measuring turbulence with lidars - windpower turbulence with lidars experiences from the technical...

58
Measuring Turbulence with Lidars Experiences from the Technical University of Denmark, Wind Energy Department A. Sathe DTU Wind Energy

Upload: dinhphuc

Post on 18-May-2018

222 views

Category:

Documents


1 download

TRANSCRIPT

Measuring Turbulence with Lidars

Experiences from the Technical University of Denmark, Wind Energy Department

A. Sathe

DTU Wind Energy

Outline

• Introduction

• Turbulence Measurements – Commercial Lidars

• Turbulence Measurements – WindScanners

• Summary

2 Risø DTU Lidar Turbulence 28.05.2015

Outline

• Introduction

• Turbulence Measurements – Commercial Lidars

• Turbulence Measurements – WindScanners

• Summary

2 Risø DTU Lidar Turbulence 28.05.2015

Outline

• Introduction

• Turbulence Measurements – Commercial Lidars

• Turbulence Measurements – WindScanners

• Summary

2 Risø DTU Lidar Turbulence 28.05.2015

Outline

• Introduction

• Turbulence Measurements – Commercial Lidars

• Turbulence Measurements – WindScanners

• Summary

2 Risø DTU Lidar Turbulence 28.05.2015

IntroductionDTU Wind Energy

Structure

• Divided into 8 sections

• Test and Measurements Section

• Applied Measurement TechnologyTeam – Making new measurementtechniques commercially useful

Infrastructure

• Heavily instrumented met-masts withheights more than 100 m up to 250 m.

• Remote Sensing Instruments

• Commercial Lidars• Short- and Long-Range

WindScanners

3 Risø DTU Lidar Turbulence 28.05.2015

IntroductionDTU Wind Energy

Structure

• Divided into 8 sections

• Test and Measurements Section

• Applied Measurement TechnologyTeam – Making new measurementtechniques commercially useful

Infrastructure

• Heavily instrumented met-masts withheights more than 100 m up to 250 m.

• Remote Sensing Instruments

• Commercial Lidars• Short- and Long-Range

WindScanners

3 Risø DTU Lidar Turbulence 28.05.2015

IntroductionDTU Wind Energy

Structure

• Divided into 8 sections

• Test and Measurements Section

• Applied Measurement TechnologyTeam – Making new measurementtechniques commercially useful

Infrastructure

• Heavily instrumented met-masts withheights more than 100 m up to 250 m.

• Remote Sensing Instruments

• Commercial Lidars• Short- and Long-Range

WindScanners

3 Risø DTU Lidar Turbulence 28.05.2015

IntroductionDTU Wind Energy

Structure

• Divided into 8 sections

• Test and Measurements Section

• Applied Measurement TechnologyTeam – Making new measurementtechniques commercially useful

Infrastructure

• Heavily instrumented met-masts withheights more than 100 m up to 250 m.

• Remote Sensing Instruments

• Commercial Lidars• Short- and Long-Range

WindScanners

3 Risø DTU Lidar Turbulence 28.05.2015

IntroductionTest Site Details

Site Layout

northings[km]

eastings [km]446 447 448 449 450 451

6254

6255

6256

6257

NorthSea

NissumFjord

Bøvlingbjerg

main house

met mast

Høvsøre

Denmark

North

Sea

7oE 8oE 9oE 10oE 11oE 12oE 13oE 30’

55oN

30’

56oN

30’

57oN

30’

58oN

0 100 200 300 km

Met-Mast DetailsTen years of wind-power meteorology at Høvsøre 7

Figure 2. Sketch of the Høvsøre meteorological mast and its instrumentation

as those on the met mast. These measurements can be used to vertically191

‘extend’ those at the met mast, as for the rather homogeneous easterly192

winds the observations are not affected by the wakes of the turbines193

(Gryning et al., 2007; Pena et al., 2010c; Pena et al., 2010a; Pena et al.,194

2010b).195

Hovsore_paper.tex; 9/03/2015; 9:47; p.7

4 Risø DTU Lidar Turbulence 28.05.2015

IntroductionTest Site Details

Site Layout

northings[km]

eastings [km]446 447 448 449 450 451

6254

6255

6256

6257

NorthSea

NissumFjord

Bøvlingbjerg

main house

met mast

Høvsøre

Denmark

North

Sea

7oE 8oE 9oE 10oE 11oE 12oE 13oE 30’

55oN

30’

56oN

30’

57oN

30’

58oN

0 100 200 300 km

Met-Mast DetailsTen years of wind-power meteorology at Høvsøre 7

Figure 2. Sketch of the Høvsøre meteorological mast and its instrumentation

as those on the met mast. These measurements can be used to vertically191

‘extend’ those at the met mast, as for the rather homogeneous easterly192

winds the observations are not affected by the wakes of the turbines193

(Gryning et al., 2007; Pena et al., 2010c; Pena et al., 2010a; Pena et al.,194

2010b).195

Hovsore_paper.tex; 9/03/2015; 9:47; p.7

4 Risø DTU Lidar Turbulence 28.05.2015

IntroductionTest Site Details

Site Layout

northings[km]

eastings [km]446 447 448 449 450 451

6254

6255

6256

6257

NorthSea

NissumFjord

Bøvlingbjerg

main house

met mast

Høvsøre

Denmark

North

Sea

7oE 8oE 9oE 10oE 11oE 12oE 13oE 30’

55oN

30’

56oN

30’

57oN

30’

58oN

0 100 200 300 km

Met-Mast DetailsTen years of wind-power meteorology at Høvsøre 7

Figure 2. Sketch of the Høvsøre meteorological mast and its instrumentation

as those on the met mast. These measurements can be used to vertically191

‘extend’ those at the met mast, as for the rather homogeneous easterly192

winds the observations are not affected by the wakes of the turbines193

(Gryning et al., 2007; Pena et al., 2010c; Pena et al., 2010a; Pena et al.,194

2010b).195

Hovsore_paper.tex; 9/03/2015; 9:47; p.7

4 Risø DTU Lidar Turbulence 28.05.2015

IntroductionTurbulence Quantities of Interest

• Reynolds Stress Tensor, R =

〈u′2〉 〈u′v′〉 〈u′w′〉〈v′u′〉 〈v′2〉 〈v′w′〉〈w′u′〉 〈w′v′〉 〈w′2〉

• Turbulent Kinetic Energy Dissipation Rate

• Turbulence Spectra

• Coherence

5 Risø DTU Lidar Turbulence 28.05.2015

IntroductionTurbulence Quantities of Interest

• Reynolds Stress Tensor, R =

〈u′2〉 〈u′v′〉 〈u′w′〉〈v′u′〉 〈v′2〉 〈v′w′〉〈w′u′〉 〈w′v′〉 〈w′2〉

• Turbulent Kinetic Energy Dissipation Rate

• Turbulence Spectra

• Coherence

5 Risø DTU Lidar Turbulence 28.05.2015

IntroductionTurbulence Quantities of Interest

• Reynolds Stress Tensor, R =

〈u′2〉 〈u′v′〉 〈u′w′〉〈v′u′〉 〈v′2〉 〈v′w′〉〈w′u′〉 〈w′v′〉 〈w′2〉

• Turbulent Kinetic Energy Dissipation Rate

• Turbulence Spectra

• Coherence

5 Risø DTU Lidar Turbulence 28.05.2015

IntroductionTurbulence Quantities of Interest

• Reynolds Stress Tensor, R =

〈u′2〉 〈u′v′〉 〈u′w′〉〈v′u′〉 〈v′2〉 〈v′w′〉〈w′u′〉 〈w′v′〉 〈w′2〉

• Turbulent Kinetic Energy Dissipation Rate

• Turbulence Spectra

• Coherence

5 Risø DTU Lidar Turbulence 28.05.2015

IntroductionTurbulence Quantities of Interest

• Reynolds Stress Tensor, R =

〈u′2〉 〈u′v′〉 〈u′w′〉〈v′u′〉 〈v′2〉 〈v′w′〉〈w′u′〉 〈w′v′〉 〈w′2〉

• Turbulent Kinetic Energy Dissipation Rate

• Turbulence Spectra

• Coherence

5 Risø DTU Lidar Turbulence 28.05.2015

IntroductionTurbulence Quantities of Interest

• Reynolds Stress Tensor, R =

〈u′2〉 〈u′v′〉 〈u′w′〉〈v′u′〉 〈v′2〉 〈v′w′〉〈w′u′〉 〈w′v′〉 〈w′2〉

• Turbulent Kinetic Energy Dissipation Rate

• Turbulence Spectra

• Coherence

5 Risø DTU Lidar Turbulence 28.05.2015

IntroductionCommercial Lidar Scanning Configurations

Conically Scanning

1006020x1 (m)-20

lidar

-60-100-100

-50

0

x2(m

)

50

40

20

60

0

80

100

100

x3(m

)

Doppler Beam Swinging

10050

x1 (m)0

lidar

-50-100

-100

-50

0

x2(m

)50

60

80

100

20

0

40

100

x3

(m)

6 Risø DTU Lidar Turbulence 28.05.2015

IntroductionCommercial Lidar Scanning Configurations

Conically Scanning

1006020x1 (m)-20

lidar

-60-100-100

-50

0

x2(m

)

50

40

20

60

0

80

100

100

x3(m

)

Doppler Beam Swinging

10050

x1 (m)0

lidar

-50-100

-100

-50

0

x2(m

)50

60

80

100

20

0

40

100

x3

(m)

6 Risø DTU Lidar Turbulence 28.05.2015

IntroductionCommercial Lidar Scanning Configurations

Conically Scanning

1006020x1 (m)-20

lidar

-60-100-100

-50

0

x2(m

)

50

40

20

60

0

80

100

100

x3(m

)

Doppler Beam Swinging

10050

x1 (m)0

lidar

-50-100

-100

-50

0

x2(m

)50

60

80

100

20

0

40

100

x3

(m)

6 Risø DTU Lidar Turbulence 28.05.2015

IntroductionMeasuring with WindScanners

Six-Beam Scanning

10050

x1 (m)0

lidar

-50-100

-100

-50

0

x2(m

)

50

80

100

40

20

0

60

100

x3

(m)

Triple Lidar System

10050

lidar1lidar1lidar1

x1 (m)0

lidar2lidar2lidar2

-50

lidar3lidar3lidar3

-100-100

-50

0

x2(m

)50

60

80

100

0

20

40

100

x3

(m)

7 Risø DTU Lidar Turbulence 28.05.2015

IntroductionMeasuring with WindScanners

Six-Beam Scanning

10050

x1 (m)0

lidar

-50-100

-100

-50

0

x2(m

)

50

80

100

40

20

0

60

100

x3

(m)

Triple Lidar System

10050

lidar1lidar1lidar1

x1 (m)0

lidar2lidar2lidar2

-50

lidar3lidar3lidar3

-100-100

-50

0

x2(m

)50

60

80

100

0

20

40

100

x3

(m)

7 Risø DTU Lidar Turbulence 28.05.2015

IntroductionMeasuring with WindScanners

Six-Beam Scanning

10050

x1 (m)0

lidar

-50-100

-100

-50

0

x2(m

)

50

80

100

40

20

0

60

100

x3

(m)

Triple Lidar System

10050

lidar1lidar1lidar1

x1 (m)0

lidar2lidar2lidar2

-50

lidar3lidar3lidar3

-100-100

-50

0

x2(m

)50

60

80

100

0

20

40

100

x3

(m)

7 Risø DTU Lidar Turbulence 28.05.2015

IntroductionMean Wind Speed Measurements

Commercial Lidar

usonic (m/s)0 2 4 6 8 10 12 14 16 18 20

ulidar

(m/s

)

0

2

4

6

8

10

12

14

16

18

20ulidar = 0:99 usonic

R2 = 0:99867

WindScanners

ucup (m/s)0 2 4 6 8 10 12 14 16

ulidar

(m/s

)

0

2

4

6

8

10

12

14

16

ulidar = 1 ucup

R2 = 0:99926

8 Risø DTU Lidar Turbulence 28.05.2015

IntroductionMean Wind Speed Measurements

Commercial Lidar

usonic (m/s)0 2 4 6 8 10 12 14 16 18 20

ulidar

(m/s

)

0

2

4

6

8

10

12

14

16

18

20ulidar = 0:99 usonic

R2 = 0:99867

WindScanners

ucup (m/s)0 2 4 6 8 10 12 14 16

ulidar

(m/s

)

0

2

4

6

8

10

12

14

16

ulidar = 1 ucup

R2 = 0:99926

8 Risø DTU Lidar Turbulence 28.05.2015

IntroductionTurbulence Measurements

u0 2cup (m2=s2)0 0.5 1 1.5 2 2.5

u0

2lidar

(m2=s

2)

0

0.5

1

1.5

2

2.5 u0 2lidar = 0:69 u0 2cup

R2 = 0:93141

u0 2cup (m2=s2)0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

u0

2lidar

(m2=s

2)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

u0 2lidar = 0:66 u0 2cup

R2 = 0:79534

9 Risø DTU Lidar Turbulence 28.05.2015

IntroductionTurbulence Measurements

u0 2cup (m2=s2)0 0.5 1 1.5 2 2.5

u0

2lidar

(m2=s

2)

0

0.5

1

1.5

2

2.5 u0 2lidar = 0:69 u0 2cup

R2 = 0:93141

u0 2cup (m2=s2)0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

u0

2lidar

(m2=s

2)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

u0 2lidar = 0:66 u0 2cup

R2 = 0:79534

9 Risø DTU Lidar Turbulence 28.05.2015

Turbulence Measurements – Commercial LidarsContinuous Wave Lidar – e.g. ZephIR

Velocity Azimuth Display VAD

hu02ilidar=hu02isonic

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

heig

ht (

m)

30

40

50

60

70

80

90

100

110

unstableneutralstable

10 Risø DTU Lidar Turbulence 28.05.2015

1006020x1 (m)-20

lidar

-60-100-100

-50

0

x2(m

)

50

40

20

60

0

80

100

100

x3(m

)

Turbulence Measurements – Commercial LidarsContinuous Wave Lidar – e.g. ZephIR

Velocity Azimuth Display VAD

hu02ilidar=hu02isonic

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

heig

ht (

m)

30

40

50

60

70

80

90

100

110

unstableneutralstable

10 Risø DTU Lidar Turbulence 28.05.2015

1006020x1 (m)-20

lidar

-60-100-100

-50

0

x2(m

)

50

40

20

60

0

80

100

100

x3(m

)

Turbulence Measurements – Commercial LidarsPulsed Lidar – e.g. WindCube

Doppler Beam Swinging

hu02ilidar=hu02isonic

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

heig

ht (

m)

30

40

50

60

70

80

90

100

110unstableneutralstable

11 Risø DTU Lidar Turbulence 28.05.2015

10050

x1 (m)0

lidar

-50-100

-100

-50

0

x2(m

)

50

60

80

100

20

0

40

100

x3

(m)

Turbulence Measurements – Commercial LidarsPulsed Lidar – e.g. WindCube

Doppler Beam Swinging

hu02ilidar=hu02isonic

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

heig

ht (

m)

30

40

50

60

70

80

90

100

110unstableneutralstable

11 Risø DTU Lidar Turbulence 28.05.2015

10050

x1 (m)0

lidar

-50-100

-100

-50

0

x2(m

)

50

60

80

100

20

0

40

100

x3

(m)

Turbulence Measurements – Commercial LidarsTurbulence Spectra – Pulsed Lidar

u spectrum

f (Hz)

10−3

10−2

10−1

10−2

10−1

k1 (m−1)

k1Fu(k

1)(m

2/s2)

10−3 10−2 10−1

Reference

A. Sathe and J. Mann. Measurement of turbulence spectra using scanning pulsed wind lidars.Journal of Geophysical Research, 117(D1):D01201, 11 PP., 2012.doi: 10.1029/2011JD016786

12 Risø DTU Lidar Turbulence 28.05.2015

Turbulence Measurements – Commercial LidarsTurbulence Spectra – Pulsed Lidar

u spectrum

f (Hz)

10−3

10−2

10−1

10−2

10−1

k1 (m−1)

k1Fu(k

1)(m

2/s2)

10−3 10−2 10−1

Reference

A. Sathe and J. Mann. Measurement of turbulence spectra using scanning pulsed wind lidars.Journal of Geophysical Research, 117(D1):D01201, 11 PP., 2012.doi: 10.1029/2011JD016786

12 Risø DTU Lidar Turbulence 28.05.2015

Turbulence Measurements – Commercial LidarsOngoing Research To Correct Systematic Errors in TurbulenceMeasurements from Commercial Lidars

Model

SLEMT model – Systematic Lidar Error in Measuring Turbulence model

Project Goal

Devise a method using the ’SLEMT’ model such that they can be used asstandalone instruments to measure turbulence and estimate the uncertainty.

Reference

A. Sathe, J. Mann, J. Gottschall, and M S. Courtney. Can wind lidars measure turbulence?Journal of Atmospheric and Oceanic Technology, 28(7):853–868, 2011.doi: 10.1175/JTECH-D-10-05004.1

13 Risø DTU Lidar Turbulence 28.05.2015

Turbulence Measurements – Commercial LidarsOngoing Research To Correct Systematic Errors in TurbulenceMeasurements from Commercial Lidars

Model

SLEMT model – Systematic Lidar Error in Measuring Turbulence model

Project Goal

Devise a method using the ’SLEMT’ model such that they can be used asstandalone instruments to measure turbulence and estimate the uncertainty.

Reference

A. Sathe, J. Mann, J. Gottschall, and M S. Courtney. Can wind lidars measure turbulence?Journal of Atmospheric and Oceanic Technology, 28(7):853–868, 2011.doi: 10.1175/JTECH-D-10-05004.1

13 Risø DTU Lidar Turbulence 28.05.2015

Turbulence Measurements – Commercial LidarsOngoing Research To Correct Systematic Errors in TurbulenceMeasurements from Commercial Lidars

Model

SLEMT model – Systematic Lidar Error in Measuring Turbulence model

Project Goal

Devise a method using the ’SLEMT’ model such that they can be used asstandalone instruments to measure turbulence and estimate the uncertainty.

Reference

A. Sathe, J. Mann, J. Gottschall, and M S. Courtney. Can wind lidars measure turbulence?Journal of Atmospheric and Oceanic Technology, 28(7):853–868, 2011.doi: 10.1175/JTECH-D-10-05004.1

13 Risø DTU Lidar Turbulence 28.05.2015

Turbulence Measurements – Commercial LidarsImprovement in Turbulence Intensity Estimates – Unstable

Ratio of TIlidar to TIsonic

TIlidar=TIsonic

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

heig

ht (

m)

30

40

50

60

70

80

90

100

110

uncorrectedcorrected

(TIlidar − TIsonic)/TIsonic × 100

Height (m)30 40 50 60 70 80 90 100 110

Per

cent

dev

iatio

n (%

)

-30

-20

-10

0

10

20

30

40

50

60uncorrectedcorrected

14 Risø DTU Lidar Turbulence 28.05.2015

Turbulence Measurements – Commercial LidarsImprovement in Turbulence Intensity Estimates – Unstable

Ratio of TIlidar to TIsonic

TIlidar=TIsonic

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

heig

ht (

m)

30

40

50

60

70

80

90

100

110

uncorrectedcorrected

(TIlidar − TIsonic)/TIsonic × 100

Height (m)30 40 50 60 70 80 90 100 110

Per

cent

dev

iatio

n (%

)

-30

-20

-10

0

10

20

30

40

50

60uncorrectedcorrected

14 Risø DTU Lidar Turbulence 28.05.2015

Turbulence Measurements – Commercial LidarsImprovement in Turbulence Intensity Estimates – Unstable

Ratio of TIlidar to TIsonic

TIlidar=TIsonic

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

heig

ht (

m)

30

40

50

60

70

80

90

100

110

uncorrectedcorrected

(TIlidar − TIsonic)/TIsonic × 100

Height (m)30 40 50 60 70 80 90 100 110

Per

cent

dev

iatio

n (%

)

-30

-20

-10

0

10

20

30

40

50

60uncorrectedcorrected

14 Risø DTU Lidar Turbulence 28.05.2015

Turbulence Measurements – Commercial LidarsImprovement in Turbulence Intensity Estimates – Stable

Ratio of TIlidar to TIsonic

TIlidar=TIsonic

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

heig

ht (

m)

30

40

50

60

70

80

90

100

110

uncorrectedcorrected

(TIlidar − TIsonic)/TIsonic × 100

Height (m)30 40 50 60 70 80 90 100 110

Per

cent

dev

iatio

n (%

)

-30

-20

-10

0

10

20

30

40

50

60uncorrectedcorrected

15 Risø DTU Lidar Turbulence 28.05.2015

Turbulence Measurements – Commercial LidarsImprovement in Turbulence Intensity Estimates – Stable

Ratio of TIlidar to TIsonic

TIlidar=TIsonic

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

heig

ht (

m)

30

40

50

60

70

80

90

100

110

uncorrectedcorrected

(TIlidar − TIsonic)/TIsonic × 100

Height (m)30 40 50 60 70 80 90 100 110

Per

cent

dev

iatio

n (%

)

-30

-20

-10

0

10

20

30

40

50

60uncorrectedcorrected

15 Risø DTU Lidar Turbulence 28.05.2015

Turbulence Measurements – Commercial LidarsImprovement in Turbulence Intensity Estimates – Stable

Ratio of TIlidar to TIsonic

TIlidar=TIsonic

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

heig

ht (

m)

30

40

50

60

70

80

90

100

110

uncorrectedcorrected

(TIlidar − TIsonic)/TIsonic × 100

Height (m)30 40 50 60 70 80 90 100 110

Per

cent

dev

iatio

n (%

)

-30

-20

-10

0

10

20

30

40

50

60uncorrectedcorrected

15 Risø DTU Lidar Turbulence 28.05.2015

Turbulence Measurements – WindScannersSix-Beam vs VAD Method

Six-Beam Method

u0 2cup (m2=s2)0 0.5 1 1.5 2 2.5

u0

2lidar

(m2=s

2)

0

0.5

1

1.5

2

2.5 u0 2lidar = 0:87 u0 2cup

R2 = 0:95732

Velocity Azimuth Display (VAD)Method

u0 2cup (m2=s2)0 0.5 1 1.5 2 2.5

u0

2lidar

(m2=s

2)

0

0.5

1

1.5

2

2.5 u0 2lidar = 0:69 u0 2cup

R2 = 0:93141

A. Sathe, J. Mann, N. Vasiljevic, and G. Lea. A six-beam method to measure turbulencestatistics using ground-based wind lidars.Atmospheric Measurement Techniques, 8(2):729–740, 2015.doi: 10.5194/amt-8-729-2015

16 Risø DTU Lidar Turbulence 28.05.2015

10050

x1 (m)0

lidar

-50-100

-100

-50

0

x2(m

)

50

80

100

40

20

0

60

100

x3

(m)

Turbulence Measurements – WindScannersSix-Beam vs VAD Method

Six-Beam Method

u0 2cup (m2=s2)0 0.5 1 1.5 2 2.5

u0

2lidar

(m2=s

2)

0

0.5

1

1.5

2

2.5 u0 2lidar = 0:87 u0 2cup

R2 = 0:95732

Velocity Azimuth Display (VAD)Method

u0 2cup (m2=s2)0 0.5 1 1.5 2 2.5

u0

2lidar

(m2=s

2)

0

0.5

1

1.5

2

2.5 u0 2lidar = 0:69 u0 2cup

R2 = 0:93141

A. Sathe, J. Mann, N. Vasiljevic, and G. Lea. A six-beam method to measure turbulencestatistics using ground-based wind lidars.Atmospheric Measurement Techniques, 8(2):729–740, 2015.doi: 10.5194/amt-8-729-2015

16 Risø DTU Lidar Turbulence 28.05.2015

10050

x1 (m)0

lidar

-50-100

-100

-50

0

x2(m

)

50

80

100

40

20

0

60

100

x3

(m)

Turbulence Measurements – WindScannersSix-Beam vs VAD Method

Six-Beam Method

u0 2cup (m2=s2)0 0.5 1 1.5 2 2.5

u0

2lidar

(m2=s

2)

0

0.5

1

1.5

2

2.5 u0 2lidar = 0:87 u0 2cup

R2 = 0:95732

Velocity Azimuth Display (VAD)Method

u0 2cup (m2=s2)0 0.5 1 1.5 2 2.5

u0

2lidar

(m2=s

2)

0

0.5

1

1.5

2

2.5 u0 2lidar = 0:69 u0 2cup

R2 = 0:93141

A. Sathe, J. Mann, N. Vasiljevic, and G. Lea. A six-beam method to measure turbulencestatistics using ground-based wind lidars.Atmospheric Measurement Techniques, 8(2):729–740, 2015.doi: 10.5194/amt-8-729-2015

16 Risø DTU Lidar Turbulence 28.05.2015

10050

x1 (m)0

lidar

-50-100

-100

-50

0

x2(m

)

50

80

100

40

20

0

60

100

x3

(m)

Turbulence Measurements – WindScannersThree Lidar System vs Six-Beam Method

Three Lidar System

u02sonic

0 0.5 1 1.5 2 2.5 3 3.5 4

u02W

indSca

nner

0

0.5

1

1.5

2

2.5

3

3.5

4

u02WindScanner = 0:836 u02

Sonic

r2 = 0:95346

Six-Beam Method

u0 2cup (m2=s2)0 0.5 1 1.5 2 2.5

u0

2lidar

(m2=s

2)

0

0.5

1

1.5

2

2.5 u0 2lidar = 0:87 u0 2cup

R2 = 0:95732

17 Risø DTU Lidar Turbulence 28.05.2015

Turbulence Measurements – WindScannersThree Lidar System vs Six-Beam Method

Three Lidar System

u02sonic

0 0.5 1 1.5 2 2.5 3 3.5 4

u02W

indSca

nner

0

0.5

1

1.5

2

2.5

3

3.5

4

u02WindScanner = 0:836 u02

Sonic

r2 = 0:95346

Six-Beam Method

u0 2cup (m2=s2)0 0.5 1 1.5 2 2.5

u0

2lidar

(m2=s

2)

0

0.5

1

1.5

2

2.5 u0 2lidar = 0:87 u0 2cup

R2 = 0:95732

17 Risø DTU Lidar Turbulence 28.05.2015

Turbulence Measurements – WindScannersThree Lidar System vs Six-Beam Method

Three Lidar System

u02sonic

0 0.5 1 1.5 2 2.5 3 3.5 4

u02W

indSca

nner

0

0.5

1

1.5

2

2.5

3

3.5

4

u02WindScanner = 0:836 u02

Sonic

r2 = 0:95346

Six-Beam Method

u0 2cup (m2=s2)0 0.5 1 1.5 2 2.5

u0

2lidar

(m2=s

2)

0

0.5

1

1.5

2

2.5 u0 2lidar = 0:87 u0 2cup

R2 = 0:95732

17 Risø DTU Lidar Turbulence 28.05.2015

SummarySummary and future area of research

Summary

• The VAD or DBS methods of data processing do not produce accepteddefinitions of turbulence statistics, but something totally different.

• We should be careful in using the VAD/DBS method, since we can get the rightresults for the wrong reasons.

• The six-beam method looks promising, but volume averaging problem needs tobe tackled in order to reap tangible benefits.

• If there is pronounced inhomogeneity in the horizontal direction then three lidarsare essential to measure turbulence, e.g. complex terrain.

• At DTU Wind Energy department, we have developed pulsed (long-range) andcontinuous-wave (short-range) WindScanner systems that are capable ofscanning any arbitrary pattern.

Future area of research

• Tackling the probe-volume problem of lidars

• Measuring small-scale turbulence with lidars

18 Risø DTU Lidar Turbulence 28.05.2015

SummarySummary and future area of research

Summary

• The VAD or DBS methods of data processing do not produce accepteddefinitions of turbulence statistics, but something totally different.

• We should be careful in using the VAD/DBS method, since we can get the rightresults for the wrong reasons.

• The six-beam method looks promising, but volume averaging problem needs tobe tackled in order to reap tangible benefits.

• If there is pronounced inhomogeneity in the horizontal direction then three lidarsare essential to measure turbulence, e.g. complex terrain.

• At DTU Wind Energy department, we have developed pulsed (long-range) andcontinuous-wave (short-range) WindScanner systems that are capable ofscanning any arbitrary pattern.

Future area of research

• Tackling the probe-volume problem of lidars

• Measuring small-scale turbulence with lidars

18 Risø DTU Lidar Turbulence 28.05.2015

SummarySummary and future area of research

Summary

• The VAD or DBS methods of data processing do not produce accepteddefinitions of turbulence statistics, but something totally different.

• We should be careful in using the VAD/DBS method, since we can get the rightresults for the wrong reasons.

• The six-beam method looks promising, but volume averaging problem needs tobe tackled in order to reap tangible benefits.

• If there is pronounced inhomogeneity in the horizontal direction then three lidarsare essential to measure turbulence, e.g. complex terrain.

• At DTU Wind Energy department, we have developed pulsed (long-range) andcontinuous-wave (short-range) WindScanner systems that are capable ofscanning any arbitrary pattern.

Future area of research

• Tackling the probe-volume problem of lidars

• Measuring small-scale turbulence with lidars

18 Risø DTU Lidar Turbulence 28.05.2015

SummarySummary and future area of research

Summary

• The VAD or DBS methods of data processing do not produce accepteddefinitions of turbulence statistics, but something totally different.

• We should be careful in using the VAD/DBS method, since we can get the rightresults for the wrong reasons.

• The six-beam method looks promising, but volume averaging problem needs tobe tackled in order to reap tangible benefits.

• If there is pronounced inhomogeneity in the horizontal direction then three lidarsare essential to measure turbulence, e.g. complex terrain.

• At DTU Wind Energy department, we have developed pulsed (long-range) andcontinuous-wave (short-range) WindScanner systems that are capable ofscanning any arbitrary pattern.

Future area of research

• Tackling the probe-volume problem of lidars

• Measuring small-scale turbulence with lidars

18 Risø DTU Lidar Turbulence 28.05.2015

SummarySummary and future area of research

Summary

• The VAD or DBS methods of data processing do not produce accepteddefinitions of turbulence statistics, but something totally different.

• We should be careful in using the VAD/DBS method, since we can get the rightresults for the wrong reasons.

• The six-beam method looks promising, but volume averaging problem needs tobe tackled in order to reap tangible benefits.

• If there is pronounced inhomogeneity in the horizontal direction then three lidarsare essential to measure turbulence, e.g. complex terrain.

• At DTU Wind Energy department, we have developed pulsed (long-range) andcontinuous-wave (short-range) WindScanner systems that are capable ofscanning any arbitrary pattern.

Future area of research

• Tackling the probe-volume problem of lidars

• Measuring small-scale turbulence with lidars

18 Risø DTU Lidar Turbulence 28.05.2015

SummarySummary and future area of research

Summary

• The VAD or DBS methods of data processing do not produce accepteddefinitions of turbulence statistics, but something totally different.

• We should be careful in using the VAD/DBS method, since we can get the rightresults for the wrong reasons.

• The six-beam method looks promising, but volume averaging problem needs tobe tackled in order to reap tangible benefits.

• If there is pronounced inhomogeneity in the horizontal direction then three lidarsare essential to measure turbulence, e.g. complex terrain.

• At DTU Wind Energy department, we have developed pulsed (long-range) andcontinuous-wave (short-range) WindScanner systems that are capable ofscanning any arbitrary pattern.

Future area of research

• Tackling the probe-volume problem of lidars

• Measuring small-scale turbulence with lidars

18 Risø DTU Lidar Turbulence 28.05.2015

SummarySummary and future area of research

Summary

• The VAD or DBS methods of data processing do not produce accepteddefinitions of turbulence statistics, but something totally different.

• We should be careful in using the VAD/DBS method, since we can get the rightresults for the wrong reasons.

• The six-beam method looks promising, but volume averaging problem needs tobe tackled in order to reap tangible benefits.

• If there is pronounced inhomogeneity in the horizontal direction then three lidarsare essential to measure turbulence, e.g. complex terrain.

• At DTU Wind Energy department, we have developed pulsed (long-range) andcontinuous-wave (short-range) WindScanner systems that are capable ofscanning any arbitrary pattern.

Future area of research

• Tackling the probe-volume problem of lidars

• Measuring small-scale turbulence with lidars

18 Risø DTU Lidar Turbulence 28.05.2015

Thank [email protected]

A. Sathe and J. Mann. Measurement of turbulence spectra using scanningpulsed wind lidars. Journal of Geophysical Research, 117(D1):D01201,11 PP., 2012. doi: 10.1029/2011JD016786.

A. Sathe, J. Mann, J. Gottschall, and M S. Courtney. Can wind lidarsmeasure turbulence? Journal of Atmospheric and Oceanic Technology,28(7):853–868, 2011. doi: 10.1175/JTECH-D-10-05004.1.

A. Sathe, J. Mann, N. Vasiljevic, and G. Lea. A six-beam method tomeasure turbulence statistics using ground-based wind lidars.Atmospheric Measurement Techniques, 8(2):729–740, 2015. doi:10.5194/amt-8-729-2015.

19 Risø DTU Lidar Turbulence 28.05.2015