material balance 2011

Upload: prabhjotbhangal

Post on 03-Apr-2018

240 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/28/2019 Material Balance 2011

    1/98

    ICT - SSB

    Material & Energy Balances : Refresher 2011

    Prof Sunil S Bhagwat, [email protected] Engineering Department

  • 7/28/2019 Material Balance 2011

    2/98

    ICT - SSB

    Topics in Material Balance

    Dimensions and UnitsMole concept, CompositionsReaction StoichiometryBehavior of Gases and VaporsHumidity and SaturationSimple Material Balances without ReactionsMaterial Balances with ReactionComplex Material Balances

  • 7/28/2019 Material Balance 2011

    3/98

    ICT - SSB

    Topics in Energy Balance

    Thermophysics - Specic Heat VariationThermochemistryFuelsStagewise OperationUnsteady State Differential BalancesChemical Processes

  • 7/28/2019 Material Balance 2011

    4/98

    ICT - SSB

    Dimensions and Units

    Dimensions: Mass, Length, Time, Temperature, Charge ...Units: centimeter, second, ...

    Pressure Force / AreaEnergy Force x Distance

    Force / Area x VolumePower Energy / Time

    Force x Distance / TimeForce Mass x Acceleration

    Force/Area - Gauge concept

  • 7/28/2019 Material Balance 2011

    5/98

    ICT - SSB

    Conversion of Units

    System of Units: CGS, MKS, SI, FPS

    Pressure psia, psig, ata, atg, mm-Hg, Pa, Kgf/ cm 2

    Energy lit.atm, J, cal, cm 3 -atm, erg, KcalPower Watt, Any energy / time, Horsepower unitTemperature K , 0C , 0R , 0F

  • 7/28/2019 Material Balance 2011

    6/98

    ICT - SSB

    Conversion of Units 2

    760 mmHg =760 mm ( 1 m 1000 mm ) 13 .6 g cm 3

    1 kg 1000 g ( 100 cm 1m )3 9 .80665 m s 2

    = 1 .01325 10 5 kg m / s 2

    m 2 or N

    m 2 or Pa = 101 .325 kPa

    1.987 cal = 1 .987 cal ( 4.186 J cal ) ( 1Pa m

    3

    1J ) ( 1atm 1 .01325 x 10 5 Pa ) ( 1000 lit 1m 3 ) ( 1000 cm 3

    1lit )= 82 .06 cm 3 .atm

  • 7/28/2019 Material Balance 2011

    7/98

    ICT - SSB

    Conversion of Units 2

    760 mmHg =760 mm ( 1 m 1000 mm ) 13 .6 g cm 3

    1 kg 1000 g ( 100 cm 1m )3 9 .80665 m s 2

    = 1 .01325 10 5 kg m / s 2

    m 2 or N

    m 2 or Pa = 101 .325 kPa

    1.987 cal = 1 .987 cal ( 4.186 J cal ) ( 1Pa m

    3

    1J ) ( 1atm 1 .01325 x 10 5 Pa ) ( 1000 lit 1m 3 ) ( 1000 cm 3

    1lit )= 82 .06 cm 3 .atm

  • 7/28/2019 Material Balance 2011

    8/98

    ICT - SSB

    Conversion of Units 2

    760 mmHg =760 mm ( 1 m 1000 mm ) 13 .6 g cm 3 1 kg 1000 g ( 100 cm 1m )3 9 .80665 m s 2= 1 .01325 10 5 kg m / s

    2

    m 2 or N

    m 2 or Pa = 101 .325 kPa

    1.987 cal

    = 1 .987 cal ( 4.186 J cal ) ( 1Pa m 3

    1J ) ( 1atm 1 .01325 x 10 5 Pa ) ( 1000 lit 1m 3 ) ( 1000 cm 3

    1lit )= 82 .06 cm 3 .atm

  • 7/28/2019 Material Balance 2011

    9/98

    ICT - SSB

    The Mol concept

    gmol = mass in g molecular weight

    Avogadros Number : 1 mol=6.02 x 10 23 moleculesMolecular Weight : g/mol

    * C12 and O standardassigns a mass of exactly 12 to the carbon isotope 12 C .

  • 7/28/2019 Material Balance 2011

    10/98

    ICT - SSB

    Compositions

    wt%wt/wt g/kg-solvent

    wt/vol g/lit-solutionvol%vol/volmol/wt mol/kg-solvent molalitymol%mol/vol mol/lit-solution molarity

    Solids & Liquids usually % wt. usually % vol. (=%mol)

  • 7/28/2019 Material Balance 2011

    11/98

  • 7/28/2019 Material Balance 2011

    12/98

    ICT - SSB

    Compositions 2

    Example: 53 % wt HNO 3 - Wateri.e. 53 wt HNO 3 in 100 wt mixture

    BASIS: 100 wt units mixture100 g mixture contains :HNO 3=53g and H 2O =47g(1) Find Mol% HNO 3(i .e . mol HNO 3mol Mixture x 100)mol.wt. of HNO 3=63 g / mol mol HNO 3 in Basis=53 g / 63 g / mol = 0.8413 mol

    mol H 2O in Basis = 47 g /18g / mol = 2.611 molHNO 3= 0.8413 x 100/(2.611 + 0.8413) = 24.37 % mol(2) Find mol/lit HNO 3 (i.e. mol HNO 3 / vol. of solution) (density= 1.46 g/ cm 3)mol HNO 3 / lit soln. = (0.8413 mol HNO 3 / 100g solution) * (1.46

    g soln/ cm 3soln) * ( 1000 cm 3 /1 lit)=

  • 7/28/2019 Material Balance 2011

    13/98

    ICT - SSB

    Compositions 2

    Example: 53 % wt HNO 3 - Wateri.e. 53 wt HNO 3 in 100 wt mixture

    BASIS: 100 wt units mixture100 g mixture contains :HNO 3=53g and H 2O =47g(1) Find Mol% HNO 3(i .e . mol HNO 3mol Mixture x 100)mol.wt. of HNO 3=63 g / mol mol HNO 3 in Basis=53 g / 63 g / mol = 0.8413 mol

    mol H 2O in Basis = 47 g /18g / mol = 2.611 molHNO 3= 0.8413 x 100/(2.611 + 0.8413) = 24.37 % mol(2) Find mol/lit HNO 3 (i.e. mol HNO 3 / vol. of solution) (density= 1.46 g/ cm 3)mol HNO 3 / lit soln. = (0.8413 mol HNO 3 / 100g solution) * (1.46

    g soln/ cm 3soln) * ( 1000 cm

    3 /1 lit)

    =

  • 7/28/2019 Material Balance 2011

    14/98

    ICT - SSB

    Average Molecular Weight

    For Gases Vol% = mol%Example:Air: 79% mol N 2 , 21% mol O 2Basis: 100 mol Air

    N 2=79 molO 2=21 mol

    Avg. mol. wt. = wt. of 1 mol gas= wt. of all components in 1 mol mixture= 79 mol N 2 x 28 g/mol N 2 + 21 mol O 2 x32 g/mol O 2

    = 2884 g in 100 mol mixture = 28.84 g / mol

  • 7/28/2019 Material Balance 2011

    15/98

    ICT - SSB

    Problem: Composition

    Waste acid Composition:21% HNO 3 , 55% H 2SO 4 , 24% H 2O

    Desired Product Composition:28% HNO 3 , 62% H 2SO 4

    Concentrated sulfuric acid is available at 93% concentration

    Concentrated nitric acid is available at 90% concentration1000 kg desired product.

  • 7/28/2019 Material Balance 2011

    16/98

    ICT - SSB

    Problem: Composition

    Waste acid Composition:21% HNO 3 , 55% H 2SO 4 , 24% H 2O

    Desired Product Composition:28% HNO 3 , 62% H 2SO 4

    Concentrated sulfuric acid is available at 93% concentration

    Concentrated nitric acid is available at 90% concentration1000 kg desired product.

  • 7/28/2019 Material Balance 2011

    17/98

    ICT - SSB

    Solution

    1000 kg desired mixture

    Sulfuric Acid y kg

    Waste Acid x kg

    Nitric Acid z kg

    (1)

    (2)

    (3)

    (4)

    Basis: 1000 kg of desired mixture

  • 7/28/2019 Material Balance 2011

    18/98

    ICT - SSB

    Solution

    [1]. Overall material balance: (units=kg)Input:(1). x kg waste acid(2). y kg Sulfuric Acid(3). z kg Nitric AcidOutput:(4) 1000 kg desired mixture

    In Out = 0

    x + y + z 1000 = 0 ...(1)

  • 7/28/2019 Material Balance 2011

    19/98

    ICT - SSB

    Contd..

    Similarly, [2]. Material balance wrt HNO 3 : (units=kg HNO 3)

    0 .21 x + 0 + 0.9z 280 = 0 ...(2)

    [3]. Material balance wrt H 2SO 4 : (units=kg H 2SO 4)

    0 .55 x + 0 .93 y 620 = 0 ...(3)

    The three equations we get are:

    x + y + z 1000 = 0 ...(1)

    0 .21 x + 0 + 0.9z 280 = 0 ...(2)

    0 .55 x + 0 .93 y 620 = 0 ...(3)

  • 7/28/2019 Material Balance 2011

    20/98

    ICT - SSB

    Contd..

    Similarly, [2]. Material balance wrt HNO 3 : (units=kg HNO 3)

    0 .21 x + 0 + 0.9z 280 = 0 ...(2)

    [3]. Material balance wrt H 2SO 4 : (units=kg H 2SO 4)

    0 .55 x + 0 .93 y 620 = 0 ...(3)

    The three equations we get are:

    x + y + z 1000 = 0 ...(1)

    0 .21 x + 0 + 0.9z 280 = 0 ...(2)

    0 .55 x + 0 .93 y 620 = 0 ...(3)

  • 7/28/2019 Material Balance 2011

    21/98

  • 7/28/2019 Material Balance 2011

    22/98

    ICT - SSB

    Contd..

    Similarly, [2]. Material balance wrt HNO 3 : (units=kg HNO 3)

    0 .21 x + 0 + 0.9z 280 = 0 ...(2)

    [3]. Material balance wrt H 2SO 4 : (units=kg H 2SO 4)

    0 .55 x + 0 .93 y 620 = 0 ...(3)

    The three equations we get are:

    x + y + z 1000 = 0 ...(1)

    0 .21 x + 0 + 0.9z 280 = 0 ...(2)

    0 .55 x + 0 .93 y 620 = 0 ...(3)

  • 7/28/2019 Material Balance 2011

    23/98

    ICT - SSB

    Problem : Compositions

    Required: 1000 kg of 50% H 2SO 4Available: (1) 70% H 2SO 4 Rs. 2400/ton

    (2) 96% H 2SO 4 Rs. 3400/tonTransportation cost: Rs. 400/ton

  • 7/28/2019 Material Balance 2011

    24/98

    ICT - SSB

    Solution:

    Basis: 1 ton of required acid==> 500 kg H 2SO 4and 500 kg Water.

    Option(1): 70% H 2SO 4 Rs. 2400/ton

    x kg X 70 kg H 2 SO 4100 kg acid = 500 kg H 2SO 4Hence, x = 714.29 kg of acid needed.

    Cost of Acid = 714.29 kg X2400 Rs .

    ton X1 ton

    1000 kg =1714.30 Rs.

    Transportation Cost = 714.29 kg X 400 Rs .ton X1 ton

    1000 kg =285.72 Rs.

    Total Cost = 1714.3 + 285.72 = 2000 Rs.

  • 7/28/2019 Material Balance 2011

    25/98

  • 7/28/2019 Material Balance 2011

    26/98

    ICT - SSB

    Solution:

    Basis: 1 ton of required acid==> 500 kg H 2SO 4and 500 kg Water.

    Option(1): 70% H 2SO 4 Rs. 2400/ton

    x kg X 70 kg H 2 SO 4100 kg acid = 500 kg H 2SO 4Hence, x = 714.29 kg of acid needed.

    Cost of Acid = 714.29 kg X2400 Rs .

    ton X1 ton

    1000 kg =1714.30 Rs.

    Transportation Cost = 714.29 kg X 400 Rs .ton X1 ton

    1000 kg =285.72 Rs.

    Total Cost = 1714.3 + 285.72 = 2000 Rs.

  • 7/28/2019 Material Balance 2011

    27/98

    ICT - SSB

    Solution:

    Basis: 1 ton of required acid==> 500 kg H 2SO 4and 500 kg Water.

    Option(1): 70% H 2SO 4 Rs. 2400/ton

    x kg X 70 kg H 2 SO 4100 kg acid = 500 kg H 2SO 4Hence, x = 714.29 kg of acid needed.

    Cost of Acid = 714.29 kg X2400 Rs .

    ton X1 ton

    1000 kg =1714.30 Rs.

    Transportation Cost = 714.29 kg X 400 Rs .ton X1 ton

    1000 kg =285.72 Rs.

    Total Cost = 1714.3 + 285.72 = 2000 Rs.

  • 7/28/2019 Material Balance 2011

    28/98

    ICT - SSB

    Option(2)

    : 96% H 2SO 4 Rs. 3400/ton

    x kg X 96 kg H 2 SO 4100 kg acid = 500 kg H 2SO 4Hence, x = 520.83 kg of acid needed.

    Cost of Acid = 520.83 kg X 3400 Rs .ton X1 ton

    1000 kg =1770.83 Rs.

    Transportation Cost = 520.83 kg X 400 Rs .ton X1 ton

    1000 kg

    =208.33 Rs.Total Cost = 1770.83 + 208.33 = 1979 Rs.Option(1): 2000 Rs. Option(2): 1979 Rs.Ans .

  • 7/28/2019 Material Balance 2011

    29/98

    ICT - SSB

    Option(2)

    : 96% H 2SO 4 Rs. 3400/ton

    x kg X 96 kg H 2 SO 4100 kg acid = 500 kg H 2SO 4Hence, x = 520.83 kg of acid needed.

    Cost of Acid = 520.83 kg X 3400 Rs .ton X1 ton

    1000 kg =1770.83 Rs.

    Transportation Cost = 520.83 kg X 400 Rs .ton X1 ton

    1000 kg

    =208.33 Rs.Total Cost = 1770.83 + 208.33 = 1979 Rs.Option(1): 2000 Rs. Option(2): 1979 Rs.Ans .

  • 7/28/2019 Material Balance 2011

    30/98

    ICT - SSB

    Option(2)

    : 96% H 2SO 4 Rs. 3400/ton

    x kg X 96 kg H 2 SO 4100 kg acid = 500 kg H 2SO 4Hence, x = 520.83 kg of acid needed.

    Cost of Acid = 520.83 kg X 3400 Rs .ton X1 ton

    1000 kg =1770.83 Rs.

    Transportation Cost = 520.83 kg X 400 Rs .ton X1 ton

    1000 kg

    =208.33 Rs.Total Cost = 1770.83 + 208.33 = 1979 Rs.Option(1): 2000 Rs. Option(2): 1979 Rs.Ans .

  • 7/28/2019 Material Balance 2011

    31/98

    ICT - SSB

    Behavior of Gases and Vapors

    Ideal Gas Law:pV = nRT

    Its relationship to Kinetic Theory of Gases :Volume Temperature Volume = 0 at Temperature =-273.155 CKelvin Scale: K and Not K0 C=273.155 0.005K =459.69 R

    T of 1

    C = T of 1 K = T of 1 .8

    F = T of 1.8

    R Universal Gas Constant, R

    R =82.059 cm3 atm/mol K=8.314 J/mol K

  • 7/28/2019 Material Balance 2011

    32/98

    ICT - SSB

    Pressure and Concentration of Gases

    Concentration of gases:

    mol vol

    = P abs R .T

    = n V

    Daltons Law :

    p A

    = P

    Amagats Law :

    v A = V

  • 7/28/2019 Material Balance 2011

    33/98

    ICT - SSB

    Density of Gas Mixtures

    mix = Average mol . wt .P

    RT

    Density of Air (consisting of 79% N 2 and 21% O 2) at 1 atm and298.16 K :P = 1 atm = 1.01325 X 10 5 Pa = 1.01325 X 10 5 kg .m 1 .s 2

    mix = 28 .84 g mol X 1.01325 X 105

    Pa 8 .314 J / (mol K ) X 298 .16 K X 1 kg 1000 g

    = 1 .2866kg m 3

  • 7/28/2019 Material Balance 2011

    34/98

    ICT - SSB

    Vapors

    Vapor:- A gas that exists below its critical temperature.Vapor Pressure:- Vaporization and condensation at constant temperature andpressure are equilibrium processes, and the equilibriumpressure is called the vapor pressure.

    Boiling:- Total gas pressure Equilibrium vapor pressure of liquidSublimation:Melting :to become liquid.

  • 7/28/2019 Material Balance 2011

    35/98

    ICT - SSB

    Analyzing Equilibrium for a Single Component (*)

    P = 0 P=Vapor Pr.

    BrownianMotion

    Liquid Liquid

    Time t=0 At Equilibrium

    =Rate of Capture

    Rate of Escape

    Rate of Capture=0

    Figure: Brownian Motion of a single component in Two phases

  • 7/28/2019 Material Balance 2011

    36/98

  • 7/28/2019 Material Balance 2011

    37/98

    ICT - SSB

    Correlations

    Semi-Empirical form of a given Pressure dependence ontemperature is used for correlating data:

    lnP = A

    B

    T or A

    B

    T + C Antoine Correlation:data are listed in handbooks.Vapor liquid equilibrium (ideal)

    Raoults Law:

    P = p s A.x A + p s B .x B + ...

    p A = p s A

    .x A

  • 7/28/2019 Material Balance 2011

    38/98

    ICT - SSB

    Humidity and Saturation

    Partial pressure: Composition of a gas phase

    Vapor pressure: Property of a liquid

    Mixture of vapour and non-condensible (permanent) gas i.e.above critical conditionsSurface of Liquid A exposed to Gas

    p A increases upto p s Ap A < p s A : partial saturation

    ICT SSB

  • 7/28/2019 Material Balance 2011

    39/98

    ICT - SSB

    Denitions

    Relative Saturation :

    RS =p Ap s A

    Percentage Relative Saturation:= 100 x p Ap s APercentage Saturation:= 100 x Mol vapor / MOl vap free gas

    (Mol vapor / MOl vap free gas )at saturation = 100 x p A/ (p

    p A)p S A / (p p

    s A)

  • 7/28/2019 Material Balance 2011

    40/98

    ICT SSB

  • 7/28/2019 Material Balance 2011

    41/98

    ICT - SSB

    Problem: Humidication (*)

    It is desired to maintain the air entering a building at a constanttemperature of 25 0C and a percentage humidity of 40. This isdone by passing the air through a series of water sprays in

    which it is cooled and saturated with water. The air leaving thespray chamber is then heated to 25 0C .(a) Assume that the water and air leave the spray chamber atthe same temperature. What is the temperature of the waterleaving?

    (b) Estimate the water content of the air in the building in kg ofwater per kg of dry air.0C and percentage humidity of 65, how much water wil beevaporated or condensed in the spray chamber per kmol ofmoisture-free air?

    ICT SSB

  • 7/28/2019 Material Balance 2011

    42/98

    ICT - SSB

    Solution (*)

    (1) Outside Airt1=32 C

    .

    %H=65

    (2) Saturated

    t2Water Spray Chamber

    (4) Water

    t2

    t3=25 C

    %H=40

    a. t2=?b. kg H2O / kg dry air= ?c. kg Water condensed or evaporated = ?

    Heater

    To Building

    (3) Desired Air

    Basis: 1 kmol dry air inlet and P = 1.01325 bar At 32 C p H 2 O = 0.04712 bar , and

    At 25 C

    p H 2 O = 0.03136 bar

  • 7/28/2019 Material Balance 2011

    43/98

    ICT SSB

  • 7/28/2019 Material Balance 2011

    44/98

    ICT - SSB

    Solution (*)

    (a). Temperature of stream 2

    kmol H 2O in stream 2 is: 0.0133 kmolStream 2 is saturated p H 2 O = p H 2 O = 0 .0133 bar p H 2 O = 0 .0133 bar = 284 .4 K Ans a (b). kg H 2O /kg DA in exit

    0.0133 kmol H 2O /kmol DA =

    18 kg kmolH 2 O 0.0133 kmolH 2 O

    28 .84 kg kmol DA 1kmol DA= 0.0083 kg H 2O /kg DA Ans b

    ICT - SSB

  • 7/28/2019 Material Balance 2011

    45/98

    ICT - SSB

    (c). Water Condensed or evaporated (*)

    (1) Outside Airt1=32 C

    .

    %H=65

    (2) Saturated

    t2

    (4) Water

    t2

    t3=25 C

    %H=40Heater

    To Building

    (3) Desired Air

    Water Spray Chamber0.034 kmol

    Water0.0133 kmol

    Water 0.0133 kmolwater

    c. kg Water condensed or evaporated = ?

    Material balance around spray chamber:Water going in = 0.0340 kgmol Water going out = 0.0133 kgmol

    Ans c

  • 7/28/2019 Material Balance 2011

    46/98

    ICT - SSB

  • 7/28/2019 Material Balance 2011

    47/98

    ICT SSB

    Problem Solving Strategy

    * Read Available Information carefully and understand what is

    required* Determine data needed and locate the same* Draw a simplied picture Pick a basis (starting informationrequired answers)* Decide on formulae needed and plan the strategy.* Check units consistency while calculating

    ICT - SSB

  • 7/28/2019 Material Balance 2011

    48/98

    ICT SSB

    Problem: Hydrocarbon

    Fuel gas exhaust composition:CO 2 6.36%, CO 1.12%, O 2 8.04%, N 2 84.48%1. Guess which is the hydrocarbon ( CH n ) in the fuel?

    Find the ratio of air used to that required theoretically?

    (ii) Air: c gmol

    (iii) Dry Flue Gas

    2(iv) H O : b gmol

    (i) Fuel: a gatom C and x gatom H

    ICT - SSB

  • 7/28/2019 Material Balance 2011

    49/98

    Solution

    Basis: Dry fuel gas 100 mol Hydrocarbon: CH n [1].Elemental balance wrt Carbon in (gatom)

    Input:(i). a gatom C

    Output:(iii).

    100 gmol DFG 6.36 gmol of CO 2100 gmol DFG

    1gatom C

    gmol CO 2+ 1.12 gmol of CO 2

    100 gmol DFG

    1gatom C

    gmol CO

    a (6.36 + 1 .12 ) = 0 ..[1]

    ICT - SSB

  • 7/28/2019 Material Balance 2011

    50/98

    Solution

    [2] Elemental balance wrt Hydrogen (gatom H) x + 0 = 0 + b 2[3].Elemental balance wrt Oxygen (gatom O)

    0 + c . 0 .21 2 [12 .72 + 1 .12 + 16 .08 + b ] = 0 ...[3]

    [4].Elemental balance wrt Nitrogen (gatom)

    c 0.79 2 84 .48 2 = 0 ...[4]

    Solving eqn [1] (gives a ), [4] (gives c ),[3] (gives b ),[2] (gives n )

    a = 7.51 gatom C , c = 106 .94 mol air , b = 14 .99 mol H 2O

    x = 2b = 29 .98 atom H , x a = 4 H drocarbon = CH 4

    ICT - SSB

  • 7/28/2019 Material Balance 2011

    51/98

    (2). Percentage Excess Air:

    7.51 mol CH 4 requires (2 X 7.51) mol oxygenwhich is supplied by (2 X 7.51 / 0.21 ) mol air.

    =71.52 mol air.

    Supplied air = 106.94 mol

    excess = supplied - required = (106.94 - 71.52)=35.42 mol air%excess = excess required X100 % =35 .4271 .52 X 100 % = 49.52 %

    ICT - SSB

  • 7/28/2019 Material Balance 2011

    52/98

    Material Balance for a Reactor

    i rate of

    reactant

    ow into element of volume

    =

    ii rate of

    reactant

    ow out of element of volume

    +

    iii rate of reactant

    loss due to

    chemical reaction within the element of volume

    iv

    +

    rate of accumulation

    of reactant in element of volume

    ICT - SSB

  • 7/28/2019 Material Balance 2011

    53/98

    Material Balance for a Reactor - 2

    * The volume element may be a differential element of reactoror the reactor as a whole.* i & ii zero: batch reactor* iv zero: steady state ow reactor

    : plug ow / mixed ow

    ICT - SSB

  • 7/28/2019 Material Balance 2011

    54/98

    Material Balances with Reaction

    Problem: Recycle and PurgingN 2 / H 2 mixture in feed = 1:3; Conversion of ammonia = 25 %Argon in Feed = 0.2 kmol per 100 kmol of N 2 H 2 mixtureToleration of limit of argon entering the reactor = 5 parts per100 parts of N

    2 H

    2mixture by volume

    NH3 liquid

    CondenserReactor

    (1)(3)

    (4)

    (5)

    Purge stream

    y kgmoles N2+H2

    (6)

    (2)Fresh feed100 kgmole N2+H2

    Argon0.2 kgmole

    Recycle x kg moles N2+H2

    ICT - SSB

  • 7/28/2019 Material Balance 2011

    55/98

    Solution

    Basis: 100 kmol N 2 H 2 mixture in fresh feedLet, x = kmol of N 2 and H 2 recycled to reactor

    y = kmol of N 2 and H 2 purged

    N 2 + 3H 2 2NH 3

    [1]. Overall balance of N 2 and H 2 :Input:(1). 100 kmol

    Output:(6). y kmol(4). 0.25(100+x) kmol N 2 and H 2 reacted

    100 y + 0 .25 (100 + x ) = 0 ...(1)

    ICT - SSB

  • 7/28/2019 Material Balance 2011

    56/98

    Solution

    [2]. Overall balance of Argon:Input:(1). 0.2 kmolOutput:

    (6). y kmol N 2+ H 2 X 0.05 (100 + x )kmol argon 0.75 (100 + x )kmol N 2 + H 2 =0.0667y(* Toleration limit of argon entering the reactor=0.05 kmol perkmol of N 2and H 2)

    0.2 0.667 y = 0 ...(2)

    y = 3 .00 kmol

    x = 288 kmol

    ICT - SSB

  • 7/28/2019 Material Balance 2011

    57/98

    Summary of solution,

    Fresh N 2 and H 2=100 kmol

    Recycle N 2 and H 2=288 kmolPurge N 2 and H 2=3 kmolAmmonia formed = 48.5 kmolArgon = 0.2 kmolRecycle Ratio = 288100 = 2.88Purge Ratio = 3288 = 0.0104

    ICT - SSB

  • 7/28/2019 Material Balance 2011

    58/98

    Problem: Absorption Column (*)

    9% SO 3 is fed in the Absorption Column. All of which isabsorbed in incoming liquid stream of 95% Sulfuric acid.Water is added and mixed with 98 % H 2SO 4 recycle stream tomake 95 % H 2SO 4 stream.SO 3 / day and B, C, D, E in TPD as shown in ow diagram ?

    9% SO3

    98% H2SO4

    H2O

    95% H2SO4

    B

    C D

    E

    A kmol SO3/da

    (1)

    (2)(3)

    (4)

    (6)

    Mixer

    (7)

    NO SO3

    Absorption

    Column

    ICT - SSB

    l ( )

  • 7/28/2019 Material Balance 2011

    59/98

    Solution (*)

    Basis: 1000 TPD 98 % H 2SO 4productA is in kmol SO 3 per dayB, C, D, E are in TPD of total stream

    [1]. Material balance across total system involving stream(1), (2), (5) and (7) in TPD:

    Input:(1). A kmol SO 3 /day X

    80 kg SO 3kmol SO 3 X

    ton 1000 kg

    (7). E TPD

    Output:(5). 1000 TPD(2). 0

    0.08 A + E 1000 = 0 ...(1)

    ICT - SSB

    S l i (*)

  • 7/28/2019 Material Balance 2011

    60/98

    Solution (*)

    [2]. Material balance across column involving streams (1), (2),(3), (4) in TPD:

    0 .08 A + B C = 0 ...(2)

    [3]. Material balance across mixer involving stream (6), (7) and(3) in TPD:

    D + E B = 0 ...(3)

    [4]. Elemental material balance wrt S across the system

    (units=katom S)Input:(1). AOutput:(5). 1000X10 3kg 98 % H 2SO 4 /day X 1 kmol S 98 kg H 2 SO 4

    ICT - SSB

    S l i (*)

  • 7/28/2019 Material Balance 2011

    61/98

    Solution (*)

    [5]. Elemental mat bal wrt H across system (units=katom H)Input: E X 1000 kg H 2O X 2 katom H 18 kg H 2 O Output:980000 kg H 2SO 4X 2 katom H 98 kg H 2 SO 4 + 20000 kg H 2O X

    2 katom H 18 kg H 2 O

    E = 200 TPD water ..(5)

    [6]. Elemental mat. bal. wrt S across column (units=katom S)

    10 C = 9 .7B + 10000 ..(6)

    Liquid Stream Input to Absorption column B = 6533 TPD Liquid Stream Output from the column C = 7333 .3 TPD Recycle Stream D = 6333 TPD

    E = 200 TPD

    ICT - SSB

    P bl Bl t F M t i l B l

  • 7/28/2019 Material Balance 2011

    62/98

    Problem: Blast Furnace Material Balance

    kg of ux per 100 kg of pig iron produced. The compositions ofthese materials are:

    Ore(212.7)kg % Charcoal (110)kgFe 2O 3 54.93 C 86.89FeO 8.48 O 3.15CaO 9.58 H 0.45

    Mn 3O 4 4.97 N 0.51Al 2O 3 3 H 2O 7

    MgO 1.83 Ash 2SiO 2 4.92 100%H 2O 4.48CO 2 7.81

    100%

    ICT - SSB

    Contd

  • 7/28/2019 Material Balance 2011

    63/98

    Contd

    Flux % Pig Iron % Clean gas %(13.9kg) (100kg) moisture free

    SiO 2 78.38 C 3.12Al 2O 3 13.99 Si 1.52 CO 2 12.62CaO 0.53 Mn 2.22 CO 25.56

    Fe 2O 3 3.9 Fe 93.14 CH 4 0.69

    H 2O 3.2 100% H 2 1.34100% N 2 59.79

    ICT - SSB

    Solution

  • 7/28/2019 Material Balance 2011

    64/98

    Solution

    Charcoal 110.0 kg

    Flux 13.9 kg

    Ore 212.7 kg

    Air 455.2 kg(15.70 moles)

    Slag 63.8 kg

    Water vapor11.9 kg

    (0.66 mole)

    Dry gas 617.2 kg

    (20.77 moles)

    Material balance of blast furnace

    Pig iron 100.0 kg

    (1)(2)(3)

    (4)

    (5)

    (6)

    (7)

    T=25 C

    T=300 C

    173 C

    1360 C

  • 7/28/2019 Material Balance 2011

    65/98

    ICT - SSB

    Solution

  • 7/28/2019 Material Balance 2011

    66/98

    Solution

    2. Weight of dry blast-furnace gas formedCarbon balance involving streams (1), (3),(7) and (5): (katomC):Carbon in 1kmol dry blast-furnace gas=0.3887 katomDry furnace gas = 20.774 kmol3. Weight of Air suppliedNitrogen balance (kmol N 2)Dry air=455.22 kg4. Weight of water vapor in the blast-furnace gasHydrogen balance (katom H)H 2O in blast-furnace gas= 11.92 kg

    ICT - SSB

    Problem: Adiabatic Flame Temperature

  • 7/28/2019 Material Balance 2011

    67/98

    Problem: Adiabatic Flame Temperature

    1 mol of Methane is reacted with stoichiometric amount of airand complete combustion takes place.

    CH4 1 mol

    298.16 K

    Air 9.5238mol

    (Stoichiometric)

    T= ?

    Adiabatic FlameTemperature

    (1)

    (2)

    (3)

    N2=7.5238 mol

    CO2H2O

    ICT - SSB

    Solution

  • 7/28/2019 Material Balance 2011

    68/98

    Solution

    Basis: 1 mol CH 4

    Stoichiometric amount of Air=2 mol O 2+7.5238 mol N 2Reference Temperature 298 K

    For complete conversion:

    CH 4+ 2O 2 CO 2 + 2H 2O

  • 7/28/2019 Material Balance 2011

    69/98

  • 7/28/2019 Material Balance 2011

    70/98

  • 7/28/2019 Material Balance 2011

    71/98

    ICT - SSB

    Solution..

  • 7/28/2019 Material Balance 2011

    72/98

    Solution..

    Now, Cp i = A + BT + CT 2 + DT 3

    T

    298 .16 (Cp CO 2 + 2 Cp H 2 O + 7 .5238 Cp N 2 )dT =

    T

    298 .16 ( m i Cp i )dT

    Simpliying eq (A) for T using Newton Raphason Techniquewith initial guess of T=2607 K

    T = 2350 K

    ICT - SSB

    Problem: Fuel Gas composition (*)

  • 7/28/2019 Material Balance 2011

    73/98

    p ( )

    A mixture of CH 4 + N 2 is burned using 10 mol Air to 1 molmixture. Complete Combustion takes place and naltemperature is 1500 K.

    Air 10mol

    CH4+N2 Mixture

    1 mol

    CO2

    298.16 K1500 K

    H2O

    O2N2

    Calculate Com osition of Fuel Gas

    298.16 K

    (1)

    (2)

    (3)

    ICT - SSB

    Solution (*)

  • 7/28/2019 Material Balance 2011

    74/98

    ( )

    Basis: 10 mol Air and 1 mol of CH 4 + N 2 MixtureReference Temperature 298 K

    Assume x mol of CH 4 in inlet

    For complete conversion:

    CH 4+

    x

    2O 2

    2x

    CO 2

    x

    + 2H 2O

    2x Stream (2): (units:mol)CH 4x molN 2(1-x) mol

    ICT - SSB

    Solution.. (*)

  • 7/28/2019 Material Balance 2011

    75/98

    ( )

    From material balance, stream (3): (units:mol)N 2 7.9+(1-x) molO 2 2.1-2x molCO 2 x molH 2O 2x mol

    Enthalpy of a stream = m i ( H 0 + T

    Tref

    Cp i dT + i )

    i = 0, if compound is in standard state H 0 = 0 for elements

    ICT - SSB

    Solution.. (*)

  • 7/28/2019 Material Balance 2011

    76/98

    ( )

    Enthaply of stream (1):E 1 = 10 mol air (0.21 mol O 2mol air (0 + 0 + 0)+ 0.79

    mol N 2mol air (0 + 0 + 0))

    Stream (2):E 2 = x mol CH 4 ( H 0fCH 4 + 0 + 0) + ( 1 x )mol N 2 (0 + 0 + 0)Stream(3):E 3 = x mol CO 2 ( H 0fCO 2 +

    1500298 .16 Cp CO 2 dT + 0)

    + 2x mol H 2O ( H 0fH 2 O +

    1500

    298 .16 Cp H 2 O dT + Vap H 2 O )

    +( 2 .1 2x )mol O 2 (0 + 1500298 .16 Cp O 2 dT + 0)+( 8.5 x )mol N 2 (0 + 1500

    298 .16 Cp N 2 dT + 0)

    ICT - SSB

    Solution.. (*)

  • 7/28/2019 Material Balance 2011

    77/98

    Now, taking material balance of all the streamsE 1 + E 2 = E 3Rearranging,x ( H 0fCH 4 H 0fCO 2 2 H 0fH 2 O 2 Vap H 2 O )

    = 1500

    298 .16 [x Cp CO 2 + 2x Cp H 2 O + ( 2 .1 2x )Cp O 2+( 8.5 x )Cp N 2 ]dT ..(A)

    First Estimate: Take Cp i = 7cal / mol for all compounds, we

    get,

    x 0 .54

    ICT - SSB

    Solution.. (*)

  • 7/28/2019 Material Balance 2011

    78/98

    Now,

    Cp i = A + BT + CT 2 + DT 3Cp CO 2 = ACO 2 + B CO 2 T + C CO 2 T

    2 + D CO 2 T 3

    and Similarly for others..

    1500

    298 .16 (x Cp CO 2 + 2x Cp H 2 O +( 2.1 2x )Cp O 2 +( 8 .5 x )Cp N 2 )dT =

    1500

    298 .16( m

    i Cp

    i )dT

    ICT - SSB

    Solution.. (*)

  • 7/28/2019 Material Balance 2011

    79/98

    Using the rst estimate of x=0.544 in this integration we get,

    1500

    298 .16( m

    i Cp

    i )dT = 437199 J

    Putting this value in equation (A) and solving for x we get,

    x = 0.577

    So, Composition of fuel gas:CH 4=0.577 mol N 2= 0.423 mol

    ICT - SSB

    Problem: Sulfur dioxide (*)

  • 7/28/2019 Material Balance 2011

    80/98

    Molten sulfur at 115 0C is fed in the adiabatic reactor andreacted with air coming in at 25 0C , complete conversion takesplace and SO 2 is produced.Output composition is:

    8.5 % SO 2 , 12.5 % O 2 , 79 % N 2Find the amount of air fed into the reactor?

    O 2 12.5 molN 79 mol

    Air

    Solid

    Sulfur

    T=25 C

    8.5 mol

    SO2

    8.5 mol(1)

    (2)2

    (3)

    T=?T=115 C

    Molten

    Sulfur

    ICT - SSB

    Solution (*)

  • 7/28/2019 Material Balance 2011

    81/98

    Basis: 100 mol of output, Ref. T= 25 0C

    S + O 2 SO 2

    Sulfur fed in the reactor = 8.5 molOxygen fed in reactor = 8.5 mol + 12.5 mol = 21 molAir fed in reactor = 21 mol + 79 mol = 100 mol

    Enthalpy of a stream = m i ( H 0 +

    T

    Tref Cp i dT + i )

    i = 0, if compound is in standard state H 0 = 0 for elements

  • 7/28/2019 Material Balance 2011

    82/98

    ICT - SSB

    Solution.. (*)

  • 7/28/2019 Material Balance 2011

    83/98

    Now, taking material balance of all the streamsE 1 + E 2 = E 3Rearranging,8.5(

    388 K

    298 .16 Cp S dT + Fusion S H 0fSO 2

    vap S )

    = T 298 .16 (8.5Cp SO 2 + 12 .5Cp O 2 + 79 Cp N 2 )dT ..(A)First Estimate: Take Cp i = 7cal / mol for all compounds, weget,2.56 10 6J = 100 7 4.18 [T 298 .16 ]

    T = 1173 K

    Now, Cp i = A + BT + CT 2 + DT 3

    T

    298 .16 (8 .5Cp SO 2 + 12 .5 Cp O 2 + 79 Cp N 2 )dT =T

    298 16( m i Cp i )dT

    ICT - SSB

    Problem: Catalytic Converter

  • 7/28/2019 Material Balance 2011

    84/98

    Feed stream at 400 0C contains: (% by volume)8.5 % SO 2 , 12.5 % O 2 , 79 % N 2Products are coming out of the reactor at 550 0C

    SO2 8.5%O2 12.5%N2 79%

    % by volumeSO2

    SO3

    400 C 550 C

    Catalytic

    Converter

    O2N2

    Find the Conversion ?

  • 7/28/2019 Material Balance 2011

    85/98

    ICT - SSB

    Solution..

  • 7/28/2019 Material Balance 2011

    86/98

    E 1 =8.5 ( H 0fSO 2 +

    673

    298 Cp SO 2 dT ) + 0.125 ( H 0fO 2 +

    673

    298 Cp O 2 dT

    + 0 .79 ( H 0fN 2 + 673298 Cp N 2 dT E 1 = 8 .5 ( H 0SO 2 +

    673298 (8 .5Cp SO 2 + 12 .5Cp O 2 + 79 Cp N 2 )dT

    Let, z=mole of SO 2converted to SO 3E 2 = z H 0fSO 3 + ( 8 .5 z ) H

    0fSO 2

    + 823298 zCp SO 3 + ( 8 .5 z )Cp SO 2 + ( 12 .5 z / 2)Cp O 2 + 79 Cp N 2 dT

    ICT - SSB

    Solution ..

  • 7/28/2019 Material Balance 2011

    87/98

    Now, E1-E2=0 z H 0fSO 3 + z H

    0fSO 2

    + 673

    823 (8.5Cp SO 2 + 12 .5Cp O 2 + 79 Cp N 2 )dT -(A)+ z

    823298 ( Cp SO 3 + Cp SO 2 + 0.5Cp O 2 )dT -(B)

    = 0Evaluating Integration (A)So,

    673823 (8 .5Cp SO 2 + 12 .5Cp O 2 + 79 Cp N 2 )dT = 1.1848 X 10 5 Cal -(A)

    ICT - SSB

    Solution..

  • 7/28/2019 Material Balance 2011

    88/98

    Evaluating Integration (B)z

    823298 ( Cp SO 3 + Cp SO 2 + 0.5Cp O 2 )dT = z 521 .34 Cal -(B)

    Putting the values of (A) and (B) in main equation:

    z ( H 0fSO 3 + H 0fSO 2 ) + 1 .1848 10 5 z 521 .34 = 0Putting, H 0fSO 3 = 94450 Cal / gmol

    and H 0fSO 2 = 70960 Cal / gmol

    z = 5.15 gmol SO 3 reacted

    Conversion = 100 5 .15 / 8.5 = 60 .58

    ICT - SSB

    Problem: Blast Furnace (2)Energy Balance (*)

  • 7/28/2019 Material Balance 2011

    89/98

    Air 0 kcal(3)Slag 23272 kcal

    (2) Water vapor 7752 kcal

    (1) Dry gas 22560 kcal

    (4) Pig iron 30000 kcal

    T=300 C

    173 C

    (13) Heat Losses = 94922 kcal

    T=25 C

    Flux 0 kcal

    Charcoal 0 + 773850 kcal

    Ore 0 kcal

    1360 C

    (2)+(5)

    (3)

    (1)

    ICT - SSB

    Solution: (*)

  • 7/28/2019 Material Balance 2011

    90/98

    H In = H Out + H Rea + Heat losses Input kcal

    1 Enthalpy of ore 02 Enthaply of charcoal 03 Enthalpy of ux 04 Enthalpy of hot blast 305325 Heating value of charcoal 7738506 Heat evolved in forming slag 6420

    Total 810802

    ICT - SSB

    Solution.. (*)

  • 7/28/2019 Material Balance 2011

    91/98

    Output kcal1 Enthalpy of dry blast furnace gas 225602 Enthalpy of water vapor in the gas 77523 Enthalpy of slag 232724 Enthalpy of pig iron 300005 Heat absorbed in decomposing iron oxides 1571386 Heat absorbed in decoposing Mn 3O 4 62777 Heat absorbed in decomposing SiO 2 111338 Heat absorbed in calcining carbonates 15859

    9 Heating value of blast furnace gas 40864710 Heating value of C in pig iron 2445411 Heat absorbed forming Fe 3C 130012 Heat absorbed by cooling water 748813 Heat losses (by difference) 94922

    ICT - SSB

    Dynamics

  • 7/28/2019 Material Balance 2011

    92/98

    Energy balancerate of heat

    ow into element of

    volume

    =

    rate of heat ow out of

    element of volume

    +

    rate of disappearance

    of heat by

    reaction within element of volume

    +

    rate of accumulation of heat within

    element of volume

    Complex Material Balances

    ICT - SSB

    ENERGY BALANCES

  • 7/28/2019 Material Balance 2011

    93/98

    * Thermophysics - specic heat variation* Thermochemistry

    Heat of Reaction at Different TemperatureHeat of Solution, Mixing* Adiabatic Temperature Calculations* Fuels* Solid-Coal, Liquid Petroleum Based, Gases-Natural, Coke

    Oven, Water Gas etc.* Adiabatic Flame Temperatures

    ICT - SSB

    Stagewise Operation

  • 7/28/2019 Material Balance 2011

    94/98

    Distillation, Extraction, LeachingUnsteady State Differential BalancesChemical Processes

    ICT - SSB

    Problem: Unsteady state (*)

  • 7/28/2019 Material Balance 2011

    95/98

    Toxic material having 30 ppm concentration enters 10 m 3 surgetank at the ow rate of 1 m 3 / hr Suddenly the input concentration increases to 100 ppm.The upper limit of output stream is 70 ppm.

    Find time for C to reach 70 ppm ?

    F0 = 1 m / hr3F0 = 1 m / hr

    3

    C=100 ppm

    Surge Tank

    V=10 m3

    t=0, C = 30 ppm

    C max=70 ppmStep Input

    t=0, C = 30 ppm

    ICT - SSB

    Solution.. (*)

  • 7/28/2019 Material Balance 2011

    96/98

    Basis: 1 m 3 / hr of input ow rateLet, C be the concentration of toxic materialTaking, material balance of toxic material (assuming Outlet owrate =Inlet ow rate):

    d (C V )dt

    = C 0 F 0 C F 0

    Integrating above equation, we get,

    C = 70

    C = 30dC C 0 C = 1

    t = t

    t = 0

    = V F 0 = 10 hr At time t = 0, C = 30 ppm and time t = t , C = 70 ppm,C 0 = 100 ppm; Solving for t. t = 8 .472hr

    ICT - SSB

  • 7/28/2019 Material Balance 2011

    97/98

    ICT, Mumbai THANK YOU

    ICT - SSB

    Course Suggestions

  • 7/28/2019 Material Balance 2011

    98/98

    Duration : 60 hrs spread over one semester as two sessions oftwo hours per week.Prerequisites: Mathematics, Physics and Chemistry upto 12th.Useful: Some exposure to chemical process equipments in use.

    Textbooks:1 Basic calculations in chemical engineering. Himmelblau2 Chemical Process Principles Vol I. Houghen, Watson,

    Ragatz

    3 Material and Energy Balances. Reklaitis4 Stoichiometry. Bhat, Vora5 Elementary principles of chemical processes. Felder,

    Rosseau