material balance equation

25
Chapter 3 Material Balance Applied to Oil Reservoirs § 3.1 Introduction -The Schilthuis material balance equation - Basic tools of reservoir engineering => Interpreting and predicting reservoir performance. -Material balance 1. zero dimension – this chapter 2. multi-dimension (multi-phase) – reservoir simulation

Upload: ashfaq-ahmad

Post on 25-May-2015

6.387 views

Category:

Education


3 download

DESCRIPTION

A Gift to All to For Getting commond over MBE

TRANSCRIPT

Page 1: Material balance Equation

Chapter 3 Material Balance Applied to Oil Reservoirs

§ 3.1 Introduction

-The Schilthuis material balance equation - Basic tools of reservoir engineering => Interpreting and predicting reservoir performance.

-Material balance

1. zero dimension – this chapter 2. multi-dimension (multi-phase) – reservoir simulation

Page 2: Material balance Equation

§ 3.2 General form of the material balance equation for a hydrocarbon reservoir

Underground withdrawal (RB) = Expansion of oil and original dissolved gas (RB)………(A) + Expansion of gascap gas (RB) ……………… ………(B) + Reduction in HCPV due to connate water expansion and decrease in the pore volume (RB)……………………… …….……(C)

Page 3: Material balance Equation

)(1

)1()( STBB

SVSTBplaceinoilinitialNoi

wc

bbl

bblor

ft

ftor

SCF

SCFconst

oiltheofVolCHinitial

gascaptheofVolCHinitialm

3

3

][.)(...

...

)(STBproductionoilcumulativeN p

)(.

)(.

STBproductionoilcum

SCFproductiongascumratooilgascumulativeRp

Page 4: Material balance Equation

Expansion of oil & originally dissolved gas

)1.3(][])[(

)(.)(.)exp(exp

RBSTB

RBSTBBBNNBNB

patliqpatliqansionoilansionLiquid

oiooio

i

)2.3(][][)(

)]()([exp

RBSCF

RB

STB

SCFSTBBRRNBNRBNR

patgassolutionpatgassolutionansiongasLiberated

gssigsgsi

i

Page 5: Material balance Equation

Expansion of the gascap gas

Expansion of the gascap gas =gascap gas (at p) –gascap (at pi)

RBSCF

RBSCFB

BmNBpatgasofAmount

SCF

SCFRB

RBB

mNBGor

RBSCF

RBSTB

SCF

SCFmNBgasgascapofvolumetotalThe

ggi

oi

gioi

oi

][][1

)(

][1

][1

][][

)3.3()()1(

][

RBB

BmNB

RBmNBB

BmNBgasgascaptheofExpansion

gi

goi

oigi

goi

Page 6: Material balance Equation

Change in the HCPV due to the connate water expansion &

pore volume reduction

pS

cScNBm

pcScS

HCPVpcScVpVcSVc

SVvolwaterconnatetheVpVcVc

SHCPVvolporetotaltheVdVdVHCPVd

wc

fwcwoi

fwcww

fwcwfffwcfw

wcfwffww

wffw

)1

()1(

)()1(

)()(

.)(

)1/(.)(

Page 7: Material balance Equation

Underground withdrawal

])([)(

)()()(

)()(Pr

gspopgsppop

gspppop

ppp

BRRBNBRRNBNwithdrawaldUndergroun

gasRBBRNRNoilRBBNwithdrawaldUndergroun

gasSCFRNoilSTBNsurfaceatoduction

Page 8: Material balance Equation

The general expression for the material balance as

wpe

wc

fwcwoi

gi

goigssioiogspop

BWWpS

cScNBm

B

BmNBBRRNBBNBRRBN

)()1

()1(

)1()()(])([

)7.3()(

1)1(1

)()(])([

wpe

wc

fwcw

gi

g

oi

gssioiooigspop

BWW

pS

cScm

B

Bm

B

BRRBBNBBRRBN

pmeasuringdifficultyMain

pVcdV

fluidsreservoirofExpansionoductionformSimple

tpfW

pfBRBNote

e

gso

:

Pr:

),(

)(,,:

Page 9: Material balance Equation

where

)12.3()( , wewfgo BWmEmEENF

STBRBp

S

cScBmE

STBRB

B

BBE

STBRBBRRBBE

RBBWBRRBNF

wc

fwcwoiwf

gi

goig

gssioioo

wpgspop

)1

()1(

][)1(

][)()(

][])([

,

Page 10: Material balance Equation

No initial gascap, negligible water influx

With water influx eq(3.12) becomes

Eq.(3.12) having a combination drive-all possible sources of energy.

0& wf cc

)13.3()12.3.( oNEFEq

)14.3(o

e

o E

WN

E

F

)12.3()( , wewfgo BWmEmEENF

Page 11: Material balance Equation

§ 3.4 Reservoir Drive Mechanisms

- Solution gas drive- Gascap drive-Natural water drive- Compaction drive

In terms of

-reducing the M.B to a compact form to quantify reservoir performance-determining the main producing characteristics, for example, GOR; water cut-determining the pressure decline in the reservoir- estimating the primary recovery factor

Reservoir drive mechanism

Page 12: Material balance Equation

§ 3.5 Solution gas drive

(a) above the B.P. pressure (b) below the B.P. pressure

Page 13: Material balance Equation

Above the B.P. pressure- no initial gascap, m=0- no water flux, We=0 ; no water production, Wp=0- Rs=Rsi=Rp

from eq.(3.7)

)7.3()(

1)1(1

)()(])([

wpe

wc

fwcw

gi

g

oi

gssioiooigspop

BWW

pS

cScm

B

Bm

B

BRRBBNBBRRBN

0;0;0;0)(;0)(: pessisp WWmRRRRNote

ilitycompressibweightedsaturationeffectivetheS

cScSccwhere

SSpcNBBNor

pB

BB

pB

BBp

S

cScScNBBN

dp

dB

Bdp

dV

Vcp

S

cSccNBBN

pS

csc

B

BBNBBN

wc

fwwooe

wcoeoiop

oi

oio

oi

ooi

wc

fwwoooiop

o

o

o

oo

wc

fwwooiop

wc

fwcw

oi

oiooiop

,1

1)18.3(

)()()17.3()

1(

11)]

1([

]1

)()([

Page 14: Material balance Equation

Exercise3.1 Solution gas drive, undersaturated oil reservoir

Determine R.F.

Solution:

FromTable2.4(p.65)

2.0106.8103

)65.(4.21616

wfw

bi

Spsicpsic

ptablePVT

pppif

STBRBBpsip

STBRBBpsip

obb

oii

12511,3330

2417.1,4000

16103.11

)33304000(2417.1

2417.12511.1

11

psi

pB

BBc

dp

dB

Bdp

dV

Vc

oi

oiobo

o

o

o

oo

Eq(3.18)

%5.1015.0

)33304000(108.222511.1

2417.1

..

6

pcB

B

N

NFR

pcNBBN

eob

oi

Pb

p

eoiop

Page 15: Material balance Equation

Table 2.4 Field PVT

P(psia) Bo (Rb/STB) Rs(SCF/STB) Bg( Rb/SCF)

4000 (pi) 1.2417 510

3500 1.2480 510

3300 (pb) 1.2511 510 0.00087

3000 1.2222 450 0.00096

2700 1.2022 401 0.00107

2701 1.1822 352 0.00119

2702 1.1633 304 0.00137

1800 1.1450 257 0.00161

1500 1.1287 214 0.00196

1200 1.1115 167 0.00249

900 1.0940 122 0.00339

901 1.0763 78 0.00519

300 1.0583 35 0.01066

Page 16: Material balance Equation

Bo as Function of Pressure

Page 17: Material balance Equation

Rs as Function of Pressure

Page 18: Material balance Equation

Bg and E as Function of Pressure

Page 19: Material balance Equation

Producing Gas-oil Ratio (R) as Function of Pressure

Page 20: Material balance Equation

%7.16167.04000

33304000%

108.22

)106.82.01038.0103.11(2.01

1

1

:

6

666

p

S

cScScc

Note

wc

fwwooe

Page 21: Material balance Equation

Below B.P. pressure (Saturation oil)

P<Pb =>gas liberated from saturated oil

16

16

16

1616

106.8

103

103.11

10300103003300

111

psic

psic

psic

psicpsiPp

c

f

w

o

gb

g

Page 22: Material balance Equation

Exercise3.2 Solution gas drive; below bubble point pressure Reservoir-described in exercise 3.1 Pabandon = 900psia(1) R.F = f(Rp)? Conclusion?(2) Sg(free gas) = F(Pabandon)?

Solution:

(1) From eq(3.7)

)7.3()(

1)1(1

)()(])([

wpe

wc

fwcw

gi

g

oi

gssioiooigspop

BWW

pS

cScm

B

Bm

B

BRRBBNBBRRBN

developedisSifnegligibleispS

cScNB

WW

capgasinitialnom

PBbelowgassolutionfor

gwc

fwcwoi

pe

)1

(

0;0

0

..

Page 23: Material balance Equation

Eq(3.7) becomes

)20.3(])()[(])([ gssioiogspop BRRBBNBRRBN

201

344

00339.0)122(0940.1

00339.0)122510()2417.10940.1(..

)(

)()(..

900900

ppp

p

p

gspo

gssioiop

RRN

NFR

BRRB

BRRBB

N

NFR

Conclusion:Rp

RF

1

49.0%49500

)55.(3.3.

900

N

NSTB

SCFR

pFigFrom

pp

Page 24: Material balance Equation
Page 25: Material balance Equation

(2) the overall gas balance

)21.3()1()]()([

)()1(

)1(1

oi

wcgsppssig

gspgppgsiwc

goi

bwcwc

oi

NB

SBRRNRRNS

BRNNBRNBNRS

SNB

ppforS

HCPVvolumepore

S

NB

liberatedgas in the reservoir

totalamountof gas

gasproducedat surface

gas stilldissolvedin the oil

= − −

4428.08.000339.02417.1

)]122500(49.0)122510[(

)1()]()[()1()]()([

wcgoi

spp

ssi

oi

wcgspssig SB

B

RRN

NRR

NB

SBRRNpRRNS