master thesis defence: density of oil-related systems at high pressures - experimental measurements...

60
Density of Oil-related Systems at High Pressures Experimental measurements of HPHT density Post Doc. Teresa Regueira Muñiz Vasos Vasou s131031 DEPARTMENT OF CHEMISTRY MASTER THESIS DEFENCE Senior researcher Wei Yan Supervisors:

Upload: vasilis-vasou

Post on 15-Apr-2017

462 views

Category:

Engineering


2 download

TRANSCRIPT

Page 1: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Density of Oil-related Systems at High Pressures

Experimental measurements of HPHT density

 Post  Doc.  Teresa  Regueira  Muñiz  

Vasos  Vasou  s131031  

DEPARTMENT  OF  CHEMISTRY  

MASTER  THESIS  DEFENCE  

Senior  researcher  Wei  Yan  

Supervisors:  

Page 2: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

PresentaHon  outline  

IntroducHon  – HPHT  reservoirs  –  Thesis  scope  –  Literature  review    

Density  –  IntroducHon  to  density  – Density  measurement  methods  

Page 3: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

PresentaHon  outline  HPHT  density  measurements  

– U-­‐tube  basic  principle  –  CalibraHon  procedure  –  Experimental  setup  –  Experimental  procedure    

Density  modeling    Results  and  discussion    Conclusion    

Page 4: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

HPHT  reservoirs  

(BakerHughes,  2005)   (Belani  &  Orr,  2008)    

Page 5: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Challenges  of  HPHT  reservoirs  

 (Shadravan  &  Amani,  2012)  

HPHT  well  summit,  London,  2012  

Page 6: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Thesis  scope  

Correct  idenHficaHon  of  the  physical  properHes  of  the  reservoir  hydrocarbons  

Be^er  understanding  of  the  behaviour  of  the  hydrocarbon  

reservoir  fluids    

More  precise  esHmaHon  of  the  amount  of  recourses  in  

place  Be^er  producHon  

forecasHng    Minimized  technical  

risks  

PosiHve  revenue    

Page 7: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Major  tasks  •  Literature   review   of   the   exisHng   relevant   data   on   density   of  

alkane  binary  mixtures  under  HPHT.  

•  CalibraHon  of   the   densimeter   for   pressures   up   to   1400   bar   and  temperatures  up  to  190  °C.  

•  ValidaHon  of  the  apparatus  through  the  use  of  n-­‐decane.  •  Measurement  of   the  density  of   the  binary   system  methane   -­‐   n-­‐

decane  for  three  different  composiHons  and  under  a  wide  range  of  pressure  and  temperature.    

•  A   comparison   of   two   cubic   EquaHons   of   State   (EoS)   (Soave–Redlich–Kwong   and   Peng–Robinson)   with   two   non-­‐cubic   EoS  (Perturbed   Chain   StaHsHcal   AssociaHng   Fluid   Theory   and  Benedict–Webb–Rubin).  

Page 8: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Literature  Audonnet  &  Padua  (2004):    •  Anton  Paar  DMA  60  densimeter    •  Binary  mixture  methane  –  n-­‐decane    •  xmethane  =  0,  0.227,  0.410,  0.601,  0.799  •  Temperatures  from  30  °C  to  120  °C  .  •  Pressures  from  200  bar  to  650  bar  (extrapolated  up  to  

1400  bar)  •  Standard  deviaHon  with  literature  equal  to  0.17%  and  

0.3%  

Page 9: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Literature  Canet  et  al.  (2002):    •  Binary  mixture  methane  –  n-­‐decane    •  xmethane  =  0.3124,  0.4867,  0.6,  0.7566,  0.9575  •  Temperatures  from  20  °C  to  100  °C.    •  Pressures  from  200  bar  to  650  bar  (extrapolated  up  to  

1400  bar    •  AAD  with  literature  equal  to  3.3%  and  7.3%  

Page 10: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Density  

Density  is  a  fundamental  parameter  that  contributes  to  the  characterizaHon  of  the  product  and  is  defined  as   the   exact   mass   of   a   solid,   gas   or   liquid   that   is  occupying   a   specific   volume.   The   most   common  symbol  for  density  is  the  Greek  le^er  ρ  and  it  can  be  mathemaHcally  defined  as:      

ρ  =  m/V    (kg/m3).      

where  m  is  the  mass  and  V  is  the  volume    

Page 11: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Density  Pressure  and  temperature  are  two  important  parameters  that  affect  density.  An  increase  on  pressure  will  cause  an  increase  on  density  whereas,  on  the  other  hand,  for  most  materials   the   temperature   affects   density   inversely  proporHonal.  

Temperature  

Density  

Pressure  

Density  

Page 12: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Density measurement methods

•  Pycnometric  densitometers  

•  Hydrometers  

•  Refractometer  and  index  of  refracHon  densitometers    

•  VibraHng  tube  densitometers  

Page 13: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Pycnometric  densitometers  

(Eren,  1999)  

•  Weighing of the mass of the empty pycnometer.

•  Determination of the volume with the use of distilled water

•  Weighing again to get the mass of the water.

•  Repeat with the liquid of the unknown density to determine its mass and its volume.

•  The density of the unknown liquid is calculated as:

Precision  Can  also  measure  specific  gravity  

User  depended  Slow  High  cost  (scale,  lab)  

Page 14: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Hydrometers Scale

F l u i d vessel

We i g h t bulb

Consists   of   a   floaHng   glass   body,  with  a  cylindrical  stem  with  a  scale  and  a  bulb  filled  with  metal  weight.  The   measurement   procedure   is  very   simple   since   it   only   involves  the   immersion   of   the   hydrometer  in   the   sample   and   the   reading   of  the  density  directly  from  the  scale.  The   deeper   the   hydrometer   sinks  the   less   dense   the   sample   is.   The  principle  used   for   determining   the  density   with   the   hydrometer   is  buoyancy.    

Low  cost  Simple  Fast  Traceable  to  internaHonal  standards  

User  depended  Need  temperature  correcHon  Require  large  sample  volume  (100  mL)  

(Eren,  1999)  

Page 15: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Refractometer and index of refraction densitometers

(Eren,  1999)  

Describes  how  much  of  the  light,  is  refracted  when  entering  a  sample  

where   c   is   the   speed   of   light   in  vacuum   and   u   is   the   velocity   of  light  in  a  medium  

Index  of  refracHon    

Consists  of  a  transparent  cell  that  the  liquid   or   gas   flows   through,   a   laser  beam  that  passes  through  the  cell  and  the   sample   and   is   refracted   with   an  angle  and  a  sensor.      The   angle   of   refracHon   depends   on  the   shape,   size   and   thickness   of   the  container   and   on   the   density   of   the  sample.    An   accurate   measurement   of   the  posiHon   of   the   beam   and   the  refracHon   angle   can   relate   to   the  sample’s  density.  

n  =  c/u  

Page 16: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Vibrating tube densitometers The vibrating tube densitometer is based on the principle that every fluid has a unique natural frequency.

where  K   is  the  elasHcity  constant  of  the  body,  m   is  the  mass  of  the   body   containing   the   fluid,   ρ   is   the   fluid   density,   V   is   the  volume  of  the  body  and  τ    is  the  oscillaHon  period.  

High  accuracy  and  repeatability  Very  fast  Li^le  sample  volume  required      

Possible  dynamic  influence  of  viscosity  on  the  results  for  viscous  samples  

Page 17: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Vibrating tube densitometers The single tube has pressure losses and some obstruction on the natural flow.

The two-tube densitometer is designed in a way that the two tubes are vibrating in an antiphase, which provides higher accuracy.

(Eren,  1999)  

Page 18: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

U-tube basic principle A  hollow  U-­‐shaped   tube   is   filled  with   the   sample   fluid   and   is  subjected   to   an   electromagneHc   force   and   is   excited   into  periodic   oscillaHon.   The   frequency   as   a   funcHon   of   Hme   is  recorded  and  a   sin-­‐wave  of  a   certain  period  and  amplitude   is  created.  

 (Paar,  2015)  

Page 19: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

U-tube basic principle

 (Paar,  2015)  

AlternaHng  voltage   is  sent  through  the  electric  coil  on  the  tube,   which   creates   an   alternaHng   magneHc   field.   The  magnet  on   the   tube   reacts   to   the  alternaHng   current  and  as  a  result  an  excitaHon  is  generated.  The  frequency  of  the  magnet’s   oscillaHon   that   is   caused   is   measured   with   an  amplifier.  

Page 20: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

U-tube basic principle

 (Paar,  2015)  

Page 21: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

U-tube basic principle Hans Stabinger studied the relation between the period of oscillation and the density and found a way to implement it mechanically. To achieve this, Stabinger introduced two, unique   for   each   instrument,   adjustment constants namely A and B described as:

ρ  =  A  .  τ2  -­‐  B  

Page 22: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

U-tube basic principle

 (Paar,  2015)  

Because the density of the water and the air are known the adjustment constants A and B can be calculated as they define a straight line in the graph. The instrument measures the period of oscillation of the sample and then applies that value to the adjustment line and converts it to the corresponding density.

Page 23: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

CalibraHon  procedure  Pressure:  0.1  MPa    -­‐  140  MPa    Temperature:  5  °C  -­‐  75  °C  

Pressure:  0.1  Mpa      Temperature:  5  °C  -­‐  190°C  

Page 24: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

CalibraHon  procedure  Pressure:  0.1  Mpa  –  140  MPa  Temperature:  100  °C  -­‐  150°C  

Pressure:  1  Mpa  –  140  MPa  Temperature:  190°C  &  

Pressure:  0.1  Mpa      Temperature:  190°C  

Page 25: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Experimental setup Anton Paar External Measuring Cell DMA-HPM

(DTU  laboratory)  

 (Paar,  2015)  

Measuring range Density 0 to 3 g/cm3 Pressure 0 to 1400 bar Temperature -10 to +200 °C

Accuracy  Density Up to 0.001 g/cm3 Error 0.001 to 0.0001 g/cm3

Page 26: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

PolyScience advanced programmable temperature controller with Swivel 180™ Rotating Controller

(DTU  laboratory)  

Maximum Temperature 200°C Minimum Temperature -20°C Temperature Stability ±0.01°C

Page 27: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Anton  Paar  mPDS  5  

(DTU  laboratory)  

Page 28: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

SIKA digital pressure gauge Type P

(DTU  laboratory)  

Maximum Pressure 1500 bar Temperature  effect ±0.002%.  

(SIKA,  2015)  

Page 29: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Edwards E2M1.5 two-stage oil sealed rotary vane pump and Edwards Active Digital Controller (ADC)

(DTU  laboratory)  

Page 30: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Teledyne Isco 260D syringe pump

(DTU  laboratory)  

Page 31: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Overall experimental setup

(DTU  laboratory)  

Page 32: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Apparatus cleaning procedure Cleaning  of  the  densitometer  and  the  fluid  piston  cylinder:  

•  Remove   the   already   inserted   sample   with   moving   the   fluid  piston  cylinder  back  and  forth  several  Hmes.  

•  Rinse  with   toluene   (strong   organic   solvent,   ideal   for   cleaning  petroleum  mixtures).  

•  Rinse  with  ethanol  (can  remove  toluene  and  is  volaHle  and  can  evaporate  without  residue).  

•  Dry   out  with   pressurized   air   and   evacuate   the   system   for   an  hour   in   75   °C   and   then   lep   under   vacuum   over   night   at  ambient  temperature.    

Cleaning  of  the  mixture  cylinder  and  peripheral  lab  equipment:  •  All   the  parts  of   the   cylinder  and  peripheral  equipment  were  rinsed  with  the  cleaning  fluids  and  dried  out  with  pressurized  air.  The  cylinder  was  then,  evacuated.  

Page 33: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Mixture preparation

ρdec  =  726.55  kg/m3  at  Tambient  =  24.97  °C  (Lemmon  &  Span,  2006)    

(DTU  laboratory)  

•  n-­‐decane  was   transferred  with   the  use   of   a   50   mL   bure^e   with  readability  ±  0.01  mL.  

•  Methane  was  transferred  from  the  gas  pressurized-­‐bo^le   into   the   gas  cylinder.  

•  The   gas   cylinder   was   placed   on   a  balance   (readability   0.001g)   and  the   methane   mass   transferred   in  the  mixture  cylinder  was  read  from  the  balance.    

Page 34: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Performing a measurement

Page 35: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Performing a measurement •  Temperature  set  on  the  PolyScience  advanced  programmable  temperature  controller.  

•  The  first  pressure  step  was  manually  reached.  •  The  values   for   the  data   transfer   and   the   slope   stability  were  added  by  the  user.  

•  IniHate   the   measurement   from   the   Microsop   Excel®  spreadsheet  provided  by  Anton  Paar.  

•  Aper   the  recording  process  ended,   the  user  could  access   the  recorded   values   from   the   data   spreadsheet   of   the  Microsop  Excel®  tool.  

•  Finally,   the  pressure  was   increased  and  aper  all   the  pressure  steps  were  measured   the   same   procedure  was   repeated   for  the  remaining  temperatures.  

Page 36: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Anton  Paar  mPDS  5  

(DTU  laboratory)  

Page 37: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Density  modelling  Cubic  EoS   Non-­‐Cubic  EoS  

Soave–Redlich–Kwong  (SRK)     Perturbed  Chain  StaHsHcal  AssociaHng  Fluid  Theory  (PC-­‐SAFT)    

Peng–Robinson  (PR)     Soave  modified  Benedict–Webb–Rubin  (SBWR)    

InteracHon  parameters  for  the  methane  –  n-­‐decane  binary  mixture    

CriHcal  parameters  of  methane  and  n-­‐decane  

Page 38: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Results  and  discussion  Densimeter  calibraHon  and  validaHon  results  

•  The   oscillaHon   period   of   the   tube  when   filled  with  water  was  measured.    

•  The  oscillaHon  period  of  the  evacuated  tube  was  measured.    •  The   density   of   water   was   taken   from   NIST   that   uses   the   EoS  

from  Wagner  and  Pruss  (2002)    •  The  density  of  n-­‐dodecane  was   taken   from  NIST   that  uses   the  

EoS  from  Lemmon  &  Huber  (2004).    •  The   oscillaHon   period   of   n-­‐dodecane   was   measured   in   a  

previous  work  (Chasomeris  et  al.,  2015).  

Page 39: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Densimeter  calibraHon  and  validaHon  results  

2580  

2590  

2600  

2610  

2620  

2630  

2640  

2650  

2660  

0   20   40   60   80   100   120   140   160   180   200  

Perio

d  (μs)  

Temperature  (°C)  

2655  

2665  

2675  

2685  

2695  

2705  

2715  

2725  

2735  

0   200   400   600   800   1000   1200   1400   1600  

Perio

d  (μs)  

Pressure  (bar)  

5  °C     25  °C     50  °C     75  °C     100  °C     150  °C     190  °C    

Period  of  the  evacuated  densimeter  for  temperatures  from  5°C  to  190°C    

Water  measured  period  for  temperatures  from  5°C  to  190°C  and  pressures  from  1  bar  to  1400  bar    

Page 40: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Densimeter  calibraHon  and  validaHon  results  

2,26  2,28  2,30  2,32  2,34  2,36  2,38  2,40  2,42  2,44  

0   50   100   150   200  

 A  (T

)  (10^9kg  s-­‐

1  m-­‐3)  

Temperature  (°C)    

1,41  

1,42  

1,43  

1,44  

1,45  

1,46  

1,47  

1,48  

1,49  

1,5  

0   200   400   600   800   1000   1200   1400  

A(T)/B(T,p)(1

05s-­‐2)  

Pressure  (bar)  

5°C  

25°C  

50°C  

75°C  

100°C  

150°C  

190°C  

(Segovia  et  al.  2009)  

CharacterisHc  parameter  A(T)  and  the  raHo  between  parameter  A(T)  and  parameter  B(T,p)    for  temperatures  from  5°C  to  190°C    

Page 41: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Densimeter  calibraHon  and  validaHon  results  

-­‐0,25  

-­‐0,2  

-­‐0,15  

-­‐0,1  

-­‐0,05  

0  

0,05  

0,1  

0,15  

0,2  

0   50   100   150   200  

RelaTv

e  de

viaT

on  (%

)  

Temperature  (°C)  

Lemmon  &  Span  (2006)  

AAD  =  0.08%.    

-­‐0,25  

-­‐0,2  

-­‐0,15  

-­‐0,1  

-­‐0,05  

0  

0,05  

0,1  

0,15  

0,2  

0   200   400   600   800   1000   1200   1400   1600  Re

laTv

e  de

viaT

on  (%

)  

Pressure  (bar)  

Lemmon  &  Span  (2006)  

RelaHve  deviaHons  between  the  experimental  density  values  of  n-­‐decane  and  the  data  from  Lemmon  &  Span  (2006)  as  a  funcHon  of  temperature  and  pressure.    

Page 42: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Mixture methane – n-decane (xmethane = 0.227)

A   correlaHon   with  the   use   of   the   Tait  equaHon  (Dymond  &  Malhotra,  1988)  was  performed.  

Parameters  obtained  in  the  Tait  equaHon  with  the  results  from  Audonnet  &  Pádua  (2004)  (xmethane  =  0.227)  and  our  experimental  results  (xmethane  =  0.227)    

Page 43: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Mixture methane – n-decane (xmethane = 0.227)

Surface  ρ(T,p)  for  our  experimental  results  (xmethane  =  0.227)    and  the  results  from  Audonnet  &  Pádua  (2004)  (xmethane  =  0.227  )for  the  mixture  methane  –  n-­‐decane  

Page 44: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Mixture methane – n-decane (xmethane = 0.227)

RelaHve   deviaHons   between   the   experimental   density   values   of   the   mixture   methane   –   n-­‐decane  (xmethane   =   0.227)   and   the   data   from   Audonnet   &   Paduá   (2004)   (xmethane   =   0.227)   as   a   funcHon   of  temperature  and  pressure  

-­‐0,2  

-­‐0,1  

0,0  

0,1  

0,2  

0,3  

0,4  

0   20   40   60   80   100   120  

RelaTv

e  de

viaT

on  (%

)  

Temperature  (°C)  

-­‐0,2  

-­‐0,1  

0,0  

0,1  

0,2  

0,3  

0,4  

0   100   200   300   400   500   600   700  

RelaTv

e  de

viaT

on  (%

)  Pressure  (bar)  

AAD  of  0.17%.    

Page 45: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Mixture methane – n-decane (xmethane = 0.6017)

Parameters  obtained  in  the  Tait  equaHon  with  the  results  from  Audonnet  &  Pádua  (2004)  (xmethane  =  0.601),  our  experimental  results  (xmethane  =  0.6017)  and  those  from  Canet  et  al.  (2002)  (xmethane  =  0.6)  

Page 46: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Mixture methane – n-decane (xmethane = 0.6017)

Surface  ρ(T,p)  for  our  experimental  results  (xmethane  =  0.6017)    and  the  results  from  Audonnet  &  Pádua  (2004)  (xmethane  =  0.601)  for  the  mixture  methane  –  n-­‐decane  

Page 47: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Mixture methane – n-decane (xmethane = 0.6017)

RelaHve   deviaHons   between   the   experimental   density   values   of   the   mixture   methane   –   n-­‐decane  (xmethane  =  0.6017),   the  data  from  Audonnet  &  Paduá  (2004)   (xmethane  =  0.601)  and  Canet  et  al.   (2002)  (xmethane  =  0.6)  as  a  funcHon  of  temperature  and  pressure  

-­‐0,4  

-­‐0,2  

0,0  

0,2  

0,4  

0,6  

0,8  

1,0  

0   20   40   60   80   100  

RelaTv

e  de

viaT

on  (%

)  

Temperature  (°C)  

Audonnet  &  Padua  (2004)   Canet  et  al.  (2002)  

-­‐0,4  

-­‐0,2  

0,0  

0,2  

0,4  

0,6  

0,8  

1,0  

0   200   400   600   800   1000   1200   1400  

RelaTv

e  de

viaT

on  (%

)  

Pressure  (bar)  

Audonnet  &  Padua  (2004)   Canet  et  al.  (2002)  

AAD  =  0.30%     AAD  =  0.19%    

Page 48: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Mixture methane – n-decane (xmethane = 0.8496)

Parameters  obtained   in   the  Tait   equaHon  with   the   results   from  Audonnet  &  Pádua  (2004)  (xmethane  =  0.799)  and  our  experimental  results  (xmethane  =  0.8496)    

Page 49: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Mixture methane – n-decane (xmethane = 0.8496)

Surface  ρ(T,p)  for  our  experimental  results  (xmethane  =  0.8496)    and  the  results  from  Audonnet  &  Pádua  (2004)  (xmethane  =  0.799)  for  the  mixture  methane  –  n-­‐decane  

Page 50: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Mixture methane – n-decane (xmethane = 0.8496)

RelaHve   deviaHons   between   the   experimental   density   values   of   the   mixture   methane   -­‐   n-­‐decane  (xmethane   =   0.8496)   and   the   data   from   Audonnet   &   Paduá   (2004)   (xmethane   =   0.799)   as   a   funcHon   of  temperature  and  pressure  

AAD  =  11.11%    

-­‐14  

-­‐12  

-­‐10  

-­‐8  

-­‐6  

-­‐4  

-­‐2  

0  0   20   40   60   80   100   120  

RelaTv

e  de

viaT

on  (%

)  

Temperature  (°C)  

Audonnet  &  Padua  (2004)  

-­‐14  

-­‐12  

-­‐10  

-­‐8  

-­‐6  

-­‐4  

-­‐2  

0  0   100   200   300   400   500   600   700  

RelaTv

e  de

viaT

on  (%

)  

Pressure  (bar)  

Audonnet  &  Padua  (2004)  

Page 51: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Density  as  a  funcHon  of  pressure  for  all  composiHons  at  5  °C  and  190  °C    

300  

400  

500  

600  

700  

800  

300   500   700   900   1100   1300  

Density

 (kg/m

3 )  

Pressure  (bar)  

n-­‐decane  at  5  °C   Xmethane=0.227  at  5  °C   Xmethane=0.6017  at  5  °C   Xmethane=0.8496  at  5  °C  

n-­‐decane  at  190  °C   Xmethane=0.227  at  190  °C   Xmethane=0.6017  at  190  °C   Xmethane=0.8496  at  190  °C  

Page 52: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Density modeling

0  

5  

10  

15  

20  

25  

SRK   PR   PC  SAFT   SBWR  

Xmethane  =  0.227   Xmethane  =  0.6017   Xmethane  =  0.8496   Decane  

Page 53: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Conclusion  •  The   validaHon   of   the   apparatus   through   n-­‐decane   was  successful.   The   results   were   compared   with   the   data   from  NIST  and  they  were  in  good  agreement  with  an  AAD  of  0.08%.    

•  For   the   mixture   with   a   composiHon   of   methane   xmethane   =  0.227   and   aper   a   correlaHon   with   the   Tait   equiHon   the  experimental   data  were   compared  with   the   results   obtained  from  Audonnet  &  Pádua  with  an  AAD  of  0.17%.    

•  The   mixture   under   study   with   a   composiHon   of   methane  xmethane  =  0.6017  were  again  correlated  with  the  Tait  equaHon  and  compared  with  the  results   from  Audonnet  &  Pádua  with  an  AAD  of  0.30%  and  with  those  from  Canet  et  al.  (2002)  with  an  AAD  of  0.19%.  

Page 54: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Conclusion  •  The  mixture  with  a  mole  fracHon  of  methane  xmethane  =  0.8496  was   compared   with   the   results   obtained   from   Audonnet   &  Pádua   (2004)   for   their   mixture   with   methane   mole   fracHon  xmethane   =   0.799.   The   experimental   results   have   an   AAD   of  11.11%.   A   high   negaHve   deviaHon   like   this   was   expected  because   of   the   different   methane   mole   fracHon   in   the   two  mixtures.    

•  In   general,   the   method   used   under   this   work   can   be  considered  successful  since  the  results  for  the  pure  n-­‐decane  and   the   binary   mixture   are   in   good   agreement   with   those  from  the  literature.  

Page 55: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Conclusion  •  PC  SAFT  was  the  one  that  performed  be^er  with  AADs  lower  than   1.2%.   The   SRK,   on   the   other   hand,   showed   very   high  deviaHons  between  10%  and  20%.    

•  For   the   pure   n-­‐decane   and   the  mixture   with  methane  mole  fracHon   xmethane   =   0.227   the   non-­‐cubic   equaHons   performed  much  be^er  with  lower  deviaHons.    

 •  The   fact   that   on   the   one   hand   the   non-­‐cubic   EoS   showed  

be\er  results  but  on  the  other  hand  the  cubic  PR  performed  be\er  than  the  non-­‐cubic  SBWR  for  some  of  the  mixtures,  is  an  indicator  that  further  study  is  necessary.    

Page 56: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Density modeling

0  

5  

10  

15  

20  

25  

SRK   PR   PC  SAFT   SBWR  

Xmethane  =  0.227   Xmethane  =  0.6017   Xmethane  =  0.8496   Decane  

Page 57: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Thank  you  for  your  Hme!  

Page 58: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density
Page 59: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Viscosity    (Paar,  2015)  FricHon  between  the  fluid  and  the  tube  

The  oscillaHon  period  of  the  tube  is  influenced  by  viscosity.  High  viscous  sample  will  give  a  density  over-­‐reading.  

Page 60: Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Viscosity  

 (Paar,  2015)  

Highest   viscosity  m e a s u r em e n t  from   Canet   et   al.  η   =   1.7   mPa.s   for  xmethane=0.3   and  T = 2 0   ° C   a n d  P=140  MPa