medication dosage and intravenous fluid calculation

45
MATHEMATICS FOR MEDICAL PRACTITIONERS DRUG CALCULATION DR MUSA MARENA Drugs are prescribed by their generic (official) name or trade (brand) names and are packaged in an average unit dosage Tablets and capsules contain a solid concentration of drugs (paracetamol gr x) whereas solution contain a specific amount of drug (usually gram weight) dissolved in a specific amount of solution (usually mL‘s or cc‘s) (promethazine 20mg per ml) Parenteral medications (IM, SC, IV) are package in vials, ampoules, and pre-measured syringes. Dosages usually ranges from 1 to 3 ml Medication orders refer to drug dosages, so calculation will be necessary if dosage prescribe is different from available dosage Some drugs are measured in units (heparin, insulin, penicillin), and others are in solutions as mEq (grams per 1ml of solution). Some solutions need to be reconstituted from a` powder form. Infants and children cannot receive the same dose of medication as adult Basic Math skills are needed to calculate most dosage and solution problems encounter today in clinical practice Accurate dosage calculation are an essential component of total nursing role in safe administration of medication NURSING STAFF HAVE a range of sophisticated electronic devices at their disposal for delivering essential drugs, fluids and nutritional therapy to patients in the healthcare setting. Accurate, low-flow-rate, small-volume infusions can be controlled by means of a syringe pump Medium-to-high flow rates can be controlled by a volumetric infusion pump Basic fluid replacement can be delivered by the age old method of gravity infusion more commonly known as the ‗drip'. Gravity infusion relies solely on the user setting up the infusion using a safe and sturdy drip stand, and then manually adjusting a plastic roller clamp, fitted to a disposable administration set, to achieve the desired drip rate. A controller electronically regulates drop rate by gravity An infusion pump consistently exerts pressure against the tubing or the fluid at preselected rate. Syringe pump exert pressure through the tubing Barriers to Calculation Success Top ten reasons why healthcare professionals don‘t think they need to maintain competency in calculations: The computer does it The pharmacy does it The IV infusion pump does it We have charts and tables that do it The drug companies take care of it We use unit dose It‘s just a nursing school exercise We have a unit-based pharmacist

Upload: marenam

Post on 16-Apr-2017

16.924 views

Category:

Health & Medicine


1 download

TRANSCRIPT

  • MATHEMATICS FOR MEDICAL PRACTITIONERS

    DRUG CALCULATION

    DR MUSA MARENA Drugs are prescribed by their generic (official) name or trade (brand) names and are

    packaged in an average unit dosage

    Tablets and capsules contain a solid concentration of drugs (paracetamol gr x) whereas solution contain a specific amount of drug (usually gram weight) dissolved in a specific

    amount of solution (usually mLs or ccs) (promethazine 20mg per ml)

    Parenteral medications (IM, SC, IV) are package in vials, ampoules, and pre-measured syringes. Dosages usually ranges from 1 to 3 ml

    Medication orders refer to drug dosages, so calculation will be necessary if dosage prescribe is different from available dosage

    Some drugs are measured in units (heparin, insulin, penicillin), and others are in solutions as mEq (grams per 1ml of solution). Some solutions need to be reconstituted from a`

    powder form.

    Infants and children cannot receive the same dose of medication as adult Basic Math skills are needed to calculate most dosage and solution problems encounter

    today in clinical practice

    Accurate dosage calculation are an essential component of total nursing role in safe administration of medication

    NURSING STAFF HAVE a range of sophisticated electronic devices at their disposal for delivering essential drugs, fluids and nutritional therapy to patients in the healthcare

    setting.

    Accurate, low-flow-rate, small-volume infusions can be controlled by means of a syringe pump

    Medium-to-high flow rates can be controlled by a volumetric infusion pump Basic fluid replacement can be delivered by the age old method of gravity

    infusion more commonly known as the drip'.

    Gravity infusion relies solely on the user setting up the infusion using a safe and sturdy drip stand, and then manually adjusting a plastic roller clamp, fitted to a disposable

    administration set, to achieve the desired drip rate.

    A controller electronically regulates drop rate by gravity An infusion pump consistently exerts pressure against the tubing or the fluid at

    preselected rate. Syringe pump exert pressure through the tubing

    Barriers to Calculation Success

    Top ten reasons why healthcare professionals dont think they need to maintain competency in

    calculations:

    The computer does it The pharmacy does it The IV infusion pump does it We have charts and tables that do it The drug companies take care of it We use unit dose Its just a nursing school exercise We have a unit-based pharmacist

  • Math is just not one of my strengths Its not a good use of my time

    Responsible professionals cannot afford to become complacent with drug calculations as

    they are accountable for all drugs they administer

    TYPES OF IV FLUIDS

    IV fluids are packaged in sterile plastic bags or glass bottles. It is essential to choose the correct

    IV fluid to avoid serious fluid and electrolyte imbalance that may occur from infusing the wrong

    solution. Physicians and healthcare providers order IV fluids and the IV flow rate.

    If you have any doubt about the correct IV solution, always double-check with another

    healthcare professional.

    COMMON ABBREVIATIONS FOR IV FLUIDS

    ABBREVIATION DEFINITION

    D Dextrose

    W Water

    NS Normal (or isotonic) saline

    D5W 5% dextrose in water

    0.9% NS 0.9% saline in water (sometimes termed normal saline)

    0.45% NS 0.45% saline in water (sometimes termed 12 normal saline)

    0.33% NS 0.33% saline in water (sometimes termed 13 normal saline)

    LR Lactated Ringers solution (or Lactated Ringers)

    D5NS 5% dextrose in normal saline

    KINDS OF IV DRIP FACTORS IV fluids are administered through infusion sets. These consist of plastic tubing attached at one end to the

    IV bag and at the other end to a needle or catheter inserted into a blood vessel. The top of the infusion set

    contains a chamber. Sets with a small needle in the chamber are called microdrip because their drops are

    small. To deliver 1 mL of fluid to the patient/client, 60 drops drip in the drip chamber (60 gtt 1 mL).

    Commonest microdrip sets deliver 60gtt/mL. Others are 50gtt/ml and 40gtt/ml. Infusion sets without a

    small needle in the chamber are called macrodrip (Fig. below).

  • Drops per milliliter differ according to the manufacturer. For example, Baxter-Travenol macrodrip sets

    deliver 10gtt/mL, so10 drops drip in the drip chamber (10gtt 1 mL); Abbott sets deliver 15gtt/mL, so 15

    drops drip in the drip chamber (15gtt 1mL). The package label states the drops per milliliter (gtt/mL).

    Sometimes the drop factor is also stated on the top part of the chamber. To calculate IV drip rates, you

    must know this information.

    The tubing for these sets includes a roller clamp (Fig. below) that you can open or close to regulate the

    drip rate;

  • Use a watch or a clock with a second hand to count the number of drops per minute in the chamber (Fig.

    below).

    The Dial-a-Flow device (sometimes referred to as Dial-a-Flo) is an extension IV tubing that

    attaches to the primary IV tubing. It is calibrated in milliliters per hour; you dial the rate, and

    the device regulates the flow. The roller clamp must be open all the way. Usually, these devices

    are not used with an infusion pump. The rate is still an approximate amount, and changes in the

    patient/client position can affect the flow rate.

    INFUSION PUMPS Electric infusion pumps also deliver IV fluid. Some are easy to operate; others are more

    elaborate. You must enter two pieces of information: the total number of milliliters to be infused

    and the number of milliliters per hour. Pumps used in specialty units also allow you to input the

  • name of the medication, the concentration of the medication, the amount of fluid, and the

    patient/clients weight. The infusion rate is set in milliliters per hour, and the pump automatically

    calculates the dose in milligrams, micrograms etc. There are several manufacturers of IV pumps;

    some pumps use regular IV tubing, while other pumps use tubing specific to that IV pump. All

    IV pumps allow you to program the primary IV rate, volume to be infused, secondary IV rate,

    and total volume that has infused over a period of time. The pump can also calculate the dosage

    based on weight. The tubing factor for an IV infusion pump is 60gtt/mL; however, the rate is

    stated and programmed as milliliters per hour.

    A Buretrol is an IV delivery system with tubing and a chamber that can hold 150mL delivered as microdrip (1mL = 60drops).

    (This device is sometimes referred to as a Volutrol.) The top of the Buretrol has a port so that a reservoir of fluid can be added.

    The Buretrol is a volume control because no more than 150mL can be infused at one time

  • .LABELING IVS Every IV must be labeled so that any professional can check both the fluid that is infusing and

    the drip rate. A typical order includes the following information:

    Patient/client name, room, bed number, date, and time

    Order: 500 mL D5W12NS. Rate: 50 mL/hr. Many factors can influence this drip rate in gravity infusion once it has been calculated and set.

    These include positional problems, temperature and other external factors. However, this method

    has no means of alerting staff to impending errors, or any other infusion-related problems.

    Furthermore, it is reliant on using the force of gravity to deliver the fluid accurately to the

    patient. Apart from fluid viscosity, type of cannula and clinical complications after set up, other

    factors can affect the initial rate of infusion. These include static pressure, temperature, fluid

    level, patient position and drip factor

    Many factors may interfere with the drip rate. When you are not using an infusion pump, gravity

    will cause the IV to vary from its starting rate; you will need to observe and assess the infusion

    and IV site frequently. Youll need to monitor other conditions as well. As the amount of fluid

    decreases in the IV bag, pressure changes occurand they, too, may affect the rate. The

    patient/clients movements can kink the tube and shut off the flow; they can change the position

    of the needle or catheter in the vein. The needle can become lodged against the side of the blood

    vessel, thereby altering the flow, or it may be forced out of the vessel, allowing fluid to enter the

    tissues (infiltration). (Signs of possible infiltration are swelling, pain, coolness, or pallor at the

    insertion site. If you notice any of these signs, discontinue the IV and start a new one at another

    insertion site.) Infusion pumps have an alarm system that beeps to alert you when the rate cannot

    be maintained or when the infusion is nearly finished. Be sure to check the infusion pump

    frequently, and know how to troubleshoot the various alarms.

    STATIC PRESSURE: The pressure (in mmHg) exerted on the fluid varies according to the height difference between the patient access site and the fluid bag. An optimum

    height of one meter above the patient should be sufficient to overcome initial venous

  • pressure. Should the bag be repositioned after set up, this height difference and

    subsequent pressure difference will affect the drip rate.

    TEMPERATURE: Increases in temperature can cause the plastic components in the roller clamp to lose tension and hence grip on the tubing as it tries to revert to its original

    shape and this can adversely affect the drip rate.

    FLUID LEVEL: As the fluid level falls in the bag, the static pressure decreases and results in a slowdown of the established infusion.

    PATIENT POSITION: The set infusion rate (drip rate) is relative to the position of the patient and the fluid bag. Should the patient change position then the drip rate can also be

    affected.

    DRIP FACTOR: This is usually indicated on each manufacturers giving set package and is approximately the number of drops equivalent to 1ml water (H2O). Any change in

    the type of giving set can affect the drip rate, and staff needs to be aware of the drip

    factor for each giving set used in their area of work.

    Each patients prescription is delivered from a fluid bag that can vary in size from 50ml to

    2litres. An administration set, or giving set, is attached to the clean, sterile port of the fluid bag

    and primed ready for the infusion. Once safely connected to the patients cannula, the roller

    clamp is slowly opened to establish a flow rate (in drops per minute). This drip rate is calculated

    before each infusion and set accordingly. Patients are then monitored throughout the infusion

    (mostly every hour) to ensure that the delivery is as expected

    To administer the right amount the nurse must have basic mathematical skills to be able calculate

    the dosage of medication. This may involve using

    Unit conversion Rates Proportions Ratio The nurse observes the three checks and six rights of medication administration.

    THREE CHECKS WHEN PREPARING MEDICATIONS

    Read the label: Check the drug label with the MAR (medication administration record) when removing

    the container or unit-dose package.

    Check the drug label again immediately before pouring or opening the medication, or preparing the unit-dose.

    Check the drug label once more when replacing the container and/or before giving the unit-dose to the patient/client.

    KNOWLEDGE BASE IN GIVING MEDICATIONS

    Nurses should know the following before giving medications: generic and trade names of drugs to be administered class, category of drugs to be administered average adult or pediatric dose depending on the patient/client population routes of administration use side effects and adverse effects

  • contraindications nursing implications in administration signs of effectiveness possible drug interactions

    The nurse should be aware of the patient/clients diagnosis and medical history, especially relative to drugs taken. Be especially alert to over the counter drugs (OTC) or herbal remedies

    which patients/clients often do not consider important. Check for drug allergies.

    Assess the patient/clients need for drug information. Be prepared to implement and evaluate a nursing care plan in drug therapy.

    SIX RIGHTS BEFORE ADMINISTERING MEDICATIONS

    Right medication Right patient/client Right dosage Right route Right time Right documentation.

    MEDICATION ORDERS GUIDELINES

    Only licensed physicians or health care providers can write orders/prescriptions. Nurse practitioners are licensed in all states to write orders, although some restrictions apply

    and vary state to state.

    Medical students may write orders on charts, but orders must be counter signed by a house physician before they are legal. Medical students are not licensed.

    In states that allow nurses or paramedical personnel to prescribe drugs, these caregivers must follow hospital guidelines when carrying out orders.

    Do not carry out an order that is not clear or is illegible. Check with the physician or healthcare provider who wrote the orderdo not assume anything.

    Do not carry out an order if a conflict exists with nursing knowledge. For example, Demerol (meperidine) 500 mg IM is above the average dose. Check with the physician or

    healthcare provider who wrote the order.

    Nursing students should not accept oral or telephone orders. The student should refer the physician to the instructor or staff nurse.

    Professional nurses may take oral or telephone orders in accord with institutional policy. The nurse must write these orders on the chart, and the physician or healthcare provider

    must sign them within 24 hours. Verbal orders are discouraged, and the physician should

    write the order if physically present in the nursing unit.

    Physicians and nurse practitioners order medications using the six rights of medication

    administration including the:

    1. Right patient

    2. Right drug

    3. Right dosage

    4. Right route

    5. Right time

    6. Right documentation

    Right Patient

  • Many medication errors can be prevented by correctly identifying the right patient. Patients in

    the hospital setting wear identification bands, whereas other facilities may use a photograph to

    identify the right patient. Regardless of the identification method, the medication order must

    correspond to the identification of the patient. Checking identification and asking patients to state

    their names assists in reducing medication errors. It is also important to listen to the patient. If

    the patient states, I dont take a blue pill, go back and check the medication order for

    correctness.

    Right Drug

    Medications can be ordered using their trade name or generic name.

    Examples:

    1. Tagamet or cimetidine

    2. Cipro or ciprofloxacin hydrochloride

    It is the responsibility of the nurse to look up a medication before administration to ensure that

    the right drug is being administered. It is the responsibility of the nurse to know the

    classification of the drug being administered and that the drug corresponds with the patient

    diagnosis. Many drugs have similar names.

    Example:

    1. Celebrex (an anti-inflammatory)

    2. Celexa (an antidepressant)

    It is also the responsibility of the nurse to know the side effects of the drug being administered.

    The nurse must be aware of any patient allergies before medication administration to ensure

    safety of the patient. Allergies should be clearly recorded on medication records or a patient

    should wear an allergy bracelet. Because it is impossible to know all medications, the nurse can

    use a nursing drug reference to look up medications to ensure accuracy and prevent medication

    errors.

    Right Dosage

    Medications are available in different dosages. It is the responsibility of the nurse to ensure that

    the right dosage is administered. The pharmacy may supply the exact dosage ordered or the

    dosage may need to be converted using a common equivalent or calculated based on the weight

    of the patient. If the medication must be reconstituted, the correct diluent must be used for

    reconstitution. If a patient is to receive a tablet but has difficulty swallowing, the nurse must

    obtain an order to have the medication changed to an elixir. Medication orders are to be

    administered exactly in the dosage ordered. A nursing drug reference assists with preventing

    medication errors by supplying information regarding the dosages of medications that can be

    safely administered to a patient based on age and weight.

    Right Route

    Medications may be administered by different routes including oral (tablets, capsules, or liquid),

    parenteral (intradermal, subcutaneous, intramuscular, or intravenous), or cutaneous (skin and

    mucous membranes). Improper medication administration techniques (crushing an enteric-coated

    tablet, opening a capsule, or giving an injection using the wrong route) are considered

    medication errors. A nursing drug reference provides information regarding the routes that can

    be safely used to administer medication and eliminate medication errors. It is the responsibility

    of the nurse to use this information to safely administer the medication to the patient using the

    right route.

    Right Time

  • Medications are ordered and need to be administered at specific times to ensure the effective

    absorption of the medication. Failure to administer a medication on time or failure to document

    the administration of a medication is a medication error of omission. Some medications are

    ordered before meals (ac), after meals (pc), or at bedtime. Other medications may be ordered

    based on frequency of time (once a day [qd], twice a day [bid], three times a day [tid], or four

    times a day [qid]). A nursing drug reference provides the nurse with the appropriate information

    to ensure that the medication is effectively and safely administered to eliminate a medication

    error based on adsorption.

    Most facilities allow a window of administration that is usually 30 minutes before or 30 minutes

    after the prescribed time. It is the responsibility of the nurse to use this information to safely

    administer the medication to the patient at the right time.

    Once you are able to interpret the important components of an order for medication, you can

    perform accurate calculations for the correct drug dosage by using dimensional analysis.

    Right Documentation

    Documentation is the sixth right of medication administration and should be completed as

    soon as possible after the administration of the medication. Documentation is an important right

    that can prevent medication errors related to over- or under-medication. The general rule of

    documentation is if you didnt chart it . . . you didnt do it therefore medication should never

    be charted before administration of the medication. Documentation should follow medication

    administration and include documentation regarding refusals, delays, and responses (including

    adverse effects) of medication administration. Other rights that are important: the right drug preparation, right expiration date, right assessment, right

    evaluation, the right to receive drug education, the right to refuse a drug.

    Prerequisite of administrating any drug to a patient is for the nurse to read the label on the

    package or bottle of the drug. In order to ensure that administration of medication is safe it is

    imperative that the nurse remembers the 6 rights.

    RIGHT PATIENT: check patients identity against the identification band and prescription chart.

    RIGHT MEDICINE: check the prescription is legible, signed by an authorized prescriber and that it matches the label on the medication. Its important to ensure the

    drug hasnt passed the expiratory date and to understand the reasons why the medication

    is prescribed and that the patient doesnt have any allergies to the medication. Prescriber

    should use the generic name rather than a trade name on the prescription.

    RIGHT DOSE: check that correct dosage has been prescribed and carry out any calculation required to ensure the correct amount administered. Check that the maximum

    daily dose has not been exceeded

    RIGHT ROUTE: check prescribed route is appropriate for the patient and suitable preparation is available.

    RIGHT TIME: check medication is given at the prescribe time and whether should be before or after meals.

    RIGHT DOCUMENTATION: check the prescription chart is signed to state that the medication has been given. If not given reason must be documented. The effect observed

    or side effect of the drug reported by patient must be documented

    Intravenous fluid therapy involves the administration of

    water nutrients (dextrose, protein, fats and vitamins) electrolytes (e.g. sodium, potassium, chloride)

  • blood products medications

    A PHYSICIANS ORDER for intravenous fluid therapy must include the type/name of solution the dose

    the unit of dose is expressed as a quantity to be given in unit time and it includes the following two:

    quantity of solution in mililitres, litres, milligrams, grams, international units, or equivalent

    unit time period/duration for administration in seconds, minutes or hours

    the quantity of the solution to be administer or the total time duration of administering the dose

    infusion rate in milliliters per second, minute or hour or drops per second, minute or hour) e.g. some institutions or areas (paediatrics)

    THE NURSE is responsible for regulating infusion rate by: Calculating flow rate { milliliters per hour (ml/h)} Choosing a drop factor and Selecting the appropriate IV set with chosen drop

    factor

    Calculating the drip rate (gtt/min) that is needed to deliver the ml/h with the chosen drop factor.

    Regulating the number of drops entering the drip chamber by using the roller clamp on the tubing to adjust the flow rate ( count number of drops for one

    minute) or the infusion pump

    Regularly checking whether the drip is flowing at the calculated rate i.e. hourly The flow rate is regulated either

    manually by straight gravity via an electronic infusion pump or controller

    A controller electronically regulates drop rate by gravity Whereas an infusion pump consistently exerts pressure against the tubing

    or the fluid at preselected rate.

    Intravenous set or intravenous tube has a drip chamber at one end of the IV tubing that connects the tubing to the IV solution (bag or bottle)

    The IV solution must pass through this drip chamber which has an opening that regulates the drops/ml (gtts/ml) that enters the tubing.

    IV SET/GIVING SET/INFUSION SET: A drop is abbreviated gtt, with gtts used for the

    plural. These abbreviations come from gutta, the Latin for drop .The gtt/ml (drop factor), which

    varies according to the manufacturer of the tubing will be displayed on the tubing package. The

    eye of the dropper greatly influences the actual number of drops required to move 1 mL of fluid

    into the drip chamber. Drop factor is the number of drops through the eye of dropper of a given

    set that is required to move (infuse) 1ml of the fluid into the drip chamber (i.e. patient). The

    label on the tubing box will indicate the dropper capacity of the specific tubing used*. The

    calibration of IV tubing in gtt/ml is known as the drop factor. Common macrodrop factors are 10

    gtts/mL, 15gtts/mL, 20gtts/mL and the common microdrop factor are 40gtts/ml, 50gtts/ml and

    60gtts/mL. Determine drip capacity by choosing the microdrop chamber or macrodrip chamber.

  • If you are infusing UNDER 60 ML/HR., then choose a MICRO OR MINI DRIP SET which

    delivers 40-60gtts/ml.

    The SIZE OF CANNULA required will be determined by the type of fluid to be infused and

    the size and condition of the patients veins. The smallest gauge capable of achieving the

    required flow rate should be used (RCN 2010).

    The administration sets are constructed so that the orifice in the drip chamber delivers a

    predictable number of drops for each milliliter of fluid. The most common sets are called

    macrodrip sets. These deliver 10-20drops per ml. These sets do vary, so consult the

    manufacturers package for a correct figure. Remember that this figure is correct for regular,

    water-type fluids; when very viscous fluids, such as those containing amino acids and fats, are

    given, the drops per ml may be fewer. (The figure is usually supplied with the product). Most

    manufacturers also supply microdrip sets. These sets deliver 40-60 drops per ml and can be

    identified by the fine metal orifice in the drip chamber. Blood administration sets are

    characterized by a larger lumen, which delivers fewer drops per ml, and a large built-in filter in

    the drip chamber, which removes any clots or precipitates in the blood. Giving set is to replace

    every 72hours for safety and prevent entry of microorganism. Blood or parenteral nutrition

    giving sets should be change more frequently

    *Check tubing package-may be 10, 15, 20 (macrodrip) or 40, 60(microdrip) gtt/ml. Microdrip is

    selected if Flow Rate calculated or stated is less than 60 ml/hr.

    Patients can receive a medication through a port in an existing IV line. This is called

    INTRAVENOUS PIGGYBACK (IVPB): The medication is in a secondary bag. The secondary

    bag is higher than the primary bag so that the pressure in the secondary line will be greater than

    the pressure in the primary line. Therefore, the secondary medication infuses first. Once the

    secondary infusion is completed, the primary line begins to flow. Be sure to keep both lines

    open. If you close the primary line, when the secondary IVPB is completed the primary line will

    not flow into the vein. A typical IVPB order might read: cimetidine 300 mg IVPB q6h in 50 mL

    NS infuse over 30 min. This is an order for an IV piggyback infusion in which 300 mg of the

    drug cimetidine diluted in 50 mL of a normal saline solution must infuse in 30 minutes. So, the

    patient receives 300 mg of cimetidine in 30minutes via a secondary line, and this dose is

    repeated every 6 hours.

    A primary IV line (right) and an IVPB (or secondary) line (left). Fluid flows continuously through the primary line into the patient/clients vein. At timed intervals, medication placed in an IVPB is attached by tubing to the primary IV for delivery to the patient/client. The primary fluid is lowered and the IVPB fluid flows. After the IVPB has infused, the primary fluid begins infusing again. An IV infusion pump may also be used, where medication in the IVPB is infused through the pump.

  • Some IV medications are administered not continuously but only intermittently, such as every 4,

    6, or 8 hours. This route is termed intravenous piggyback or (IVPB). The term admixture refers

    to the premixed IVPB.

    Most of these drugs are prepared in powder form. The manufacturer specifies the type and

    amount of diluent needed to reconstitute the drug; later, you, the nurse, connect the IVPB

    (containing the reconstituted drug) by IV tubing to the main IV line. Some IVPB medications

    come premixed from the manufacturer.

    For other medications, the institutional pharmacy may reconstitute and prepare IVPB solutions in

    a sterile environment using a laminar flow hood. This procedure saves nursing time, because

    when you are ready to administer the drugs, they have already been prepared, labeled, and

    screened for incompatibilities.

    Nevertheless, the nurse still bears considerable responsibility: You must check the diluent and

    volume.

    You must also check the dose and the expiration date of the reconstituted solution; note whether

    the

    IVPB should be refrigerated before use or whether it can remain at room temperature until hung.

    Finally, you must calculate the drip rate and record this information on the IVPB label before

    hanging the bag.

    CHOOSING THE INFUSION SET Experience will enable you to judge which IV tubing to use. In clinical settings, the guidelines

    below will help you make your choice. An electric infusion pump poses no problem, because it

    will deliver the amount programmed. Specialized pumps in neonatal and intensive care units can

    deliver 1 mL/hour and even less. Specialized syringe pumps also can deliver less than 1

    mL/hour.

    When an IV pump is not available, consider these guidelines:

    Use microdrip when

    The IV is to be administered over a long period

    A small amount of fluid is to be infused

    The macrodrops per minute are too few (Without an infusion pump, IV fluids flow by gravity.

    Blood flowing in the vein exerts a pressure. If the IV is too slow, the pressure of the blood in the

    vein may back up into the tubing, where it may clot and cause the IV to stop infusing.)

    Use macrodrip when

    The order specifies a large amount of fluid over a short time

    The microdrips per minute are too many, and counting the drip rate becomes too difficult

    INFUSION RATE CALCULATION Generally there are at least three methods employed in medication calculation. These are

    dimensional analysis, proportion and formula method. No one method is best for solving every

    type of problem. Several good approaches are available, however one of the best is dimensional

    analysis as the name implies, in dimensional analysis we use the units (dimensions) that are a

    part of measurements to help solve (analyze) the problem.

    Rule #1 in drug calculations - STICK TO ONE METHOD!

  • 1: DIMENSIONAL ANALYSIS/DEDUCTION METHOD Is a process of manipulating units, which are actually descriptions of numbers, to solve mathematical

    equations. This method of mathematic problem solving is used in chemistry with great success. The

    goal of this approach to drug calculation problem solving is to:

    CANCEL OUT UNWANTED UNITS LEAVING ONLY THOSE UNITS YOU WANT

    YOUR ANSWER TO BE EXPRESSED AS! Think of Unit Equivalence as a link that will help you get the desired units you are solving for.

    It involves calculating the unknown variable using its units to deduce a formula.

    (Also known as factor analysis, factor-label method, or unit-factor method, chemistry math).

    This method involves the logical sequencing and placement of a series of ratios (termed factors)

    into an equation. The ratios are prepared from the given data as well as from selected conversion

    factors and contain both arithmetic quantities and their units of measurement. Some terms are

    inverted (to their reciprocals) to permit the cancellation of like units in the numerator(s) and

    denominator(s) and leave only the desired terms of the answer. One advantage of using

    dimensional analysis is the consolidation of several arithmetic steps into a single equation.

    The Mathematical Foundation for Dimensional Analysis Dimensional Analysis relies on two simple mathematical concepts.

    Concept 1: When a nonzero quantity is divided by the same amount, the result is 1.

    For example: Because you can also write a division problem in fractional form, you get

    Since

    is a fraction equal to 1, and the word unit means one, the fraction

    is called a unit

    fraction.

    In the preceding unit fraction, you may cancel the 7s on the top and bottom. That is, you can

    divide both numerator and denominator by 7.

    Units of measurement are the labels, such as inches, feet, minutes, and hours, which are

    sometimes written after a number. They are also referred to as dimensions, or simply units. For example,

    in the quantity 7 days, days is the unit of measurement.

    The equivalent quantities you divide may contain units of measurement.

    For example:

    Or in fractional form:

    In the preceding unit fraction, you may cancel the number 7 and the unit of measurement days on

    the top and bottom and obtain the following:

    Going one step further, now consider this equivalence: Because 7 days is the same quantity of time as 1 week, when you divide these quantities, you

    must get 1.

  • So, both and

    Or in unit fractional form:

    and

    Other unit fractions can be obtained from the equivalences.

    Equivalents for some common units of measurement

    12 inches (in) = 1 foot (ft)

    2 pints (pt) = 1 quart (qt)

    16 ounces (oz) = 1 pound (lb)

    60 seconds (sec) = 1 minute (min)

    60 minutes (min) = 1 hour (h or hr)

    24 hours (h or hr) = 1 day (d)

    12 months (mon) = 1 year (yr)

    Concept 2 When a quantity is multiplied by 1, the quantity is unchanged.

    In the following examples, the quantity 2 weeks will be multiplied by the number 1 and also by

    the unit fractions

    and

    Consider the previous line again. This time you cancel the week(s)!

    ( )

    uivalents for Some Common Units of Measurement So,

    This shows how to convert a quantity measured in weeks (2 weeks) to an equivalent quantity measured in

    days (14 days). With the Dimensional Analysis method, you will be multiplying quantities by unit

    fractions in order to convert the units of measure. This procedure demonstrates the basic technique of

    Dimensional Analysis.

    Many of the problems in dosage calculation require changing a quantity with a single unit of measurement

    into an equivalent quantity with a different single unit of measurement; for example, changing 2 weeks to

    14 days as was done above. Other problems may involve changing rates of flow to equivalent rates of

    flow.

    It is important to understand the following four terms that provide the basis for dimensional

    analysis.

    Given quantity: the beginning point of the problem commonly the doctors order. Wanted quantity: the answer to the problem Unit path: the series of conversions necessary to achieve the answer to the problem Conversion factors: equivalents necessary to convert between systems of measurement

    and to allow unwanted units to be canceled from the problem.

  • Each conversion factor is a ratio of units that equals 1. UNIT - a dimension that is given to a number.

    For Example - If you are to give 50, you would ask, 50 what? This could be mg, mL, tablets,

    teaspoons, etc. (mg, mL, tablets, tsp. are the units)

    UNIT EQUIVALENCIES - the value of equivalencies between two units.

    For Example: 1 kg = 2.2lbs, 5mL = 1tsp, 30mL = 1ounce,

    1gram = 1000mg, 60minutes = 1hour, 15gtt = 1mL, 1grain = 60mg, 1IU=1000mIU

    CONVERSION FACTOR - it is a unit equivalency written as a fraction.

    or

    (The above is simply stating that 60 mg is equal to 1 grain or 1 grain is equal to 60mg.both

    mean the same thing regardless of how they are set up).

    Conversion factors are derived from information provided in the dosage problem.

    Dimensional analysis is a method of calculation in which a series of ratios or factors, organized

    in the form of fractions, are multiplied.

    Factors are two quantities that are related, such as 30 mg in 2 ml.

    In dimensional analysis, factors are expressed as fractions.

    30 mg in 2 mL may be expressed as:

    o

    or

    One unit of measurement is converted to another unit of measurement by means of conversion

    factors or unit equivalence. A conversion factor is a unit equivalence expressed as fraction such

    as 2.2lb = 1 kg or 1,000 mcg = 1 mg. ie

    or

    Conversion factors link units of measurement of what is desired with units of measurement of what is available.

    Conversion factors are arranged in the form of a fraction. o 1,000 mcg = 1 mg may be expressed as:

    o

    or

    For example:

    Covert 50 lb to kg

    The Unit Equivalence (link) is: 2.2 lb = 1 kg

    Note:

    is another way of saying that 2.2 lb = 1 kg

    The desired units we are seeking are kg in this example.

    Using Dimensional Analysis in the above example, we set the problem up in the following format:

    Problem: Covert 50 lb to kg

    50 lb X

    = 22.7 kg (lb cancel one another out and we are left with kg, the units we want)

    Another way of stating this problem is: How many kg are there in 50 lb? or 50 lb is equal to how

    many kg?

    In this example, the units of lbs cancel each other out, leaving behind kg (the units we want our

    answer to be in). We have eliminated the units we dont want and are left with the units we do want.

  • Note: In Dimensional Analysis we simply multiply straight across first (on both sides of the

    horizontal line if applicable) and then divide. There is no cross multiplication or algebra involved in

    this method of problem solving.

    Note: This approach to drug calculations can be used with every type of problem. This is not true

    of other methods.

    Remember, drug calculation problems are simply story problems. You have to develop a

    mathematical problem from the information that is provided.

    Using the Dimensional Analysis approach, this can be accomplished in a few simple steps:

    Determine what it is that is being asked

    Determine what units your answer must be represented in (desired units)

    Determine what the unwanted units are

    Determine what the link (unit equivalence) is (there may be more than one link per problem, and these conversions may have to be made before the final problem can be set up)

    Set up your problem so that you can eliminate unwanted units to end up with desired units

    Apply this method to the problem above: Covert 50 lb to kg

    Determine what it is that is being asked - How many kg are there in 50 lb? or 50 lb is equal to how many kg?

    Determine what units your answer must be represented in (desired units) - kg is what we are solving for

    Determine what the unwanted units are - We want to eliminate lb

    Determine what the link is - 2.2 lb = 1 kg

    Set up your problem so that you can eliminate unwanted units to end up with desired units

    Problem: Covert 50 lb to kg

    50 lb X

    = 22.7 kg

    lb cancel each other out and you are left with kg (the units we want)

    Dimensional analysis also uses the same terms as fractions: numerators and denominators.

    Numerator = the top portion of the problem Denominator = the bottom portion of the problem

    Some problems will have a given quantity and a wanted quantity that contain only numerators.

    Other problems will have a given quantity and a wanted quantity that contain both a numerator

    and a denominator.

    The problem-solving method of dimensional analysis uses the following five steps.

    1. Identify the given quantity in the problem.

    2. Identify the wanted quantity in the problem.

    3. Establish the unit path from the given quantity to the wanted quantity using equivalents as

    conversion factors.

    4. Set up the conversion factors to permit cancellation of unwanted units. Carefully choose each

    conversion factor and ensure that it is correctly placed in the numerator or denominator portion

    of the problem to allow the unwanted units to be canceled from the problem.

    5. Multiply the numerators, multiply the denominators, and divide the product of the numerators

    by the product of the denominators to provide the numerical value of the wanted quantity.

    In solving problems by dimensional analysis, the student unfamiliar with the process should

    consider the following steps:

    Step 1. Identify the given quantity and its unit of measurement.

    Step 2. Identify the unit of wanted quantity (the unit of the required answer).

  • Step 3. Establish the unit path (to go from the given quantity and its unit to the arithmetic answer

    in the wanted unit), and identify the conversion factors needed. This might include:

    (a) A conversion factor for the given quantity and unit, and/or (b) A conversion factor to arrive at the wanted unit of the answer.

    Step 4. Set up the ratios in the unit path such that cancellation of units of measurement in the

    numerators and denominators will retain only the desired unit of the answer.

    Step 5. Perform the computation by multiplying the numerators, multiplying the denominators

    and dividing the product of the numerators by the product of the denominators.

    To create an equation using dimensional analysis:

    Collect all data (variables) for the questions. Step 1: draw a long straight line (magic line) and place an equals to sign at the right end

    of the line.

    Figure out what are you solving for (ask yourself what am I solving for?) and write its unit on the right side of the equals to sign. With space between the equals to sign and the

    unit so that the value of unknown variable (what you are looking for) can be written in

    the space provided after solving the equation

    Step 2: Identify the first variable to be written on the left side. It can either be: The doctors order (given quantity)

    or It is determined by the numerator unit of the unknown variable. The numerator

    unit of the first variable should be the same as the numerator unit of what we are

    solving for.

    The variables are written such that the numerators and their units are on top of the magic line. The denominator and its unit are below the magic line.

    If the similar unit of the selected variable is the Numerator unit then the variable is written directly. If the similar unit of the selected variable is the denominator unit then

    the variable is written as an inverse so as to position the similar unit as the numerator.

    Step 3: Each subsequent variable is written as a product of the previous variable and the subsequent variable is determine by

    o The denominator unit of the previous variable. A variable with one of its units similar to the denominator unit of the previous variable is selected as the next

    variable. The numerator unit of this selected subsequent variable should be

    similar (SI unit) to the denominator unit of the previous variable. If the similar

    unit is the numerator unit of the subsequent variable then the subsequent variable

    written directly as a multiple. If similar unit is also a denominator in the

    subsequent variable then the variable should be written as an inverse so that the

    similar unit can be the numerator.

    o Conversion factor for the previous variable to be able to cancel out the unwanted units

    Step 4: More variables are added until all the unwanted units on the left side cancelled out except the wanted units (one as numerator and other as denominator) similar to those

    units of the unknown variable (units of what you are looking for)

    Note check whether each variable needs conversion and convert it (by multiplying it with a conversion factor) before writing the subsequent variable.

  • Note if a variable has two units first one is the numerator and the second the denominator.

    Multiplying by variable as an inverse is equal to dividing by the variable. A/B= 1B/A so if the

    desire unit is in a position opposite to its required position then we inverse the variable.

    If drops is the numerator unit of the unknown variable or the denominator unit of the previous

    variable, then we need to identify a variable with one of its units as drop to be selected as the

    first variable after the equals to sign or as the subsequent variable respectively. Secondly if drops

    is the numerator unit of the selected variable then the selected variable be written directly for

    the first variable on the left side of the equals to sign but if its the denominator units of the

    selected variable then the subsequent variable will be written as an inverse.

    The variables are written as a product of one another (multiplication). The next variable to be

    multiple is determined by the denominator unit of the previous variable.

    USING SEQUENTIAL METHOD (OTHER WAY) Start with the unit of measurement that is to be calculated:

    o For example, to convert mcg to mg, mg are desired, so start with: mg =

    Find the quantity with the same unit of measurement or the conversion factor with the same unit

    of measurement as what is desired (1 mg = 1,000 mcg) and place this (mg) in the numerator.

    Remember, fractions are set up as the numerator over the denominator:

    o

    The fractions are arranged so that unwanted units cancel out and desired units remain.

    A single quantity not associated with a related quantity is expressed as a fraction by placing it in the numerator and placing 1 in the denominator.

    o

    If mcg are available and mg are desired, arrange the conversion factor such that mcg may be

    cancelled out to leave mg remaining:

    Mg=

    Cross out the identical units that are across and diagonal:

    Mg=

    In dimensional analysis, fractions are multiplied. To multiply fractions, first multiply across the

    numerator, and then multiply across the denominator. Finally, divide the numerator by the

    denominator.

    Equations involving multiple factors are arranged so that the unit of measurement in the

    denominator of one factor is placed in the numerator of the following factor and so on.

    Unwanted units are then cancelled.

    Remember: o A single quantity not associated with a related quantity is expressed as a fraction

    by placing it in the numerator and placing 1 in the denominator.

    o Factors are two quantities that are related. Related quantities are arranged as fractions.

    Process of calculating dosage using dimensional analysis:

  • MEDICATIONS:

    STEP 1: What is to be calculated?

    What is the unit of measurement that is to be calculated?

    STEP 2: What quantities are needed? Needed = desired

    The quantity needed may be the prescribed dosage.

    STEP 3: What quantities are available? Available = have

    STEP 4: Are conversion factors needed to find the units that are to be calculated?

    Conversion factors link units of measurement of what is available with units of

    measurement of what is to be calculated.

    STEP 5: Set up an equation of factors using needed and available quantities and the

    conversion factors.

    STEP 6: Multiply the numerator.

    Multiply the denominator.

    Divide the numerator by the denominator.

    STEP 7: Reassess to determine if the amount makes sense.

    IV Flow Rates

    To determine mL/hr when administering fluid via an IV pump, the process is the same as the ratio and proportion/desired over have methods.

    When calculating gtt/min, follow these steps: o STEP 1: What is to be calculated?

    What is the unit of measurement that is to be calculated? gtt/min

    o STEP 2: What quantities are needed? Needed = desired The quantity needed may be the prescribed dosage. Volume (mL)/infusion time (min or hr)

    o STEP 3: What quantities are available? Available = have Drop factor (gtt/mL)

    o STEP 4: Are conversion factors needed to find what is desired? 60 min = 1 hr

    o STEP 5: Set up an equation of factors using needed and available quantities and the conversion factors.

    If minutes are available, the process is the same as the ratio and proportion/desired over have methods.

    If hours are available:

    IV flow rate(gtt/min) gtt/min=

    ( )

    ( )

    Cancel out identical units:

    IV flow rate(gtt/min) gtt/min=

    ( )

    ( )

    o STEP 6: Multiply the numerator. Multiply the denominator.

    Divide the numerator by the denominator.

    o STEP 7: Reassess to determine if the amount makes sense.

  • EXAMPLE

    Calculate the drip rate of 3000mls of 5% dextrose over 24hrs using an IV set with drop factor of

    20drops/ml?

    Collect data: Drip rate (DR) =? Volume (V) = 3000ml Concentration ( C )= 5% dextrose = 5g dextrose in 100ml of 5% dextrose solution = 5g/100ml Time (T) = 24hrs Drop factor (DF) = 20drops/ml

    METHOD 1(SEQUENTIAL METHOD)

    STEP1: Identify the wanted variable (unknown variable/ what you are looking for) and its unit.

    Drip rate drops/min Step2: Identify the given quantity (doctors order) and its units.

    3000ml in 24hrs Step 3: Identify known equivalent or conversion factors.

    5% dextrose =5g/100mL, 20drops/min, 60min/hr

    Step 4: Draw the magic line

    ---------------------------------- STEP 4a: Write the given quantity with its units at the beginning of the line making sure the

    numerator is above the line and denominator is below the line.

    STEP4b: Write an equal to sign at the end of the magic line.

    STEP4c: Write the units of the wanted variable after the equals-to sign making sure you leave

    some space between the equals to sign and the unit of the wanted quantity.

    Step5: Place the equivalent or conversion factors so that the unwanted units cancel out until the

    wanted units similar to units of wanted quantities are left.

    STEP6: Multiply all the numerators.

    Multiply all the denominators

    Divide the two values and record it in the space provided

    METHOD 2 (RANDOM METHOD) Step 1: Unknown variable (what are you looking for- wanted quantity) is drip rate (DR)

    and its unit is drops/min.

  • = drops/min Step 2: Write the given quantity with its units at the beginning of the line making sure the

    numerator is above the line and denominator is below the line.

    Step 3a:insert all the conversion factors without order making sure all unnecessary units are cancelled out ie 1hr=60mins, 20drops=1ml

    Step 3b: need conversion factor to covert hours to minutes and relationship of hours to minutes is 1hr=60min, i.e. 1hr/60min. DR (drops/min) = 20drops/min x 3000ml x 1/24hrs

    x 1hr/60min= 41.67drops/min=41drops/min

    Our equation has now same units on both sides of the equation if we cancels like ones out hence we can now solve the equation.

    Step 4; compute your answers by multiplying all the numerator and multiplying all the denominators then dividing the two results

    Question 19 below:

    A:

    Data collection: Concentration ( C ) = 1.5%=1.5g of glycine in 100ml of 1.5% glycine solution=1.5g/100ml Flow rate (FR) = 80ml/min (doctors order) Gram (M) = ? Time (T)=3hrs

    METHOD 3(SEQUENTIAL-ANOTHER WAY) STEP1: Identify the wanted variable (unknown variable/ what you are looking for) and its unit.

    mass grams g Step2: Identify known variable with numerator unit as the wanted quantity.

    1.5g/100ml Step 3: Identify known equivalent or conversion factors.

    1.5% glycine= 1.5g of glycine in 100ml of 1.5% glycine solution= 1.5g/100ml Time 3hours 60min=1hr

    Step 4: Draw the magic line

    ---------------------------------- STEP 4a: Write the known variable with numerator the same as the wanted quantity at the

    beginning of the line making sure the numerator is above the line and denominator is below the

    line.

    STEP4b: Write an equal to sign at the end of the magic line.

    STEP4c: Write the units of the wanted variable after the equals-to sign making sure you leave

    some space between the equals to sign and the unit of the wanted quantity.

    Step5: Place the equivalent or conversion factors so that the unwanted units cancel out until the

    wanted units similar to units of wanted quantities are left.

    STEP6: Multiply all the numerators.

  • Multiply all the denominators

    Divide the two values and record it in the space provided

    QUESTION:

    An IV of 1000ml of 5% D/0.9% NaCl is started at 8pm. The flow rate is 38drops per minute, and

    the drop factor is 10drops per milliliter. At what time will this infusion finish?

    ANSWER:

    SEQUENTIAL METHOD

    Given quantity: 1000ml (volume to be infuse)

    Known equivalences (conversion factors): 10gtt/ml (drop factor)

    38gtt/min (flow rate)

    1hr=60min

    Wanted quantity: hr? (Time)

    =4hrs 23min

    Time of finish will be 8pm + 4hr 23min= 12:23am

    EXAMPLE

    The prescriber writes an order for 1000ml of 5% D/W with 10units of Pitocin (oxytocin). Your

    patient must receive 3mU of this drug per minute. Calculate the flow rate in microdrops per

    minute.

    ANSWER

    SQUENTIAL METHOD

    Given quantity: 3mU/min (dosage rate)

    Known equivalences: 10units/1000ml (strength)

    60gtt/ml (standard microdrop drop factor)

    1unit=1000mU

    Wanted quantity:?mcgtt/min (flow rate)

    EXAMPLE

    Gynaecologist performing hysteroscopy uses 1.5% Glycine as distending medium. If the flow

    rate is 80ml/min, how many grams of glycine will the infusion into the uterus if the operation

    lasted for 3hrs? If the flow rate is change to 100ml/min what is the dose of glycine infusion? If

    the drop factor of the IV set is 10drops/ml what is the new drip rate? The assistant changes the

    giving set to give 10drops/sec in order to be able to give 150mg/min. what is the new flow rate in

    ml/min. what is the drop factor of the new IV set?

  • SEQUENTIAL METHOD

    Given quantity =80ml/min (doctors order)

    Wanted quantity (what am looking for) amount grams g

    Unit equivalencies: 1.5% glycine i.e. 1.5g/100ml

    Time 3hrs

    60min=1hr

    Hence

    Unit path way

    SEQUENTIAL METHOD (OTHER WAY)

    Data collection: Concentration (C) = 1.5%=1.5g of glycine in 100ml of 1.5% glycine solution =1.5g/100ml

    Flow rate (FR) = 100ml/min (doctors order)

    Dose (D) =?

    Dose (g/min) =

    SEQUENTIAL METHOD

    C:

    Data collection: Flow rate (FR) = 100ml/min

    Drop factor (DF) = 10drops/ml

    Drip rate (DR) =?

    Drip rate (drops/min)

    SEQUENTIAL METHOD

    Wanted quantity drip rate drops/min

    Given quantity 100ml/min

    Unit equivalent drop factor 10drops =ml

    Unit path

    E:

    RANDOM METHOD

    Data collection: Concentration (C) = 1.5g of glycine in 100ml of 1.5% glycine solution =1.5g/100ml

    Dose (D) = 150mg/min

    Drip rate (DR) = 10drops/sec

    Flow rate (FR) =?

    Flow rate (ml/min)

    Note because variable available is 1.5g/100ml and variable need should have ml as numerator

    hence the variable is inversed. Also changing gram to mg and to cancel both g and mg variable

    need is 1g/1000mg, i.e. 1g=1000mg

    :

    RANDOM METHOD

    Data collection:

  • Concentration (C) = 1.5%=1.5g of glycine in 100ml of 1.5% glycine solution =1.5g/100ml

    Dose (D) = 150mg/min

    Drip rate (DR) = 10drops/sec

    Drop factor (DF) =?

    Drop factor (drops/ml)

    =

    SQUENTIAL METHOD

    Given quantity dose=10drops/sec

    Wanted quantity drop factor drops/min

    Unit equivalent drip rate 150mg/min

    1.5mg/100ml

    1min=60sec

    1g=1000mg

    The physician has ordered 500mL D5W with 10units oxytocin intravenously. Begin at 1mU/min

    and then increase by 1mU/min every 30minutes until active labor is achieved. Maximum dose is

    28mU/min.

    A: Calculate the IV rate (ml/hr) for the beginning infusion

    B: Calculate the IV drip rate for the beginning infusion.

    C: What is the maximum IV rate(ml/hr) the Pitocin infusion may be set for?

    D: What is the maximum IV drip rate the Pitocin infusion may be set for?

    A: data

    Given quantity; dose = 1mu/min

    Wanted quantity; flow rate = ml/hr

    Unit equivalents; 500ml=10unit, 1000mU=1unit, 60min=1hr

    Unit path:

    D: data

    Given quantity; dose =28mU/min

    Wanted quantity; drip rate = drops/min

    Unit Equivalent; 60gtt=ml, 10unit=500ml, 1000mU=1unit,

    Unit Path;

    Ratio: is the numerical relationship between two dimensions (units). It means part per part it can

    be express as

    A: B

    A/B

    Ratio can be converted into fraction which can be converted to decimals which can also be

    converted to percentages. Eg

    1:2=1/2=0.5=50%

    Ratio 1:2 means 1part per 2parts e.g. 20mg/ml means 20mg of solute per ml of solution.

  • 2: RATIO & PROPORTION A ratio is the same as a fraction: it indicates division. A ratio is used to express a relationship

    between one unit

    or part of the whole. A slash (/) or colon (:) is used to indicate division, and both are read as is

    to or per.

    The numerator (N) of the fraction is always to the left of the colon or slash, and the denominator

    (D) of the fraction

    is always to the right of the colon or slash. With medications, a ratio usually refers to the weight

    of a drug (e.g., grams) in a solution (e.g., mL). Therefore, 50 mg/mL = 50 mg of a drug (solute) in 1 mL of a liquid (solution). For the ratio of 1 part to a total of 2 parts, you can write 1:2 or 1/2.

    A proportion is two ratios that are equal. A proportion can be written in the fraction or colon

    format. In the fraction format, the numerator and the denominator of one fraction have the same

    relationship as the numerator and denominator of another fraction (they are equivalent). The

    equals symbol (=) is read as as or equals. In the colon format, the ratio to the left of the double colon is equal to the ratio to the right of the

    double colon. The double colon (::) is read as as. You can also use an equals symbol (=). The first and fourth terms are called extremes and the second and third terms are called the means.

    Is the relationship between two ratios. It equates two ratios.

    There are two ways of expressing proportions. It use variables with one common unit and based

    on their units it relates them through proportion to find the unknown variable. It uses the

    common unit between the variable to find the unknown. It is commonly used to calculate drugs

    doses and injections. It may sometimes needs multiple steps before the final answer

    PROPOTIONS EXPRESSED AS TWO RATIOS: This uses the relation of the various variables as proportion to one another. Its works on lot of logic deduction base on how

    one variable is related to the next base on their common unit. It is easier for use by those

    with poor mathematical skills. It does need the nurse to memorize any formula hence best

    for most nurse and health care worker. Example if drop factor 15drops/ml of drop rate is

    45drops/min. flow rate in ml/min will be: the common unit between the two known

    variables is drops and the unit of the unknown variable is ml/min.

    Hence: 15drops :1ml=45drops : x

    PROPORTION EXPRESSED AS TWO FRACTIONS: It is similar to proportion but put the units into fractions rather than proportion. 15drops/1ml = 45drops/x

    In proportion expressed as 15drops:1ml=45drops:3ml. The two inner values are called the

    means and the outer values are called the extremes. The product of the means is equal to the

    product of the extremes. I.e. 1ml45drops=15drops3ml.

    A proportion consists of two ratios of equal value. The ratios are connected by a double colon

    (::), which symbolizes the word as. 2 : 3 :: 4 : 6

    Read the above proportion: Two is to three as four is to six.

    The first and fourth terms of the proportion are the extremes. The second and third terms are the

    means. 2 : 3 :: 4 : 6

    2 and 6 are the extremes

    3 and 4 are the means

    A helpful way to remember the correct location of the extremes and means is

    E = The end of the problem

    M = The middle of the problem

  • In a proportion the product of the means equals the product of the extremes because the ratios are

    of equal value. This principle may be used to verify your answer in a proportion problem.

    3 4 = 12, product of the means 2 6 = 12, product of the extremes If three terms in the proportions are known and one term is unknown, an x is inserted in the

    space for the unknown term. 2 : 3 :: 4 : x

    RATIO AND PROPORTIONS

    Ratio is same as fraction Use to express a relationship between two units or quantities A slash (/) or colon (:) is use to indicate division and both are read as is to or per With medication usually refers to weight of drug (i.e. gram) in a quantity of the

    solution ( i.e. ccs)

    50mg/cc= 50mg of a drug (solute) in 1cc of a liquid (solution) A proportion states that two ratios are equal

    In fraction form where two fractions are equal1/3=3/9 Colon form e.g. 1:3 :: 3:9

    Frequently in dose calculation problems one quantity is known ( i.e. 100mg per mL = 100mg/1mL) and it is necessary to find an unknown quantity because the physician has

    ordered something different from what is available ( i.e. 75mg)

    In proportion problem the unknown quantity (? mL) to give 75mg is identify as x

    SOLVING A SIMPLE PROPORTION PROBLEM 1. Multiply the extremes.

    2. Multiply the means.

    3. Place the product that includes the x on the left of the equal sign and the product of the known

    terms on the right of the equal sign.

    4. Divide the product of the known terms by the number next to x. The quotient will be the value

    of x.

    COLLECT ALL THE DATA FOR THE QUESTION

    Step 1: Identify the unknown variable

    Step 2: Identify a variable that has one of its unit similar to one of the unit of the unknown

    variable.

    Step 3: Identify a second known variable that has its numerator unit similar to the other unit of

    the selected variable.

    Step 4: Relate the two selected variables as a ratio or as a fraction inn order to help in finding the

    second unit of the unknown variable.

    Step 5: solve for the unknown.

    Pitocin (oxytocin) 10 units/1,000 mL RL, start at 0.5mIU/min increases by 1 mIU/min q20

    minutes. What is the rate of flow in mL/h for the initial dose of Pitocin? The drop factor is

    60mcgtt/ml. Calculate the flow rate in mcgtt/min.

  • Data collection:

    Concentration (C) = 10units/1000ml

    Dose (D) = 0.5mIU/min at 1mIU/min

    Time (T) =20mins

    Flow rate (FR) =?

    Drop factor (DF) = 60mcgtt/ml

    Drip rate (DR) =?

    Step 1: unknown variable is flow rate (FR) and its unit is ml/min

    Step 2: variable 10unit/1000ml has one of its unit similar to the unknown variable flow rate.

    Step 3: variable 0.5mIU/min has one of its units similar to the identified variable 10IU/1000ml.

    Step 4: relate the two variables:

    10000mIU: 1000ml :: 0.5mIU: x or 10000mIU 1000ml= 0.5mIU x

    Step 5: x=

    = 0.05ml

    Hence 0.05ml is given in one minute i.e. flow rate is 0.05ml/min.

    b. 60gtt:1ml::Xgtt:0.05ml

    60gtt0.05ml=1mlXgtt

    Xgtt =

    =3gtt

    Drip rate =3gtt/min

    3: FORMULA METHOD This uses various formulas in the medication calculation. These formulas need memorization. It

    is faster and less tedious if the formula is remembered. In certain instances the nurse (health care

    worker) may forget the formula or even memorize the wrong one. This may lead to giving wrong

    amount of medication to the patient with detrimental effects

    First step is to calculate the flow rate, this value would then give you a crude idea as to whether

    to choose microdrop or macrodrop as your drop factor then second step is drip rate can be

    calculated by using the product of flow rate and the drop factor. Hence

    STEP ONE: The flow rate is calculated either by dividing the total volume (in millilitres) prescribed for the patient by the

    number of hours required for the delivery. This gives the flow rate in milliliters

    per hour (ml/hr).

    ( ) ( ))

    ( )

    or by dividing the dose of the medication by the final concentration into which the drug/ medication is prepared.

    Flow RATE (FR)= ( )

    ( )

    Dose is amount per unit time. It is calculated by dividing amount of drug over by the time to give the drug.

    ( ) ( )

    ( )

  • Concentration is the amount of drug per unit volume of the solution. It is amount of drug divided by the total volume of the solution.

    ( ) ( )

    ( )

    STEP TWO: The flow rate (ml/hr) is then multiplied by the drip factor of the selected, chosen or identified giving set(nominal number of drops per ml) to give the drip rate i.e.

    the total number of drops required per hour(Dougherty and Lister 2004): note if flow rate

    is less than 60ml/hr. a microdrip is chosen.

    To obtain the number of drops required per minute, divide the number of drops per hour by 60 (number of minutes in 1 hour):

    To calculate (flow rate) milliliters per hour you need two pieces of information The total volume to be infuse in milliliters The total time for infusion in hours

    Use this standard formula ( )

    ( ) (

    Example: from question 1 of the problem below we are to give 1000ml D5/RL in 8hrs hence

    To calculate the time of infusion you need Total volume of infusion (milliliters) Rate of infusion (milliliters/minute or hours)

    Use the formula

    ( )

    ( ) ( )

    Example If Doctor ordered that patient should be giving 2L of NS at a rate of 100ml/hr.

    To calculate drops per minute (drip rate), you need two pieces of information

    Flow rate Drop factor Use the formula

    ( ) ( ) ( ) Note: variables should be converted to similar units before inserting into the formula.

    FOR FLUID INFUSION

    ( ) ( )

    ( ) ( )

    Other formula includes

  • Desired Over Have Times Vehicle Drug Formula - This formula is useful when

    solving problems that involve oral and injectable drugs. One must have the

    following information in the story problem in order to use this formula:

    Dose Required = Desired = D Dose on Hand = Have = H Vehicle = How Drug is Supplied = V Give = What We Will Actually Give To Our Patient = G

    ( ) ( )

    ( ) ( )

    From the information that is provided in the problem to be solved, certain words or

    phrases can provide the reader with clues as to how to set up the problem. For

    example:

    The Desire or Need (what is ordered) in the problem is generally written

    as follows:

    - You have an order to give

    - The doctors order reads, give

    - The order reads

    - You have an order for

    - You are to give

    - Your patient has an order for

    - Amoxicillin 500 mg is ordered

    - Gentamycin 50mg/kg is ordered (must figure this calculation out

    to determine what the need or desire is)

    - The recommended dose of drug A is 200-400mg/kg/day (must

    figure out the range of the recommended dose)

    The Have (what you physically have in your hand) in the problem is

    generally written as follows:

    - On hand is

    - Available is

    - The medication is supplied as

    - The vial reads

    - Amoxicillin is available in

    - Your patient is receiving

    - You have available

    - The bottle reads

    - Drug A comes in

  • The Vehicle (form the medication is supplied in) in the problem is

    generally written as follows:

    - tablets, capsules, mL, etc.

    The Give is what you will actually give to the patient

    Remember, many drug calculations require a multi-step approach to solving. You

    may have to perform several conversions before you can actually set up the final

    problem to obtain the answer you are seeking.

    PERCENT Percentage is Always a division of 100 It means the hundredth part Has a symbol of % In solution (combination of solute and solvent) the % means proportion of solute per

    portion of the solution. It is can be expressed as weight of solute per hundredth portion of

    the solution (weight/volume)or volume of solute per hundredth volume of solution

    (volume/volume)

    grams of solute per 100ml or 100cc of solution for (w/v) solutions Millilitres of solute per 100ml or 100cc of solution for v/v solutions

    A 5% solution means 5grams of drug (solute) per 100cc (100ml) of solution. Another way of putting it is every 100ml of the 5% contains 5g od the solute

    0.9% means 0.9g of solute per 100cc of the solution e.g. normal saline (100cc(100ml) of solution contains 0.9g of NaCl)

    10% means 10g of solute per 100cc (100ml)of solution e.g. 10% glucose means every 100ml of 10% glucose contains 10g of glucose

    20% means 20g of solute per 100cc (100ml) of solution e.g. 20% mannitol contains 20g of mannitol for every 100ml of the solution

    50% means 50g of solute per 100cc (100ml) e.g. 50% MgSO4 means every 100ml 0f the 50% MgSO4 contains 50g of MgSO4.

    For example question 7 of problem below;

    The label on the vial of magnesium sulphate is 50% w/v means every 100ml of the 50% MgSO4

    contains 50g of MgSO4.In other words 50g of MgSO4 are contain in100mls of the solution from

    the vial.

    RATIO STRENGTH The concentrations of weak solutions are frequently expressed in terms of ratio strength. Because

    all percentages are a ratio of parts per hundred, ratio strength is merely another way of

    expressing the percentage strength of solutions or liquid preparations (and, less frequently, of

    mixtures of solids). For example, 5% means 5 parts per 100 or 5:100. Although 5 parts per 100

    designates a ratio strength, it is customary to translate this designation into a ratio, the first figure

    of which is 1; thus, 5:100 = 1:20.

    When a ratio strength, for example, 1:1000, is used to designate a concentration, it is to be

    interpreted as follows:

    For solids in liquids=1 g of solute or constituent in 1000 mL of solution or liquid preparation.

    For liquids in liquids = 1 mL of constituent in 1000 mL of solution or liquid preparation.

    For solids in solids = 1 g of constituent in 1000 g of mixture.

  • The ratio and percentage strengths of any solution or mixture of solids are proportional, and

    either is easily converted to the other by the use of proportion.

    Some medications like epinephrine are written as 1 in1000, 1in 10000, 1 in 100000 or as 1:1000,

    1:10000, 1:100000.

    This means 1g of solute in 1000ml of solution, 1g in 10000ml, 1in 100000ml, 1g in 1000000ml

    or 1g:1000ml

    TITRATING MEDICATIONS The process of adjusting the dosage of a medication based on patient response is called titration.

    Titration is adjustment of the dose, either increasing or decreasing, to attain the desired patient

    response. Weaning is a gradual decrease of the dose when the medication is being discontinued.

    Orders for titrated medications are often prescribed for critical-care patients. Such orders require

    that therapeutic effects, such as pain reduction, be monitored. The dose of the medication must

    be adjusted accordingly until the desired effect is achieved. An order for a titrated medication

    generally includes a purpose for titrating and a maximum dose. If either the initial dose or

    directions for subsequent adjustments of the initial dose are not included in the order, the

    medication cannot be given, and you must contact the prescriber. Dosage errors with titrated medications

    can quickly result in catastrophic consequences. Therefore, a thorough knowledge of the

    particular medication and its proper dosage adjustments is crucial. Dosage increment choices are

    medication-specific, and depend on many factors that go beyond the scope of this document.

    Suppose an order indicates that a certain drug must be administered with an initial dosage rate

    of 10mcg/min, and that the rate should be increased by 5mcg/min every 35min for chest pain

    until response, up to a maximum rate of 30mcg/min. The IV bag has a strength of 50mg/250 ml.

    To administer the drug, first determine the IV rate in mL/h for the initial dose rate of 10mcg/min

    Sometimes medications must be titrated. That is, the dose of the medication must be adjusted

    until the desired therapeutic effect (e.g. blood pressure maintenance, normal blood sugar, normal

    heart rate, adequate uterine contractions, pain control etc.) is achieved.

    The order is:

    Pitocin (oxytocin) start at 1 mU/min IV may increase by 1mU/min q30min until adequate uterine

    contractions are achieve to a max of 10mU/min. The IV strength is10 mU/mL.

    (a)Calculate the initial pump setting in mL/h.

    (b)Construct a titration table for this order

    Example doctor orders that a patient in labour with inadequate contractions should be augmented

    with oxytocin 5miu/min and increasing the dose by 5miu every 30mins until contractions are 3-5

    in 10mins lasting 40-60 seconds and maintain the dose attain to achieve 3-5contractions in

    10mins. What will be the flow rate? What will be the drips rate and the increase drip rate at each

    30mins?

    To titrate an I.V. drug that is up and running, you can simplify the main equation by using a

    single unit of ordered medication. That allows you to determine the infusion rate for a single unit

    of medicationwhether its 1 mcg, 0.1 mcg, or 0.01 mcg.

    Using the original order for nitroprusside 0.5mcg/kg/minute for a patient who weighs 75kg,

    heres the equation youd use to identify the infusion rate for a single unit (0.1mcg) of

    medication:

    0.1 X 75 X 60

  • = 2.25 ml/hour

    200

    Calculate the initial I.V. pump infusion rate by multiplying the infusion rate for a single unit of

    medication with the ordered amount of drug. The original order was for 0.5mcg/kg/minute; that

    equals 5units of ordered medication. Thus:

    5 X 2.25 = 11.25 ml/hour.

    Titrate the medication by multiplying the infusion rate for a single unit of medication by the

    newly desired drug dose, increasing or decreasing the infusion rate as appropriate. For example:

    3 X 2.25 = 6.75 ml/hour (0.3mcg/kg/minute)

    4 X 2.25 = 9 ml/hour (0.4mcg/kg/minute)

    6 X 2.25 = 13.5 ml/hour (0.6mcg/kg/minute)

    8 X 2.25 = 18 ml/hour (0.8mcg/kg/minute)

    ...and so on.

    First, calculate the flow rate for a single unit of ordered medication. Then, determine the infusion

    pump rate by multiplying that rate by the desired amount of drug that you want to deliver.

    Intropin (dopamine) 2mcg/kg/min IVPB, titrate to maintain SBP above 90, increase by 5

    mcg/kg/min q 1030 minutes. Maximum dose 20 mcg/kg/min. Monitor BP and HR q 25 minutes

    during titration. The label on the 500 mL medication bag states 800mcg/ml and the patient

    weighs 175 pounds.

    (a) How many mcg/min of Intropin should the patient receive initially?

    (b) Calculate the initial pump setting in mL/h.

    Pregnancy Category The U.S. Food and Drug Administration (FDA) has established the following categories for pregnant

    women:

    A: No risk to the fetus in any trimester

    B: No adverse effect demonstrated in animals; no human studies available

    C: Studies with animals have shown adverse reactions; no human studies are available; given only after

    risks to the fetus have been considered

    D: Definite fetal risk exists; may be given despite risk to the fetus if needed for a life-threatening

    condition

    X: Absolute fetal abnormality; not to be used anytime during pregnancy

    FLUID THERAPY In fluid therapy maintenance is calculated using 4, 2, 1 formula (Holliday-Segars Formula):

    This was standard looking at maintenance daily fluid requirement of health children

    4ml/kg/hr. for first 10kg,

    2ml/kg/hr. for next 10kg

    1ml/kg/hr. for remaining kilogram weight.

    This can be simplified by using formula

    Maintenance fluid requirement (ml/hr) = {60+ (Weight kg-20)} ml/hr for weight 20kg

    Example: 65kg women who is nil per Os will require

    Fluid required= 60+ (65-20)

    60+45

    105ml/hr of intravenous infusion

    Similarly 70kg who had fasted over (night) 8hrs for elective surgery will have deficit of

    Fluid deficit = 60 + (70-20)

    =60 + 50ml

  • =110ml/hr

    Hence total fluid deficit is 110ml/hr 8hr=880ml

    BODY SURFACE AREA CALCULATION

    Most accurate method commonly used in oncology department

    Mostellers rule

    ( ) ( )

    ( ) ( )

    SAFE DOSE Medications have an upper and a lower safe dosage range used to indicate a safe, total daily

    dose. This is very important and emphasis in paediatric. You can find this information on the

    drug package insert, a drug reference, or an institutional protocol. You need this information

    before you calculate any dose to give to a child.

    PAEDIATRIC DOSAGE CALCULATION Posology ( Greek pso(s) how much + -logy)

    the branch of medicine concerned with the determination of appropriate doses of drugs or agents

    [ from French posologie, from Greek posos how much]

    1. Proportion to age Youngs formula

    ( )

    The above formula is used for calculating the doses for children less than 12years of age

    (1-12years)

    Dillings formula

    ( )

    The above formula is used for calculating the doses of a child in between 4-20years of

    age

    Frieds formula

    The above formula is applicable only for infants(less than 1year)

    2. Calculation base on body surface area Catzel rule:

    The average body surface area for an adult=1.73m2

    Hence

    http://www.thefreedictionary.com/-logy

  • 3. Calculation base on body weight: Clarks rule

    ( )

    ( )

    The rule is applicable only when child dose is less than 150lb or 70kg

    SOLUTIONS MAKING PARALLEL DILUTION.

    A dilution consists of adding additional solvent (usually) to a solution to reduce its concentration.

    1/10 means 1part of solute is combines with 9 parts of solvent to give 10 parts off solution. I.e. 1part of solute are in 10parts of the solution.

    / means total volume of solution

    : means ratio of combination therefore 1:9 means 1part of solute combines with 9 parts of solvent

    1/10 is not equal to 1:9

    Parts can be any in unit. A 1ml added to 2ml produces same dilution as 1oz added to 2oz.

    Serial dilution is produce by diluting a dilution rather than going back to the stock solution each time. They are made because

    A number of dilutions of same dilution factor are desired Final concentration is so small that original volume needed to make it cant be

    accurately measured e.g. 1ml of 1mM solution from stock of 10M.

    Making a 1/10 dilution will bring you closer to the final concentration so that large

    amounts can be measure. 1/10 dilution is 1part solute to 9parts water. Label your five bottles 10M (stock), 1M, 0.1M, 0.01M and 0.001M

    Add ml of stock to first tube Put 900ul of water into the remaining 4 tubes Dilution1: 100ul stock combine with 900ul water gives 1M solution Dilution2:100ul dilution1 combines with 900ul water gives 0.1M solution Dilution3:100ul dilution2 combines with 900ul water gives 0.01M solution Dilution4:100ul dilution 3 combines with 900ul water gives 0.001M solution.

    TEMPERATURE Measure either Fahrenheit or centigrade

    The relationship of centigrade and Fahrenheit (F) degrees is

    ( ) ( ) Where

    0C is the number of degree centigrade

    0F is the number of degree Fahrenheit

    Medication orders often use Centigrade temperature. To convert from Fahrenheit to Centigrade, use this

    formula:

  • C = (F 32) 1.8

    To convert from Centigrade to Fahrenheit, use this formula:

    F = (C 1.8) 32

    UNIT EQUIVALENT (CONVERSION) In medicine three common measurement systems are usually use. These are

    Metrics system

    Apothecary system

    Household system. Unit is a dimension that is given to a number.

    Unit equivalent is the value of EQUIVALENCE between two units. If expressed as a fraction it

    is call unit conversion factor. Conversion between these units uses their unit equivalency.

    Pico10-12 Nano 10-9 Micro 10-6 means dividing into million parts Milli 10-3 into thousand Centi 10-2 into hundred Deci 10-1 into ten Deka102 multiply by ten Kilo 103 Mega106 multiply by million Giga 109 Tera 1012 1cc=1ml 1000ml=1L 1000g=1kg 1000mg=1g 1000microgram=1mg 1kg=2.2ib 1000miu=1iu 1teaspoon(tsp.)=5ml 1tablespoon(tbsp.)=15ml 2.2Ib=1kg 1 oz (or fl oz) = 30 mL 1 pt = 500 mL 1 qt = 1 L or 1000 mL 2.2 lb = 1 kg 1 inch = 2.4 or 2.5 cm (centimeters)

    1 minim 1 gtt

    1 dr 4 mL

    8 dr 1 oz or fl oz

    MATH TIP Try this to remember the order of six of the metric unitskilo-, hecto-, deca-, (BASE), deci-, centi-, and milli-: King Henry Died from a Disease Called Mumps. gram liter

  • meter kilo hecto deca BASE deci centi milli K H D D C M

    King Henry Died from a Disease Called Mumps. Relationship and value of metric units, with comparison of common metric units used in health care Prefix kilo hecto deka base deci centi mili micro

    Weight kilogram gram miligram microgram Volume liter mililiter Length meter deciliter centimeter milimeter 0.000001 Value to base

    1000 100 10 1 0.1 0.01 0.001 0.0001 0.00001

    measurement Metric system Household system Apothecary system

    volume 1gtt 1M

    1ml 15gtt 15M

    5ml 1tsp(60gtt) 1dr(60M)

    15 1tbsp(3tsp) 1/20z(4dr)

    30ml 2tbsp 1oz(dr)

    180ml 1teacup 6oz

    240ml 1glass 8oz

    500ml 1pt(16floz)

    1L(1000ml) 1qt(2pt)

    4000ml 1gal(4pt)

    weight 60mg 1gr

    1g(1000mg) 15gr

    1kg(1000g) 2.2lb

    length 2.5cm 1inch

    NOTE TO ALL NURSING STUDENTS

    You are all very intelligent individuals, and you can be successful at

    dosage calculations. Try to relax, critically think about the question, and

    then set up the problem using one of the methods that you have been

    shown here.

    YOU CAN DO THIS!

    PROBLEM

    A woman is admitted to the labor room with a diagnosis of preterm labor. She

    states that she has not seen a physician because this is her third baby and she

    knows what to do while she is pregnant. Her initial workup indicates a

    gestational age of 32 weeks, and she tests positive for Chlamydia and Strep-B. Her

    vital signs are: T 100 F; P 98; R 18; B/P 140/88mmHg; and the fetal heart rate is

    140150. The orders include the following:

  • NPO

    IV fluids: D5/RL 1,000 mL q8h

    Electronic fetal monitoring

    Vital signs q4h

    Dexamethasone 6 mg IM q12h for 2 doses

    Brethine (terbutaline sulfate) 0.25 mg subcutaneous q30 minutes for 2h

    Rocephin (ceftriaxone sodium) 250 mg IM stat

    Penicillin G 5 million units IVPB stat; then 2.5 million units q4h

    Zithromax (azithromycin) 500 mg IVPB stat and daily for 2 days

    1. Calculate the rate of flow for the D5/RL in mL/h.

    2. The label on the dexamethasone reads 8 mg/mL. How many milliliters will you

    administer?

    3. The label on the terbutaline reads 1 mg/ml. How many milliliters will you

    administer?

    4. The label on the ceftriaxone states to reconstitute the 1 g vial with 2.1 mL of

    sterile water for injection, which results in a strength of 350 mg/mL. How many

    milliliters will you administer?

    5. The instructions state to reconstitute the penicillin G (use the minimum amount

    of diluent), add to 100 mL D5W, and infuse in one hour. The drop factor is

    10drops/ml. What is the rate of flow in gtts/min? The label on Penicillin G reads

    pfizerpen (penicillin G Potassium) for injection 5million units. Additional

    information 18.2ml diluent added gives 250 000units/ml, 8.2ml diluent added gives

    500 000units/ml and 3.2ml diluent added gives 1 000 000units/ml of solution.

    6. The instructions for the azithromycin state to reconstitute the 500 mg vial with

    4.8 mL until dissolved, and add to 250 mL of D5W and administer over at least 60

    minutes. What rate will you set the infusion pump if you choose to administer the

    medication over 90 minutes? If drop factor is 15drops/ml, what is the drip rate?

    7. The patient continues to have uterine contractions, and a new order has been

    written:

    Magnesium sulfate 4g IV bolus over 20 minutes, then 1g/h.

    The label on the vial of magnesium sulphate is 50% w/v and IV bag states

    magnesium sulfate 40 g in 1,000 mL.

    (a) What is the rate of flow in mL/h for the bolus dose? If the drop factor is

    20gtt/mL, determine the drip rate?

    (b) What is the rate of flow in mL/h for the maintenance dose? If the drop factor is

    60gtt/min, determine the flow rate in gtt/min?

    What volume of magnesium sulphate was withdrawn for the bolus and how

    many mililitres of magnesium sulphate was place in the IV bag?

  • The patient continues to have contractions and her membranes rupture. The

    following orders are written:

    Discontinue the magnesium sulfate.

    Pitocin (oxytocin) 10 units/1,000 mL RL, start at 0.5mIU/min increases by 1

    mU/min q20 minutes.

    Stadol (butorphanol tartrate) 1mg IVP stat.

    8. What is the rate of flow in mL/h for the initial dose of