mean global energy consumption, 1998

57
ENIC 6/24/06 H. Atwater Caltech Photovoltaics: Meeting the Terawatt Challenge Harry Atwater Thomas J. Watson Laboratories of Applied Physics California Institute of Technology Photovoltaics in the Context of Energy Supply Need Limits to Photovoltaic Efficiency Silicon PV: the Incumbent Technology Multijunction PV: Path to Ultrahigh Efficiency 3 rd Generation PV: Beyond the Schockley-Queisser Limit Nanostructures in PV

Upload: others

Post on 19-Mar-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

ENIC 6/24/06 H. Atwater Caltech

Photovoltaics: Meeting the Terawatt Challenge

Harry AtwaterThomas J. Watson Laboratories of Applied PhysicsCalifornia Institute of Technology

•Photovoltaics in the Context of Energy Supply Need•Limits to Photovoltaic Efficiency•Silicon PV: the Incumbent Technology•Multijunction PV: Path to Ultrahigh Efficiency•3rd Generation PV: Beyond the Schockley-Queisser Limit•Nanostructures in PV

ENIC 6/24/06 H. Atwater Caltech

Acknowledgments

Richard King - SpectrolabChristiana Honsberg – U. DelawareDave Carlson – BP SolarDick Swanson – SunpowerJurgen Werner – U. StuttgartMartha Symko-Davies - NRELMartin Green - UNSWNate Lewis - Caltech

Brendan KayesChristine RichardsonJames ZahlerMelissa GriggsKatsu Tanabe

Provided ideas, slides, inspiration...

Caltech Group:

ENIC 6/24/06 H. Atwater Caltech

Mean Global Energy Consumption, 1998

4.52

2.7 2.96

0.286

1.21

0.2860.828

0

1

2

3

4

5

TW

Oil Coal Biomass NuclearGas Hydro Renew

Total: 12.8 TW U.S.: 3.3 TW (99 Quads)

Nate Lewis

ENIC 6/24/06 H. Atwater Caltech

1990: 12 TW 2050: 28 TW

Total Primary Power vs Year

Marty Hoffert, NYU

ENIC 6/24/06 H. Atwater Caltech

Energy From Renewables, 1998

10-5

0.0001

0.001

0.01

0.1

1

Elect Heat EtOH Wind Solar PVSolar Th.Low T Sol HtHydro Geoth MarineElec Heat EtOH Wind Sol PV SolTh LowT Sol Hydro GeothMarine

TW

Biomass

5E-5

1E-1

2E-3

1E-4

1.6E-3

3E-1

1E-2

7E-5

Nate Lewis

ENIC 6/24/06 H. Atwater Caltech

(in the U.S. in 2002)

1-4 ¢

2.3-5.0 ¢ 6-8 ¢

5-7 ¢

Production Cost of Electricity

0

5

10

15

20

25

Coal Gas Oil Wind Nuclear Solar

Cost

6-7 ¢

25-50 ¢

Cos

t, ¢/

kW- h

r

US DOE

ENIC 6/24/06 H. Atwater Caltech

• Hydroelectric 0.9 TW

• Geothermal (limited by drilling technology)

• Wind 2 TW

• Biomass 5-7 TW (using > 20% of earth land mass)

• Solar 50 – 1500 TW (resource: 1.2x105 W)

Potential of Renewable Energy

Nate Lewis

ENIC 6/24/06 H. Atwater Caltech

PV Land Area Requirements for US Power

3 TW

ENIC 6/24/06 H. Atwater Caltech

Global PV Land Area Requirements

6 Boxes at 3.3 TW Each

ENIC 6/24/06 H. Atwater Caltech

Explosive Growth in PV Manufacturing

ENIC 6/24/06 H. Atwater Caltech

Solar energy:

Cost : $5.42 / W p*

Goal : $1.00 / W p

Photovoltaics Growth

*USA module price index from solarbuzz.com 6/06

1. Increase Efficiency

2. Lower Cost

• Greater than 40% growth per

year for the last 5 years

• Si dominant technology

• Si supply currently limited and

expensive

ENIC 6/24/06 H. Atwater Caltech

Silicon vs. “Nano-solar” Philosophical and Technical Approach

• Disruptive Solar – seek to alter present PV landscap e• Opportunity for TW Energy Supply (otherwise, why do it?)• 10 Year Time Scale (not longer, because c-Si progre ss forbids it)• Ideally, solar technology suitable for electricity and fuel generation

(1 GW) (10 GW)

100000

(100 GW)

~2020$1/W

ENIC 6/24/06 H. Atwater Caltech

The First Practical Solar Cell-1954

ENIC 6/24/06 H. Atwater Caltech

Improvements in Solar Cell EfficienciesE

ffici

ency

(%)

Universityof Maine

Boeing

Boeing

Boeing

BoeingARCO

NREL

Boeing

Euro-CIS

200019951990198519801975

NREL/Spectrolab

NRELNREL

Japan

Energy

Spire

No. CarolinaState University

Multijunction Concentrators

Three-junction (2-terminal, monolithic)

Two-junction (2-terminal, monolithic)

Crystalline Si Cells

Single crystalMulticrystalline

Thick Si Film

Thin Film Technologies

Cu(In,Ga)Se2

CdTe

Amorphous Si:H (stabilized)

Nano-, micro-, poly- Si

Multijunction polycrystalline

Emerging PV

Dye cells

Organic cells(various technologies)

Varian

RCA

Solarex

UNSW

UNSW

ARCO

UNSWUNSW

UNSWSpire Stanford

Westing-house

UNSWGeorgia Tech

Georgia Tech Sharp

AstroPower(small area)

NREL

Spectrolab

NREL

Matsushita

MonosolarKodak

Kodak

AMETEK Photon Energy

UniversitySo. Florida NREL

NRELCu(In,Ga)Se2

14x concentration

NREL

United Solar

United Solar

RCA

RCARCA

RCARCA

RCA

Boeing-Spectrolab

Solarex

12

8

4

0

16

20

24

28

32

36

EPFL

EPFL

Siemens

2005

Groningen

University LinzUniversity

Linz

NREL

40

NREL (inverted, semi-

mismatched)

Sharp ( large area)

NRELKonarka

University Linz

FhG-ISE

Kaneka(2µm on glass)

Univ.Stuttgart

(45µm thin-filmtransfer)

NREL

NRELNREL

(CdTe/CIS)

Best Research-Cell Efficiencies

US DOE

ENIC 6/24/06 H. Atwater Caltech

Cost/Efficiency of Photovoltaic Technology

Martin Green

ENIC 6/24/06 H. Atwater Caltech

EC

EV

Eg

np+ p E

Anti-reflection coating

Texturing of front surface

Back surface field}

Rear Contact

h

n

RS

IL RSH

Front Contact

EF

Photovoltaic Solar Cell

ENIC 6/24/06 H. Atwater Caltech

Solar Cell Performance

I I e I I

P V I FF V I

eV k TL

OC L

B= − − == = ⋅

0 01( ) ,/

max max max

saturation current

with illumination

VOC

Vmax

Imax

ISC=IL

Cu

rren

tVoltage

dark

η

λλ

λ

=

=

= ⋅

P P

P A Fhc

d

P FF V I

out in

in

out OC L

/

( )0

where incident power:

power out:

Conversion efficiency:

IL

ENIC 6/24/06 H. Atwater Caltech

Standard Solar Spectra

0

0.5

1

1.5

2

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

Wavelength (nm)

Inte

nsity

per

Uni

t Wav

elen

gth

= S

pect

ral I

rrad

ianc

e (

W/m

2 .

nm)

AM0, ASTM E490-00a, 1366.1 W/m2

AM1.5G, ASTM E892-87, 1000 W/m2

AM1.5D, ASTM G173-03, 1000 W/m2

AM0 – Extraterrestrial solar spectrum

AM1.5G – Global solar spectrum, for flat plate panel s

AM1.5D – Direct solar spectrum, for concentrators

Richard King

ENIC 6/24/06 H. Atwater Caltech

S. M. Sze, Physics of Semiconductor Devices, (Wiley) 1981.

Ec

Ev

Limits to Efficiency: Spectral Absorption

Band-to-BandAbsorption

Subgap PhotonEnergy

Hot CarrierExcitation

Ene

rgy

ENIC 6/24/06 H. Atwater Caltech

Quantum Efficiency Losses

Three types of losses are distinguished:

Base Emitter WindowCourtesy S. Kurtz and D. Friedman

Richard King

ENIC 6/24/06 H. Atwater Caltech

Detailed Balance Limit for Solar Cell Efficiency

absorptionof sunlight

1.511

AM radJN N

q= −

Cell

charge carrierflux

Shockley and Queisser (1961)

radiativeemission

generation rateby sunlightabsorption

radiativerecombinationrate

ENIC 6/24/06 H. Atwater Caltech

• Detailed Balance � “What goes in must come out”

• Balance of energy carriers (not energy):

– Absorbed incident photons from the solar spectrum– Loss of carriers due to radiative recombination

– Extraction of carriers as photocurrent

• Assumptions:

– Perfect absorption of incident photons

– Photo-current loss through radiative reemission:

Detailed Balance Principle And Assumptions

P. Wurfel, Journal of Physics C: Solid State Physics 15, 3967-3985 (1982)

( )

( )

2 2

3 3 2

1

2

sin, , , ,

4

exp 1G

rad cG

E

E

nN E E T V

c

qVd

kT

π θεπ

ωω ω−

=

− − ∫

ℏℏ ℏ

( )incident

J V V

⋅=

Radiative recombination limits cell operating potential to < bandgap potential

ENIC 6/24/06 H. Atwater Caltech

0.0

0.5

1.0

1.5

2.0

0.6 1 1.4 1.8 2.2 2.6 3Bandgap Eg (eV)

Eg/

q, V

oc, a

nd (

Eg/

q) -

Voc

(V

)

0

100

200

300

400

500

600

700

800

Inte

nsity

per

Uni

t Pho

ton

Ene

rgy

(W

/(m

2 . eV

))

VocEg from EQE(Eg/q) - Vocradiative limitAM1.5D, low-AOD

Voc of solar cells with wide range of bandgaps and comparison to radiative limit

d-A

lGaI

nP

GaA

s1.

4 -

eV G

aInA

s

o-G

aInP

AlG

aInA

s

d-A

lGaI

nPd-

GaI

nP

d-A

lGaI

nP

0.97

-eV

GaI

nAs

GaI

nNA

s1.

10-e

V G

aInA

s

1.24

-eV

GaI

nAs

1.30

-eV

GaI

nAs

Ge

(in

dire

ct g

ap)

AlG

aInA

s

Bandgap - Voltage Offset (E g/q) - Voc

for Single-Junction Solar Cells

Richard King

ENIC 6/24/06 H. Atwater Caltech

Detailed Balance:Maximum Cell Efficiency Including Carrier Multiplic ation

Werner, Kolodinski, and Queisser (1994)

ENIC 6/24/06 H. Atwater Caltech

Detailed Balance in Multijunction Solar Cells

Detailed Balance of First Subcell

1.511

AM radJN N

q= −

Cell 1

Cell 2

1.5

1

AM rad radnn n

JN N N

q −= + −Cell n

Cell n+1

Cell n-1

Detailed Balance of n th Subcell

ENIC 6/24/06 H. Atwater Caltech

Maximum Solar Cell EfficienciesTheoretical

95% Carnot eff. = 1 – T/T sun T = 300 K, Tsun ≈≈≈≈5800 K

93% Max. eff. of solar energy conversion = 1 – TS/E = 1 – (4/3)T/Tsun (Henry)

72% Ideal 36-gap solar cell at 1000 suns (Henry)

56% Ideal 3-gap solar cell at 1000 suns (Henry)

50% Ideal 2-gap solar cell at 1000 suns (Henry)

44% Ultimate eff. of device with cutoff E g: (Shockley, Queisser)

43% 1-gap cell at 1 sun with carrier multiplication(>1 e-h pair per photon) (Werner,

Kolodinski, Queisser)

37% Ideal 1-gap solar cell at 1000 suns (Henry)

31% Ideal 1-gap solar cell at 1 sun (Henry )

30% Detailed balance limit of 1 gap solar cell at 1 sun (Shockley, Queisser)

Measured

3-gap GaInP/GaAs/Ge cell @236 suns (Spectrolab)

39.0%

3-gap GaInP/GaAs/Ge cell @ 1 sun (Spectrolab)

32.0%

1-gap solar cell (Si, 1.12 eV) @92 suns (Amonix)

27.6%1-gap solar cell (GaAs, 1.424 eV) @1 sun (Kopin)

25.1%1-gap solar cell (silicon, 1.12 eV) @1 sun (UNSW)

24.7%

ReferencesC. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial

solar cells,” J. Appl. Phys., 51, 4494 (1980). W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction

Solar Cells,” J. Appl. Phys., 32, 510 (1961). J. H. Werner, S. Kolodinski, and H. J. Queisser, “Novel Optimization Principles and

Efficiency Limits for Semiconductor Solar Cells,” Phys. Rev. Lett., 72, 3851 (1994). M. Green, K. Emery, D. L. King, Y. Hisikawa, W. Warta, "Solar Cell Efficiency Tables

(Version 27)", Progress in Photovoltaics, 14, 45 (2006)R. R. King et al., "Pathways to 40%-Efficient Concentrator Photovoltaics," Proc. 20th

European Photovoltaic Solar Energy Conf., Barcelona, Spain, 6-10 June 2005. R. R. King et al., "Lattice-Matched and Metamorphic GaInP/ GaInAs/ Ge Concentrator

Solar Cells," Proc. 3rd World Conf. on Photovoltaic Energy Conversion, May 11-18, 2003, Osaka, Japan, p 622.

A. Slade, V. Garboushian, "27.6%-Efficient Silicon Concentrator Cell for Mass Production," Proc. 15th Int'l. Photovoltaic Science and Engineering Conf., Beijing, China, Oct. 2005.

R. P. Gale et al., "High-Efficiency GaAs/CuInSe2 and AlGaAs/CuInSe2 Thin-Film Tandem Solar Cells," Proc. 21st IEEE Photovoltaic Specialists Conf., Kissimmee, Florida, May 1990.

J. Zhao, A. Wang, M. A. Green, F. Ferrazza, "Novel 19.8%-efficient 'honeycomb' textured multicrystalline and 24.4% monocrystalline silicon solar cells," Appl. Phys. Lett., 73, 1991 (1998).

Richard King

ENIC 6/24/06 H. Atwater Caltech

Cost/Efficiency of Photovoltaic Technology

c-Si

ENIC 6/24/06 H. Atwater Caltech

Absorption via Direct and Indirect Interband Transitions

ENIC 6/24/06 H. Atwater Caltech

Light Absorption and Current Collection

np+ p E

ENIC 6/24/06 H. Atwater Caltech

Auger Recombination Limits to Minority Carrier Lifetime

np+ p E

ENIC 6/24/06 H. Atwater Caltech

Deep Level Impurity Recombination Limits to Minority Carrier Lifetime in p-type Si

np+ p E

ENIC 6/24/06 H. Atwater Caltech

Deep Level Impurity Recombination Limits to Minority Carrier Lifetime in n-type Si

np+ p E

ENIC 6/24/06 H. Atwater Caltech

Open Circuit Voltagelimited by Recombination via a Single Deep Level

[ ( ') ( ')]no po

npR

p p n nτ τ=

+ + +

b

Recombination rate :

exp[ ]qW

( ) ln[ ]

no

L o o oc

b no

L b nooc

o o b

nR

j n p qV

N kT

kT j NV

q qn p W

τ

ττ

=

=

=M.A. Green, High Efficiency Si Solar Cells, Trans Tech, 1987

Under low level injection, p-type Si:

np+ p E

ENIC 6/24/06 H. Atwater Caltech

Factors Limiting Silicon Solar Cell Efficiency

Adapted from R.M. Swanson, Proceedings of the 31st IEEE Meeting (2005) p. 889.

Must work towards lower cost!

ENIC 6/24/06 H. Atwater Caltech

Taxonomy of Si Photovoltaics

U. Neuchatel9.5±0.3i-layer ~250

nmAmorphous

Kaneka10.1±0.22 mNanocrystalline

Sanyo9.5±0.52-10 mPolycrystalline

University of Stuttgart

16.6±0.445 mThin-film Transfer

FhG-ISE20.3±0.599 mMulticrystalline

UNSW PERL24.7±0.5260 mCrystalline

SourceEfficiency

(%)Si Thickness

SiClassification

M.A. Green, K. Emery, D. L. King, Y. Hisikawa, W. Warta. Prog. Photovolt: Res. Appl. 14,45 (2006).

ENIC 6/24/06 H. Atwater Caltech

Cost/Efficiency of Photovoltaic Technology

Thin Films,

Organics

ENIC 6/24/06 H. Atwater Caltech

Thin Film Solar CellsMaterials: CdTe, CuInxGa1-xSe2, poly-Si, amorphous Si

“Inactive”

areasGlass Substrate

p+

n

E

n+

Low Density of UnpassivatedGrain boundaries

Glass Substrate

p+

n

E

n+

High Density of passivatedGrain boundaries

ENIC 6/24/06 H. Atwater Caltech

Poly-Si: Open Circuit Voltage vs. Grain Size

750

grain size g ( m)µ

open

circ

uit v

olta

ge V

(m

V)

oc

700

650

500

550

600

450

400

35010-2 10-1 100 101 102 103

1010

106105

104

Neuchatel

BP

Ti

Astropower Mitsubishi

ETLETLCanon

Tonen

DaidoSanyoKaneka

ASE/ISFH

7S=10 cm/s

ISE

No H passivation during growth

H passivation during growth ‘ideal’ tf-Si

Jurgen Werner

ENIC 6/24/06 H. Atwater Caltech

Cost/Efficiency of Photovoltaic Technology

3J and 4J Cells

ENIC 6/24/06 H. Atwater Caltech

0.5 1.0 1.5 2.00

200

400

600

800

1000

1200

1400

1600

Energy (eV)

Wavelength (µµµµm)

Pow

er (

W m

-2 µµ µµ

m-1)

3.0 2.0 1.01.5

Power Generation Limit in a (GaAs) Single Junction Cell

hνννν ≈ EG hνννν > EG

hνννν < EG

EG

GaAsEG = 1.42 eV

AM1.5

ENIC 6/24/06 H. Atwater Caltech

0.5 1.0 1.5 2.00

200

400

600

800

1000

1200

1400

1600

Energy (eV)

Wavelength (µµµµm)

Pow

er (

W m

-2 µµ µµ

m-1)

3.0 2.0 1.01.5

AM1.5GaInP (1.9 eV)

GaAs (1.4 eV)

Ge (0.7 eV)

Load

Power Generation Limit in a GaInP/GaAs/Ge Triple Junction Cell

ENIC 6/24/06 H. Atwater Caltech

Tunnel Ju

nctio

n

Top Cel

l

Wid

e-Eg T

unnel

Mid

dle Cell

p-GaInP BSF

p-GaInP base

n-Ga(In)As emitter

n+-Ge emitter

p-AlGaInP BSF

n-GaInP emittern-AlInP windown+-Ga(In)As

contact

AR

p-Ge baseand substrate

contact

n-Ga(In)As buffer

Bottom

Cell

p++-TJn++-TJ

p-Ga(In)As base

nucleation

Wide-bandgap tunnel junction

GaInP top cell

Ge bottom cell

n-GaInP window

p++-TJ

n++-TJ

Ga(In)As middle cell

Tunnel junction

Buffer region

Lattice Matched and Metamorphic 3-Junction Cell Cross-Sections

Tunnel Ju

nctio

n

Top Cel

l

Wid

e-Eg T

unnel

Mid

dle Cell

p-GaInP BSF

p-GaInP base

n-GaInAs emitter

n+-Ge emitter

p-AlGaInP BSF

n-GaInP emittern-AlInP windown+-GaInAs

contact

AR

p-Ge baseand substrate

contact

p-GaInAsstep-graded buffer

Bottom

Cell

p++-TJn++-TJ

p-GaInAs base

nucleation

n-GaInP window

p++-TJ

n++-TJ

Lattice-Matched (LM) Lattice-Mismatchedor Metamorphic (MM)

Richard King

ENIC 6/24/06 H. Atwater Caltech

EQE and PL of Subcells Matched to 1%-In and 8%-In GaInAs

0

10

20

30

40

50

60

70

80

90

100

350 450 550 650 750 850 950Wavelength (nm)

Ext

erna

l Qua

ntum

Effi

cien

cy (

%)

0

1500

3000

4500

6000

7500

Pho

tolu

min

esce

nce

Inte

nsity

(a

rb. u

nits

)EQE, lattice-matched

EQE, metamorphic

PL, lattice-matched

PL, metamorphic

1.890 1.813 eV 1.414 1.305 eV

Richard King

ENIC 6/24/06 H. Atwater Caltech

Record Efficiency Solar Cell

• AM1.5 Direct, Low-AOD standard spectrum

• 0.269 cm2

aperture area

• 39.0% record efficiency,236 suns, 25°C

SpectrolabGaInP/ GaInAs/ Ge Cell

Voc = 3.089 V Jsc = 3.377 A/cm2

FF = 88.24%Vmp = 2.749 V

Efficiency = 39.0% ± 2.3%

236 suns (23.6 W/cm2) intensity0.2691 cm2 aperture area25 ± 1°C, AM1.5D, low-AOD spectrum

SpectrolabGaInP/ GaInAs/ Ge Cell

Voc = 3.089 V Jsc = 3.377 A/cm2

FF = 88.24%Vmp = 2.749 V

Efficiency = 39.0% ± 2.3%

236 suns (23.6 W/cm2) intensity0.2691 cm2 aperture area25 ± 1°C, AM1.5D, low-AOD spectrum

Richard King

ENIC 6/24/06 H. Atwater Caltech

Cost/Efficiency of Photovoltaic Technology

Nanostructures

ENIC 6/24/06 H. Atwater Caltech

Mesocopic Injection Dye-SenstizedSolar Cells

•Electron-hole pairs generated as excitons in a dye absorber (Ru-bpy)

•Excitons diffuse to TiO2interface

•Excitons dissociated into electrons and holes

•Electrons injected in TiO2

•Holes injected into liquid electrolyte

•Potentially low costs for materials and processing

Dye Sensitized Solar Cell

Christiana Honsberg

ENIC 6/24/06 H. Atwater Caltech

Multiple Exciton Generation Solar Cells

•Electron and hole created simultaneously

•Hot electron and hole create multiple (m) electron-hole pairs through Auger emission and absorption instead of thermalizing

•Need materials (e.g., quantum dots) susceptible to creation of multiple Auger electron-hole pairs

•Recently report by NREL and Los Alamos …3 carriers for 1 photon in PbSe

H. Queisser et al., Max Planck Inst.,Solar Energy Materials and Solar Cells, 41/42, 1996

Christiana Honsberg

ENIC 6/24/06 H. Atwater Caltech

Intermediate-Band Solar Cells

• Multiple transition paths via intermediate band

• Theoretical efficiency advantages over equivalent multijunction cells

• Can simplify and augment multijunction solar cell efficiencies

A. Luque et al., U. Politecnica de MadridPhys. Rev. Lett., 78, No. 26, 1997

Band diagram of a solar cell with an intermediate band.

Christiana Honsberg

ENIC 6/24/06 H. Atwater Caltech

Nanowire Photovoltaic Cells

Emergent Concepts for Photovoltaic Nanostructures:

1. Nanowires are a significant opportunity: carrier collection at low diffusion length – ‘improve’ poor quality materials

2. Passivation is essential in nanostructures

3. Multijunction architecture highly desirable for efficiency

4. Sheet Processing : Large-area low-cost reliable processing

0.5 1.0 1.5 2.00

200

400

600

800

1000

1200

1400

1600

Energy (eV)

Wavelength (µµµµm)

Pow

er (

W m

-2 µµ µµ

m-1)

3.0 2.0 1.01.5

AM1.5InGaN (1.8 eV)

Si (1.12 eV)

SiGe (0.8 eV)

Load

InGaN (1.8 eV)

Si (1.12 eV)

SiGe (0.8 eV)

Load

ENIC 6/24/06 H. Atwater Caltech

p-typen-type

Optically thick semiconductor wires

R ≈ Ln

Contact

Radial p-n junction nanowire solar cell

B.M. Kayes, et.al.,J. Appl. Phys. 2005

ENIC 6/24/06 H. Atwater Caltech

R.S. Wagner and W.C. Ellis, Appl. Phys. Lett. 4, 89 -90 (1964)R.S. Wagner and W.C. Ellis, Trans. Metall. Soc. AIM E 233, 1053-1064 (1965)

S.M. Sze Physics of semiconductor devices (New York, Wiley-Interscience, 1969)

Silicon “freezes out”

Photovoltaics may require use of alternative VLS catalysts

Vapor-Liquid-Solid (VLS) Growth

1.12 eV

.27

.54

AuAl

.067

Ga

.16

In

.072

ENIC 6/24/06 H. Atwater Caltech

Vapor-Liquid Solid Synthesis of Si nanowire arrays

In catalyst

Au catalyst

ENIC 6/24/06 H. Atwater Caltech

SiH4

Porous aluminaEvaporated Indium

Wax

Electrodeposited Nickel

After dissolution of the alumina membrane:

VLS nanowire growth in porous alumina templates

In catalyst:

ENIC 6/24/06 H. Atwater Caltech

Multijunction Nanowires

Si Homojunction

0.5 1.0 1.5 2.00

200

400

600

800

1000

1200

1400

1600

Energy (eV)

Wavelength (µµµµm)

Pow

er (

W m

-2 µµ µµ

m-1)

3.0 2.0 1.01.5

hνννν ≈ EG hνννν > EG

hνννν < EG

EG

SiEG = 1.12 eV

AM1.5

0.5 1.0 1.5 2.00

200

400

600

800

1000

1200

1400

1600

Energy (eV)

Wavelength (µµµµm)

Pow

er (

W m

-2 µµ µµ

m-1)

3.0 2.0 1.01.5

AM1.5InGaN (1.8 eV)

Si (1.12 eV)

SiGe (0.8 eV)

Load

InGaN (1.8 eV)

Si (1.12 eV)

SiGe (0.8 eV)

Load

InxGa1-xN/Si/SixGe1-x

Heterojunction

ENIC 6/24/06 H. Atwater Caltech

Multijunction Nanowires

Nanorods are attractive for multijunction PV because:

•Facilitate accommodation of the lattice mismatch between pseudomorphically strained semiconductor materials comprising the heterojunctions structure.

•Force crystallographic defects in strain-relieved dislocated structures to emerge from the rod during growth� single crystal and defect-free rods except near heterojunction interfaces

•Facilitate carrier collection in either axially-oriented or radially-oriented pn junctions.

[100][111]

ENIC 6/24/06 H. Atwater Caltech

Multijunction Nanowires

3 junction heterostructure with 1.85 eV bandgap InxGa1-xN top cell and 0.75 eV GexSi1-x bottom cell; the middle cell is a 1.1 eV Si structure.

InxGa1-xN

Si

InxGa1-xN

SixGe1-x

Si

Single-Crystalline Si/SiGeSuperlattice NanowiresYiying Wu, Rong Fan, and PeidongYang, Nano Lett.; 2002; 2(2) pp 83 - 86;

4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6

Lattice constant (A)

Ene

rgy

Gap

(eV

)

Wav

elen

gth

(µµ µµm

)

01

2

3

4

56

1.02.05.0

0.5

0.3

0.4

0.2

GaAs

PN

Sb

AlN

GaN

InNAlSb

GaPAlAs

InP

InAsGaSb InSb

AlP

As

SiGe

ENIC 6/24/06 H. Atwater Caltech

Summary

•Photovoltaics Resource is TW-capable•Close to Limiting PV Efficiency for Single Junction Cells•Silicon PV is the Incumbent Technology: will it remain so?•Multijunction PV a viable path to >50% •3rd Generation PV: Beyond the Schockley-Queisser Limit•Nanostructures in PV must outperform c-Si by cost/Watt