metal oxide nanoparticles: synthesis and reactivity

45
Corinne Chanéac UMR - CNRS 7574 Laboratoire Chimie de la Matière Condensée de Paris, Site Collège de France Groupe Nanomatériaux Inorganiques Metal oxide nanoparticles: Synthesis and Reactivity Environmental Nanotechnologies, 7-8 July 2011, Aix en Provence, France

Upload: others

Post on 24-Feb-2022

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Metal oxide nanoparticles: Synthesis and Reactivity

Corinne Chanéac

UMR - CNRS 7574

Laboratoire Chimie de la Matière Condensée de Paris,

Site Collège de France

Groupe Nanomatériaux Inorganiques

Metal oxide nanoparticles:

Synthesis and Reactivity

Environmental Nanotechnologies, 7-8 July 2011, Aix en Provence, France

Page 2: Metal oxide nanoparticles: Synthesis and Reactivity

Stage 1: List of Endpoints

• Nanomaterial Information/Identification

• Physical-Chemical Properties and Material

Characterization

• Environmental Fate

• Environmental Toxicology

• Mammalian Toxicology

• Material Safety

About the Research into Safety of Manufactured Nanomaterials

Page 3: Metal oxide nanoparticles: Synthesis and Reactivity

List of Manufactured Nanomaterials (14)

• Fullerenes (C60)

• Single-walled carbon

nanotubes (SWCNTs)

• Multi-walled carbon nanotubes

(MWCNTs)

• Silver nanoparticles

• Iron nanoparticles

• Carbon black

• Titanium dioxide

• Aluminium oxide

• Cerium oxide

• Zinc oxide

• Silicon dioxide

• Polystyrene

• Dendrimers

• Nanoclays

Soft

Chemistry

About the Research into Safety of Manufactured Nanomaterials

Page 4: Metal oxide nanoparticles: Synthesis and Reactivity

Morphology and Nanoparticles

Gœthite Anatase

Rutile

Formation of natural crystals in geological conditions

Page 5: Metal oxide nanoparticles: Synthesis and Reactivity

Bottom-up Approach

M OH M OH2 H2O

Strong acidity :Catalysis of oxolation

Condensation : olation

[Ti(OH)4(OH2)2]0

hydrolysis

[Ti(OH2)6]3+

Anatase

Rutile

Weak acidity:

olation then oxolation

Aqeous Sol-Gel Process for nanoparticle synthesis

M O M OH HO

Page 6: Metal oxide nanoparticles: Synthesis and Reactivity

Gœthite Anatase

Rutile

20 nm

50 nm

800 nm

w 56 nm

Durupthy, O.; Bill, J.; Aldinger, F. Cryst. Growth Des. 2007, 7, 2696

JACS, 2007,129 (18),5904 Chem. Comm., 5, 2004, pp. 481-487

Morphology and Nanoparticles

Page 7: Metal oxide nanoparticles: Synthesis and Reactivity

Morphologie et Nanoparticules

Gœthite Anatase

Rutile

20 nm

50 nm

800 nm

w 56 nm

Durupthy, O.; Bill, J.; Aldinger, F. Cryst. Growth Des. 2007, 7, 2696

JACS, 2007,129 (18),5904 Chem. Comm., 5, 2004, pp. 481-487

How control the nanocrystal

growth?

Page 8: Metal oxide nanoparticles: Synthesis and Reactivity

OSurf/OT

2 10 20 40 nm D 5

0,6

0,4

0,2

Change in chemical and physical properties

Solid formation DGformation° = nDG°Bulk + DG°surface

Variation of surface energy with the particle size (Sodium Chloride):

Side Total Surface aera Surface Energy

(cm) (cm2) (J/g)

0,1 28 5,6. 10-4

0,01 280 5,6. 10-3

10-4 (1mm) 2,8. 104 0,56

10-7 (1nm) 2,8. 107 560

Huge surface energy for nano-solids - Thermodynamically unstable system

Calculation

for a cube of

Sodium Chloride

Surface Sci. 60, 445, 1976

Surface energy : origin

>0

Page 9: Metal oxide nanoparticles: Synthesis and Reactivity

How determine the surface energy?

Unstability of nanometric colloidal dispersion:

Surface : motive power of growth

E surface : stability DG° = nDG°Bulk + DG°surface

Surface energy : origin

Spontaneous evolution of nanoparticles to minimise the surface contribution

Sintering, Oswald ripening

Page 10: Metal oxide nanoparticles: Synthesis and Reactivity

Surface energy : origin

DG° = nDG°Bulk + DG°surface g = (dG/ dA)ni, T, P

g : surface energy

energy requiered to create an unit of aera

g = ½ Nb e ra

Number of broken bonds per atom

Bond strength

Surface atomic density

Rough estimation of surface energy:

- surface relaxation

- surface restructuring with formation of new chemical bond

- same value of e for all the atoms

- no entropic consideration/ pressure or volume Surface Sci. 60, 445, 1976

Page 11: Metal oxide nanoparticles: Synthesis and Reactivity

g = ½ Nb e ra

g{100} = ½ 2/a2.4.e

= 4 e/a2

g{110} = 5e/√2 a2

= 3,52 e/a2

g{111} = 2√3e/a2

= 3,46 e/a2

FCC Structure

Coordination number of 12

Lattice parameter a

Nb = 4 Nb = 5 Nb = 3

Surface energy depends of the index of facets :

low index facets = low surface energy

Origine de l’énergie de surface

Page 12: Metal oxide nanoparticles: Synthesis and Reactivity

Relation between surface energy and crystal shape

Shape of nanoparticle : total surface energy reaches minimum

Wulff construction

Morphologies for a 2D crystal for 10 and 11 faces

Bi doped with Cu

Equilibrium crystal

Page 13: Metal oxide nanoparticles: Synthesis and Reactivity

5 nm

Surface energy at the atomic scale

T. Hiemstra et al., J. Colloid Interface Sci. 184, 680 (1996)

Brønsted basic site

M M

Od-1

H

Od Od-1

H+ H

M M M M M

M

H+

M M

Od-2

H H

Site m3

Site m2

Kprotonation= f (structure, hydratation)

MnO (nv-2) + H+solv MnOH (nv-1) Kn,1

MnOH (nv-1) + H+solv MnOH2

nv Kn,2

Model of multisite complexation , MUSIC2

-Ln Kn,x = - A(SSj -2+m)

A = 19,8

SH = 0,8

OH m1 p+m = 2

OH m2 p+m = 1 ou 2

OH m3 p+m = 1

S Sj = Si SMe + p SH + m(1- SH)

Page 14: Metal oxide nanoparticles: Synthesis and Reactivity

Example : face 111Oh of magnetite, 2 sites m2 and m3

10,86 3,3

Fe2-OH2 +0,8 Fe2-OH -0,4

Fe3-OH +0,6 Fe3-O -1,8

pH

-1.5

-1

-0.5

0

0.5

1

1.5

2

2 4 6 8 10 12

111 Oh100Somme pondérée

pH

Ch

arg

e d

e s

urf

ace

(C

.m2)

PZC

Good valuation of surface charge and of point of zero charge

Surface energy at the atomic scale

Model of multisite complexation , MUSIC2

Page 15: Metal oxide nanoparticles: Synthesis and Reactivity

5 nm

Surface energy at the atomic scale

T. Hiemstra et al., J. Colloid Interface Sci. 184, 680 (1996)

Brønsted basic site

M M

Od-1

H

Od Od-1

H+ H

M M M M M

M

H+

M M

Od-2

H H

Site m3

Site m2

D g = g - g 0 = RT

F 0 . 22 I - 2 0 . 0136 I + s 2

- s max ) ln( 1 - s

s max )

Surface charge density

J.P. Jolivet et al., J. Mater. Chem., 2004, 14, 3281

DG°surface >0 gA

Gibbs’s Law : Dg = -Sk idmi

Page 16: Metal oxide nanoparticles: Synthesis and Reactivity

Surface Energy Effect

Two ways

Decrease of A : Oswald ripening

D g = g - g 0 = RT

F 0 . 22 I - 2 0 . 0136 I + s 2

- s max ) ln( 1 - s

s max )

Density of

Surface charge

Previously described

g decreases when the charge density, s, increases

For H>PCN

J.P. Jolivet et al., J. Mater. Chem., 2004, 14, 3281

> 0

Metastable Object

DG° = nDG°Bulk + DG°surface

Decrease of g

gA

Gibbs Law : Dg = -Sk idmi

(g ,surface energy)

(A, surface area)

Page 17: Metal oxide nanoparticles: Synthesis and Reactivity

0

-2

-4

-6

-8

-10

-12 0 2 4 6 8 10 12 14 pH

1,0

1,1

1,2

1,3

1,4

2,2 3,4

Log [Fex(OH)y]

solubility

PZC

Size, Shape =

f(Surface energy)

The surface energy is lesser

far from the PZC

Surface Energy Effect

As s = f(pH)

4 5 6 7 8 9 10 pH

s 2 +

pK1

s 1 +

s 1 -

s 2 -

Su

rfa

ce c

ha

rge

den

sity

s

s PZC (point of zero charge)

pK2

Site 1

Site 2

Page 18: Metal oxide nanoparticles: Synthesis and Reactivity

Isotropic Nanoparticles

Precipitation of FeCl2 / FeCl3 : Fe3O4 magnetite

IRM, Hyperthermia

Precipitation of TiCl4 : TiO2 anatase

Photocatalysis, Photovoltaic

2 3 4

J. of Colloid Interface Sci., 1998, 205, 205 & J. Mater. Chem., 2003, 13, 877

pH 10 11 12

2

4

6

8

10

12

14

8 9 10 11 12 13

D (nm)

pH

1week

Size = f(Surface Energy)

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8

-0.2

-0.1

-0.3

0.1

0.2 D (nm)

pH

1 week

Pottier A. (1999), Thèse UPMC, Paris 6

Charged surface = stopped growth

Su

rface

ch

arg

e (C

/m2)c

S

urfa

ce

ch

arg

e (C

/m2)

Page 19: Metal oxide nanoparticles: Synthesis and Reactivity

Isotropic Nanoparticles

Precipitation of FeCl2 / FeCl3 : Fe3O4 magnetite

IRM, Hyperthermia

pH

Size = f(Surface Energy)

Stability of nanoparticle = f(solution acidity), reversible phenomena

50 nm

pH 10

9 nm

After 3 weeks aging at pH 13.5 at 25°C

Page 20: Metal oxide nanoparticles: Synthesis and Reactivity

Anisotropic Nanoparticles

Precipitation of Al(NO3)3 : g-AlO(OH) boehmite

Morphology

= f(Surface Energy of each face)

Handbook of Porous Materials, Ed. F. Schüth, Wiley-VCH, 2002, p. 1591 & J. Mater. Chem., 2004, 14, 1-9

(010)

(001) (101) (100)

Wulff construction :

Equilibrium crystal = faces of lesser energy

0,4

0,5

0,6

0,7

0,8

0,9

4 5 6 7 8 9 10 11 12

hkl g (J/m2)

pH

(010)

(001)

(100)

(101)

Page 21: Metal oxide nanoparticles: Synthesis and Reactivity

0,4

0,5

0,6

0,7

0,8

0,9

4 5 6 7 8 9 10 11 12

hkl g (J/m2)

pH

(010)

(001)

(100)

(101)

pH = 6.5

L= 8 ± 1 nm

e = 3.7 nm

50 nm

(101)

(010)

(001)

(100)

pseudo-hexagonal platelets

Precipitation of Al(NO3)3 : g-AlO(OH) boehmite

pH = 11.5

(101)

(010)

50 nm

104°

réf

L= 13 ± 4 nm

e = 4.9 nm

diamond shape platelets

pH = 4.5

(101)

(001)

(010)

5 nm 100 nm

L= 4,5 nm

e = 3.7 nm

small aggregated pseudo-isotropic particle

Handbook of Porous Materials, Ed. F. Schüth, Wiley-VCH, 2002, p. 1591 & J. Mater. Chem., 2004, 14, 1-9

Anisotropic Nanoparticles

Page 22: Metal oxide nanoparticles: Synthesis and Reactivity

(101)

(101)

(001)

(100)

(101) (001)

(100)

A

B

C

(010)

(010)

(010)

8,9

10,2

9,5

Precipitation of Al(NO3)3 : g-AlO(OH) boehmite

50 nm 50 nm 50 nm

A B C

Electric Properties = f(Morphology)

(001)

7,5

8

8,5

9

9,5

10

10,5

IEP

-20

-10

0

10

20

30

40

50

4 5 6 7 8 9 10 11 12

A B C

Zeta

po

ten

tial (m

V)

pH

Anisotropic Nanoparticles

Page 23: Metal oxide nanoparticles: Synthesis and Reactivity

23

Morphology is kept after the heat treatment

Euzen, P., et al., Handbook of Porous Solids, Wiley-VCH Verlag GmbH, 2002, Vol. 3, 1591-1676

Boehmite Gama Alumina : topotactic transformation

(110)al

(111)al (100)al

(110)al

(010)b

(101)b (100)b

(001)b calcination

450°C

Boehmite Alumine g

20 nm

104° 50 nm

104° 450°C

Anisotropic Nanoparticles

Page 24: Metal oxide nanoparticles: Synthesis and Reactivity

Surface complexation

Precipitation of Al(NO3)3 with polyols: g-AlO(OH) boehmite

[polyol]=0.007M

C2

C4

C3

HO

OH

HO OH

OH

HO

OH

OH

OH

OH

OH

OH

OH

HO

HO

OH

OH

OH

OH

OH

C5

C6

Polyols

Hydroxycarboxylates

O

O-O

-O

O

O-

O

-O

O

O-

O

-O

OHO

-O

O

O-

OH

OHO

-O

O

O-

C2

C4

C3

Dicarboxylates

Complexing molecules and growth of cristallites

Page 25: Metal oxide nanoparticles: Synthesis and Reactivity

pH = 11.5 50 nm

104°

réf

[Al]=0.07M

(101)

(010)

12.6 nm

6.0 nm

éthylène glycol

50 nm

C2

glycérol 50 nm C3

erythritol

50 nm C4

6.6 nm

4.2 nm

arabinitol 50 nm

C5

dulcitol

50 nm C6

6.0 nm

(101)

(010)

3.6 nm

HO

OH

HO OH

OH

HO

OH

OH

OH

HO

OH

OH

OH

OH

OH

(101)

(010) (101)

(010)

10.6 nm

5.2 nm

(101)

(010)

12.0 nm

6.5 nm

OH

OH

OH

OH

HO

The size of nanoparticles decreases with the length of polyols

Precipitation of Al(NO3)3 with polyols: g-AlO(OH) boehmite

[polyol]=0.007M

Surface complexation by polyols

Page 26: Metal oxide nanoparticles: Synthesis and Reactivity

[polyol] 10 % mol

Chiche D. (2007), Thesis UPMC- IFP, Paris 6

Heterogenous Catalysts, Elsevier, 2006, 393

Ribitol : 180 m2/g

Xylitol : 290 m2/g

150

200

250

300

350

400

0 1 2 3 4 5 6 7

threo

erythro

xylitol

ribitol

dulcitol

average

standard synthesis

Su

rface s

pécif

iqu

e (

m²/

g)

erythro

Nombre de fonction OH

threo

Stereochemistry

effect

Precipitation of Al(NO3)3 with polyols: g-AlO(OH) boehmite

Surface complexation by polyols

Page 27: Metal oxide nanoparticles: Synthesis and Reactivity

50 nm

C3

50 nm

C2

50 nm

C4

50 nm

C5

(101)

(010)

12.6 nm 6.0 nm

R = L/e

2.2

glycerol

(101)

(010)

12.0 nm

6.5 nm

1.8

ethylene glycol

(101)

(010)

10.6 nm

5.2 nm

erythritol

2

6.6 nm

4.2 nm

arabinitol

(101)

(010) 1.4

Specific adsorption of Polyols

on (101) face:

Selectivity of adsorbed species

Phys. Chem. Chem. Phys., 2009, 11, 11310 - 11323

Precipitation of Al(NO3)3 with polyols: g-AlO(OH) boehmite

Aspect ratio evolution :

Preferential adsorption upon

lateral surfaces

Surface complexation by polyols

46

48

50

52

54

56

58

60

0 1 2 3 4 5 6

threo

erythro

moyenne

synthèse standard

S 1

01 (

%)

Nombre de fonction OH

(101)

(010)

(101)

(010)

(101)

(010)

Stabilisation énergétique des faces (101)

Page 28: Metal oxide nanoparticles: Synthesis and Reactivity

DFT calculations

(010)

(101)

« Nest » effect

Eads(0K) = -118 kJ.mol-1

Eads(0K) = -87 kJ.mol-1

Phys. Chem. Chem. Phys., 2009, 11, 11310 - 11323

Preferential adsorption upon

lateral surfaces : concavitie and stabilisation

Surface complexation by polyols

Page 29: Metal oxide nanoparticles: Synthesis and Reactivity

50 nm

O

O-

O

-O

OHO

-O

O

O-

OH

OHO

-O

O

O-

50 nm

50 nm

poly(hydroxy)carboxylates 0.007M

malate

succinate

tartrate

R = l/e

1,6

1,1

(101)

(010)

(101)

(010)

(101)

(010)

Size variation is not homothetic :

Strong decrease of anisotropy

2,2

45

50

55

60

65

standardsuccinate malate tartrate

S1

01 (

%)

Carboxylate

Selective adsorption

on (101) face

Surface complexation by hydroxy carboxylate

Acidity of OH groups is strengthened by the

complexation

Al

O OO

Al

O OO

OO

O

O-O

X

Al

O OO

OO

O

O-O

X

Al

O OO

OO

O

-O O

-O

Hydroxy carboxylate chemisorption

Geffroy 1999, Haines 1974, Martell 1984

Page 30: Metal oxide nanoparticles: Synthesis and Reactivity

Lower reactivity of (010) face due to m2-OH sites.

Increase of (101) face stabilization with the distance between –COOH groups: more

available adsorption sites.

(010)

(101)

O

O--O

O

O- O-

OO

~ 2,7 Å ~ 2,9 Å

O

O-

O-

O

~ 2,8 à 5,3 Å

D(O-O) (Å)

μ1-OH / μ2-OH

μ1-OH / μ1-OH

μ2-OH / μ2-OH

2,7 - 4,0 - 4,7 - 6,3

2,5 - 4,7 - 5,5 - 6,3

2,5 - 2,8 - 3,8 - 4,9 - 5,3 - 5,7

(101)

Surface complexation by hydroxy carboxylate

Page 31: Metal oxide nanoparticles: Synthesis and Reactivity

Surface complexation and shape of anatase nanoparticles

Anatase nanoparticles

obtained without complexant

In presence of glutamic acid

In presence of oleic acid

20 nm

Only 101 faces

Durupthy, O.; Bill, J.; Aldinger, F. Cryst. Growth Des.

2007, 7, 2696

Matijevic, J. Colloid Interface Sci. 103 (1985)

(100) and (001) faces

30 nm

Ethylenediamine

(100) faces

Sugimoto, T.; Zhou, X. P.; Muramatsu, A. Journal of Colloid and Interface Science 2003, 259, 53

Page 32: Metal oxide nanoparticles: Synthesis and Reactivity

What are the relevant parameters to control the growth of

nanoparticles ?

0

-2

-4

-6

-8

-10

-12

0 2 4 6 8 10 12 14 pH

1,0

1,1

1,2

1,3

1,4

2,2 3,4

Log [Fex(OH)y]

solubility

PZC

Size, Shape =

f(Solubility)

Size, Shape =

f(Surface energy)

Page 33: Metal oxide nanoparticles: Synthesis and Reactivity

Titanium oxide Nanoparticles

Rutile

Cristalline structure depends on synthesis

conditions

Anatase

Mine Falls Park, Nashua, NH

(I41/amd) (P42/mnm)

Stony Point, Alexander County, NC

(Pcab)

Mina Maria,Caneca, Sonora, Mexico

Brookite

DH°f ( kJ.mol-1)

r (g/cm-3)

-939 -941 -944

3,84 4,17 4,26

3 polymorphs

Pigment : paints, papers, plastics, cosmetic

and pharmacy

Photocatalysis, photovoltaic …

Page 34: Metal oxide nanoparticles: Synthesis and Reactivity

Alcalinisation

2 ≤ pH ≤ 6

Ti(OH)4(OH2)20

Thermolysis in acidic medium

Ti(OH)2(OH2)4 2+

≈ 100°C

TiO2 anatase

brookite

rutile

Thermolysis with

chlorides

Ti(OH)2X2(OH2)20

Oxolation

Olation

[Ti(OH)4(OH2)2]0 TiO2

Titanium oxide Nanoparticles

Page 35: Metal oxide nanoparticles: Synthesis and Reactivity

[H+]sol

1 M 2 M 4M

R = 6 R = 10 R = 13,5

R = length

wide

solubility increase

20 30 40 50 60 70 2

(002)

(110)

Weak nucleation : slow precipitation

High solubility : favour the growth

20 30 40 50 60 70 2

(110)

(002)

Thermolysis of TiCl4 : TiO2 rutile

Titanium oxide Nanoparticles

Page 36: Metal oxide nanoparticles: Synthesis and Reactivity

A. Pottier, S. Cassaignon, C. Chaneac , F. Vilain, E. Tronc, J.P. Jolivet, J. Mater. Chem., 13, 877 (2003)

0

20

40

60

80

100

0 1 2 3 4 5 6[HCl] / mol dm-3

Re

lative

pro

po

rtio

n (

%)

10,6 17,3 24,0 30,6 37,3 44,0

Cl/Ti

Rutile

[Ti(OH)2Cl2(H2O)2]0

17 <Cl/Ti <35

TiCl4 0,15 M / HCl / 95°C 48 hours

Thermolysis of TiCl4 with chloride : TiO2 brookite

3M brookite

3 nm 48 h

111

Titanium oxide Nanoparticles

Page 37: Metal oxide nanoparticles: Synthesis and Reactivity

A. Pottier et al. J. Chem. Mater. 2001, 11, 1116

Thermolysis of TiCl4 with chloride : TiO2 brookite

Structure control by a complexing agent

Titanium oxide Nanoparticles

Page 38: Metal oxide nanoparticles: Synthesis and Reactivity

Hydrolysis of Ti(III)

0,5 1 3 4,5

pH Ti(OH2)6

3+

Oxidation

Precipitation

Ti3+ Ti3+

Oxidation

Precipitation

Tix(OH)a(OH2)bz+

Oxid. /Précip.

S. Cassaignon et al., J. Phys. Chem. Solids (2007), doi:10.1016

rutile brookite rutile anatase

New Morphologies for TiO2

Titanium oxide Nanoparticles

Page 39: Metal oxide nanoparticles: Synthesis and Reactivity

Growth control and Seeding

TiO2 Rutile : TiCl4 3 M / HNO3 15M / 120°C 24 hours

+ Growth solution :

C(Ti4+)=0,3M

50 nm 50 nm

50 nm

Volume fraction : f = 13,3%

Q. Huang, L. Gao, Chem. Letters, 2003, 32,7

Seed

L = 160 ± 40 nm

D = 15 ± 5 nm

R = L/l

12

JACS, 2007,129 (18),5904

seed-mediated

growth process

9

20 30 40 50 60 70 2q

Mesoparticles

Dessombz A.,Thesis UPMC-Orsay,Paris 11

Page 40: Metal oxide nanoparticles: Synthesis and Reactivity

Properties of long nanorods

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

Nem

atic P

ropo

rtio

n

Volume Fraction (%)

Isotr

opic

Bip

hasic

nematic droplets

100 µm

f = 10,6%

f = 8,2%

S=0,75 ± 0,05

d ~ 50 nm

JACS, 2007,129 (18),5904

Collaboration : Patrick Davidson, LPS Orsay, Pierre Panine, ESRF Grenoble

Dessombz A.,Thesis UPMC-Orsay, Paris 11

Nematic phase

First order transition

Page 41: Metal oxide nanoparticles: Synthesis and Reactivity

Rotated Film

1 cm

Methylene blue

0

0.05

0.1

0.15

0.2

0.25

0.3

620 630 640 650 660 670 680 690 700

(nm)

Inte

nsité

(u

a.)

De

gra

da

tio

n

JACS, 2007,129 (18),5904

Polarizer //

agitation

UV lamp

365 nm, 1h

Oriented Film

Collaboration : Patrick Davidson, LPS Orsay, Pierre Panine, ESRF Grenoble

Dessombz A.,Thesis UPMC-Orsay,Paris 11

Methylene blue degradation (10-5 M)

Oriented aggregation: Increase of the photocatalytic activity

Film in rotation

Film oriented (┴)

Properties of long nanorods

Photocatalysis study

Film oriented (//)

Page 42: Metal oxide nanoparticles: Synthesis and Reactivity

Properties of long nanorods

Anisotropy of electric properties; Photoactivation of current

Page 43: Metal oxide nanoparticles: Synthesis and Reactivity

Conclusion

• Aqueous chemistry of metal cations: environmentally friendly, Low cost

• Versatile way to tune oxide nanoparticles

Size, shape and crystalline structure

• Identification of relevant synthesis parameters to tune size and shape:

pH and acidity,

used of polyfunctionnal complexant : Polyols, Polycarboxylates

Surface energy and solubility of nanoparticles are the

driving force of their evolution

Page 44: Metal oxide nanoparticles: Synthesis and Reactivity

Microscopy staff Gervaise Mosser, Patrick Le Griel (LCMC)

Patricia Beaunier (UPMC)

Dominique Jalabert, Fabienne Warmont (Univ. Orléans)

Sophie Cassaignon, MdC

Olivier Durupthy, MdC

David Portehault, CR

Jean-Pierre Jolivet, Prof.

Elisabeth Tronc, CR

Tamar Saison, Hanno Kamp, David Chiche, Nicolas Chemin, Arnaud Dessombz, (PhD)

Agnès Pottier, Cédric Froidefond, Micaëla Nazaraly

Yuheng Wang, Anne Carton, Roberta Brayner, Pierre Gibot (Post Doc), Christelle Roy

(Master)

IFP French institute of petrol , Lyon

Rhodia, Aubervilliers

Draka Comtech, Marcoussis

Saint – Gobain Research, Aubervilliers

Lhoist, Belgium

Funding

Acknowledgements

Page 45: Metal oxide nanoparticles: Synthesis and Reactivity

Thank you for your attention

University Pierre et Marie Curie, Paris, France

Mélanie Auffan ,

Jérôme Rose

CEREGE

Jean-Yves Bottero, Mark Wiesner