memory (cont.) perspectives

24
EE141 – Fall 2005 Lecture 26 Memory (Cont.) Memory (Cont.) Perspectives Perspectives EE141 2 Administrative Stuff Homework 10 posted – just for practice No need to turn in Office hours next week, schedule TBD. HKN review today. Your feedback is important! Final covers all material covered in class. Precise overview to be posted on web-site. Review session schedule TBD.

Upload: others

Post on 23-Dec-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

1

EE141 – Fall 2005Lecture 26

Memory (Cont.)Memory (Cont.)PerspectivesPerspectives

EE141 2

Administrative Stuff

Homework 10 posted – just for practice• No need to turn in

Office hours next week, schedule TBD.

HKN review today. Your feedback is important!

Final covers all material covered in class. Precise overview to be posted on web-site.

Review session schedule TBD.

2

EE141 3

Project 2 – Summary

Variety of topologies and circuit styles• Most projects focused on mix of static logic families

Some very impressive presentations• Refer to examples on web-site

Grades• Mean: 79.3 • Median: 78.9 (3.868, static)• Sigma: 19• Max: 110 (0.944, dynamic; 1.316, static)

EE141 4

Sizing Optimization

16X

Stage Z: LE=1 B=1

3

3.84u/1.92u

960n960n

2.88u/720n

2.4u/1.2u

0.96n0.96n1.2u 0.96n

0.48u

0.48u

16XGin7Gin5Gin0 Gin1 Gin2 Gin3 Gin4 Gin6

Pin7Pin1 Pin2 Pin5Pin3 Pin4 Pin6

Pin0

A

Stage V: LE=1, B=1

Stage W: LE=1, B=4

Stage X : LE=4/3, B=1

Stage Y: LE=2, B=1

Area Concern

0.96u/0.48u

163812

3411

=

=××××=

FO

LE

8.241638

4:5/1

5/1 =

××=PE

Branching 00.1=v78.2=w 08.4=y

70.5=z

94.1=xSize: 2.5

4

2.5

Manchester Sizing

3

EE141 5

Layout Techniques

Size : 1265.22 µm2

(33.00µm x 38.34µm)

Critical Path drawn in arrow

Aspect Ratio = 1.162

Routing• Metal 1

− Horizontal Line− VDD, GND

• Metal 2:− Vertical Line

• Metal 3:− Clock Signals

FA0 FA1 FA2 FA3

FA7 FA6 FA5 FA4

INPUT BUFFER INPUT BUFFER

INPUT BUFFER INPUT BUFFER

OUTPUTBUFFER

OUTPUTBUFFER

OUTPUTBUFFER

OUTPUTBUFFER

CLOCKCHAIN

MemoryMemory

4

EE141 7

Read-Write MemoryNon-VolatileRead-Write

MemoryRead-Only Memory

EPROM

E2PROM

FLASH

RandomAccess

Non-RandomAccess

SRAM

DRAM

Mask-Programmed

Programmable (PROM)

FIFO

Shift Register

CAM

LIFO

Semiconductor Memory Classification

EE141 8

Read-Only Memory Cells

WL

BL

WL

BL

1WL

BL

WL

BL

WL

BL

0

VDD

WL

BL

GND

Diode ROM MOS ROM 1 MOS ROM 2

5

EE141 9

WL[0]

GND

BL [0]

WL [1]

WL [2]

WL [3]

VDD

BL [1]

Pull-up devices

BL [2] BL [3]

GND

MOS NOR ROM

EE141 10

Programming using theActive Layer Only

Polysilicon

Metal1

Diffusion

Metal1 on Diffusion

Cell (9.5λ x 7λ)

MOS NOR ROM Layout

6

EE141 11

MOS NOR ROM Layout

Polysilicon

Metal1

Diffusion

Metal1 on Diffusion

Cell (11λ x 7λ)

Programming usingthe Contact Layer Only

EE141 12

All word lines high by default with exception of selected row

WL [0]

WL [1]

WL [2]

WL [3]

VDD

Pull-up devicesBL [3]BL [2]BL [1]BL [0]

MOS NAND ROM

7

EE141 13

No contact to VDD or GND necessary;

Loss in performance compared to NOR ROMdrastically reduced cell size

Polysilicon

Diffusion

Metal1 on Diffusion

Cell (8λ x 7λ)

Programming usingthe Metal-1 Layer Only

MOS NAND ROM Layout

EE141 14

Cell (5λ x 6λ)

Polysilicon

Threshold-alteringimplant

Metal1 on Diffusion

Programming usingImplants Only

NAND ROM Layout

8

EE141 15

PMOS precharge device can be made as large as necessary,but clock driver becomes harder to design.

WL [0]

GND

BL [0]

WL [1]

WL [2]

WL [3]

VDD

BL [1]

Precharge devices

BL [2] BL [3]

GND

pref

Precharged MOS NOR ROM

EE141 16

Read-Write MemoryNon-VolatileRead-Write

MemoryRead-Only Memory

EPROM

E2PROM

FLASH

RandomAccess

Non-RandomAccess

SRAM

DRAM

Mask-Programmed

Programmable (PROM)

FIFO

Shift Register

CAM

LIFO

Semiconductor Memory Classification

9

EE141 17

Non-Volatile MemoriesThe Floating-gate transistor (FAMOS)

Floating gate

Source

Substrate

Gate

Drain

n+ n+_p

tox

tox

Device cross-section Schematic symbol

G

S

D

EE141 18

0 V

- 5 V 0 V

DS

Removing programming voltage leaves charge trapped

5 V

- 2.5 V 5 V

DS

Programming results inhigher VT.

20 V

10 V 5 V 20 V

DS

Avalanche injection

Floating-Gate Transistor Programming

10

EE141 19

FLOTOX EEPROM

Floating gate

Source

Substratep

Gate

Drain

n1 n1

FLOTOX transistor Fowler-NordheimI-V characteristic

20–30 nm

10 nm

-10 V10 V

I

VGD

EE141 20

EEPROM Cell

WL

BL

VDD

Absolute threshold controlis hardUnprogrammed transistor might be depletion

2 transistor cell

11

EE141 21

EPROMFlashCourtesy Intel

Cross Sections of NVM Cells

EE141 22

Read-Write Memories (RAM)

Static (SRAM)• Data stored as long as supply is applied• Large (6 transistors/cell)• Fast• Differential

Dynamic (DRAM)• Periodic refresh required• Small (1-3 transistors/cell)• Slower• Single ended

12

EE141 23

WL

BL

VDD

M5M6

M4

M1

M2

M3

BL

QQ

6-Transistor CMOS SRAM Cell

EE141 24

WL

BL

VDD

M 5M 6

M 4

M1 VDDVDD VDD

BL

Q = 1Q = 0

Cbit Cbit

CMOS SRAM Analysis (Read)

13

EE141 25

CMOS SRAM Analysis (Read)

00

0.2

0.4

0.6

0.8

1

1.2

0.5

V o l t a g e r i s e [ V ]

1 1.2 1.5 2Cell Ratio (CR)

2.5 3

Vol

tage

Ris

e (V

)

EE141 26

BL = 1 BL = 0

Q = 0Q = 1

M1

M4

M5

M6

VDD

VDD

WL

CMOS SRAM Analysis (Write)

14

EE141 27

CMOS SRAM Analysis (Write)

EE141 28

VDD

GND

QQ

WL

BLBL

M1 M3

M4M2

M5 M6

WL

BL

VDD

M5M6

M4

M1

M2

M3

BL

QQ

6T-SRAM Layout

15

EE141 29

Static power dissipation -- Want RL largeBit lines precharged to VDD to address tp problem

M3

RL RLVDD

WL

Q Q

M1 M2

M4

BL BL

Resistive Load SRAM Cell

EE141 30

No constraints on device ratiosReads are non-destructiveValue stored at node X when writing a “1” = VWWL-VTn

WWL

BL1

M1 X

M3

M2

CS

BL2

RWL

VDD

VDD - VT

DVVDD - VTBL 2

BL 1

X

RWL

WWL

3-Transistor DRAM Cell

16

EE141 31

BL2 BL1 GND

RWL

WWL

M3

M2

M1

WWL

BL1

M1 X

M3

M2

CS

BL2

RWL

3T DRAM Layout

EE141 32

Write: CS is charged or discharged by asserting WL and BL.Read: Charge redistribution takes places between bit line and storage capacitance

Voltage swing is small; typically around 250 mV.

M1

CS

WL

BL

CBL

VDD2 VT

WL

X

sensing

BL

GND

Write 1 Read 1

VDD

VDD /2 VDD /2

∆V BL VPRE– VBIT VPRE–CS

CS CBL+------------= =V

1-Transistor DRAM Cell

17

EE141 33

Uses Polysilicon-Diffusion CapacitanceExpensive in Area

M1 wordline

Diffusedbit line

Polysilicongate

Polysiliconplate

Capacitor

Cross-section Layout

Metal word line

Poly

SiO2

Field Oxiden+ n+

Inversion layerinduced byplate bias

Poly

1T DRAM Cell

EE141 34

Micrograph of 1T DRAM

18

EE141 35

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Trench Cell Stacked-capacitor Cell

Capacitor dielectric layerCell plateWord line

Insulating Layer

IsolationTransfer gateStorage electrode

Advanced 1T DRAM Cells

Perspectives

19

EE141 37

EE141 Summary

Digital circuit designers will have jobs in 2010+

Major challenges• Cost• Power consumption• Robustness• Complexity

Some new circuit solutions and design methodologies are coming

EE141 38

Medium High Very HighVariability

Energy scaling will slow down>0.5>0.5>0.35Energy/Logic Op scaling

0.5 to 1 layer per generation8-97-86-7Metal Layers

11111111RC Delay

Reduce slowly towards 2-2.5<3~3ILD (K)

Low Probability High ProbabilityAlternate, 3G etc

32

11

2016

High Probability Low ProbabilityBulk Planar CMOS

Delay scaling will slow down>0.7~0.70.7Delay = CV/I scaling

641684210.5Integration Capacity (BT)

8162232456590Technology Node (nm)

2018201420122010200820062004

Internal University FCRP(MARCO)Courtesy: R. Krishnamurthy (Intel)

Technology Scaling

20

EE141 39

Research Roadmap

EE141 40

Device Evolution

21

EE141 41

25nm FinFET

25 nm MOS transistor (Folded Channel)

EE141 42

Cost

Mask cost in 90nm technology is over $1MBugs are very expensiveDesign effort increases in DSMCost of new toolsNon-recurring costs dominate the price effectiveness of low-volume ASICsNeed to have a product that can fit multiple applications, customers (flexibility)

22

EE141 43

Power has become a Problem

5KW 18KW

1.5KW 500W

400480088080

80858086

286386

486Pentium ®

0.1

1

10

100

1000

10000

100000

1971 1974 1978 1985 1992 2000 2004 2008Year

Pow

er (W

atts

)

Power delivery and dissipation will be prohibitivePower delivery and dissipation will be prohibitive

Source:S. Borkar(Intel)

Pentium Pro

EE141 44

The Productivity Gap

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

2003

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

2005

2007

2009

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000Logic Tr./ChipTr./Staff Month.

xxx

xxx

x21%/Yr. compound

Productivity growth rate

x

58%/Yr. compoundedComplexity growth rate

10,000

1,000

100

10

1

0.1

0.01

0.001

Logi

c Tr

ansi

stor

per

Chi

p(M

)

0.01

0.1

1

10

100

1,000

10,000

100,000

Prod

uctiv

ity(K

) Tra

ns./S

taff

-Mo.

Com

plex

ity

Complexity outpaces design productivityComplexity outpaces design productivity

Source: Sematech

Today

23

EE141 45

Some FPGA Examples

Xilinx Spartan-3 Xilinx IQ

EE141 46

µP

Prog Mem

MACUnit

AddrGenµP

Prog Mem

µP

Prog Mem

SatelliteProcessorDedicated

Logic

SatelliteProcessor

SatelliteProcessor

GeneralPurpose

µP

Software

DirectMapped

Hardware

HardwareReconfigurable

Processor

ProgrammableDSP

Flex

ibili

ty

Inefficiency

The Architectural Tradeoff Game

24

EE141 47

The Challenge of the Next Decade

∝ DSM ∝ 1/DSM

…and there’s a lot of them!

“Microscopic Problems”• Ultra-high speed design• Interconnect• Noise, Crosstalk• Reliability, Manufacturability• Power Dissipation• Clock Distribution

Everything looks a little different

The Deep Sub-Micron (DSM) Effect

“Macroscopic Issues”• Time-to-Market• Millions of Gates• High-Level Abstractions• Reuse & IP: Portability• Predictability• etc.

EE141 48