  DisposiEons  of  On-­‐Body  and  Wearable  Devices,  Pervasive  CompuEng,  IEEE,  vol.  13,  no.  4,  pp.  24,  31,  Oct.-­‐Dec.  2014  doi:  10.1109/MPRV.2014.79  

•  Mot,  V.  G.,  and  Caine,  K.  (2014).  Human  Factors  ConsideraEons  in  the  Design  of  Wearable  Devices.  In  Proceedings  of  the  Human  Factors  and  Ergonomics  Society  Annual  MeeEng  (Vol.  58,  No.  1,  pp.  205-­‐209).  SAGE  PublicaEons.  

•  Oakley,  I.  and  Lee,  D.  (2014).  InteracEon  on  the  Edge:  Offset  Sensing  for  Small  Devices.  Proceedings  of  the  32nd  annual  ACM  conference  on  Human  factors  in  compuEng  systems  -­‐  CHI  ’14,  (2014),  169–178.  

•  Rawassizadeh,  R.,  Price,  B.  A.,  and  Petre,  M.  (2014).  Wearables:  Has  the  Age  of  Smartwatches  Finally  Arrived?.  CommunicaEons  of  the  ACM  58,  1,  45–47.  

47