martin j. cann

36
Martin J. Cann Signal transduction mediated by inorganic ions.

Upload: iorwen

Post on 30-Jan-2016

30 views

Category:

Documents


0 download

DESCRIPTION

Signal transduction mediated by inorganic ions. Martin J. Cann. The importance of the major biologically active inorganic ions. pH homeostasis Volume homeostasis Solute transport Action potentials Gas transport Fluid secretion. The major biologically active inorganic ions - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Martin J. Cann

Martin J. Cann

Signal transduction mediated by

inorganic ions.

Page 2: Martin J. Cann

The importance of the major biologically activeinorganic ions.

pH homeostasisVolume homeostasisSolute transportAction potentialsGas transportFluid secretion

Page 3: Martin J. Cann

The major biologically active inorganic ions

Although the physiology of the predominant inorganicions is well understood, sensor mechanisms remainelusive.

CationsNa+ ?K+ ?

AnionsCl- guanylyl cyclase-AHCO3

- sAC, Spirulina CyaC

Page 4: Martin J. Cann
Page 5: Martin J. Cann

Anabaena strain PCC7120

Why Anabaena strain PCC7120?• Clear role for inorganic ions in organismal biology• Genome is sequenced• Wild type and mutant strains are available

What do we hope to learn?1) What are the phenotypic consequences of the loss of inorganic

ion responsive genes?2) What insights can recombinant protein provide us regarding

the mechanism of enzyme activation by inorganic ions?

Page 6: Martin J. Cann

HCO3- responsive adenylyl cyclases

in prokaryotes and eukaryotes.

Page 7: Martin J. Cann

Biological functions for HCO3

Gas exchangepH homeostasisSperm maturationNucleotide synthesisCarbon fixation

Page 8: Martin J. Cann

Class I - Enterobacteriacae

Class II - Toxin producing eubacteria

Class III - ‘Universal’ Class, mammals and some prokaryotes

Class IV - Aeromonas hydrophila

Class V - Prevotella ruminicola

Class VI - Genomes of Rhizobiaceae

HCO3- responsive

e.g. mammalian sAC,Spirulina CyaC

HCO3- non-responsive

e.g. mammalian tmAC

Page 9: Martin J. Cann

GAF-A GAF-B ACPASN C

G595K465I394L385L237T207Q50 K859

CyaB1595-859

CyaB1

Page 10: Martin J. Cann

100

150

200

250

300

350

400

Ba

sa

l

Na

Cl

KC

l

Na

HC

O3

KH

CO

3

0

Sp

ec

ific

Ac

tiv

ity

[nm

ol

cA

MP

/mg

/min

]

GAF-A GAF-B ACPASN C

CyaB1595-859

Page 11: Martin J. Cann

0 0.1 1.0 10.0 100.0

0

100

200

300

400

Salt [log mM]

Sp

ec

ific

Ac

tiv

ity

[nm

ol

cA

MP

/mg

/min

]

GAF-A GAF-B ACPASN C

CyaB1595-859

NaHCO3

NaCl

Page 12: Martin J. Cann

1.11.1Hill coefficient

97.73.7

91.64.9Ea (kJ/mol)

3.5 x 103

3.7 x 103

7.02.6kcat (min-1)

238.036.3

93.58.2

Vmax

(nmol/mg/min)

33.32.8

11.80.8

KM (ATP) (M)

HCO3-Cl-

kcat/KM

(M-1 sec-1)

Page 13: Martin J. Cann

0 2 4 6 8 100

100

200

300

Ac

cu

mu

late

d c

AM

P[p

mo

l/a

ss

ay

]

Time [mins]

GAF-A GAF-B ACPASN C

+

+

CyaB11-859

KHCO3

KCl

Page 14: Martin J. Cann

Anabaena CyaB1 638 FNYEGTLDKFIGDALM (59) GSHKRMDYTVIGDGVN---LSSRLETV 736Rattus sAC C1 87 LIFGGDILKFAGDALL (55) GDETRNYFLVIGQAVDDVRLAQNMAQM 184Rattus sAC C2 336 FMFD------KGCSFL (51) GHTVRHEYTVIGQKVN---IAARMMMY 420Spirulina CyaC 1049 FENQGTVDKFVGDAIM (66) GSQERSDFTAIGPSVN---IAARLQEA 1154Stigmatella CyaB8 203 LTCGGTLDKFLGDGLM (66) GGSMRTEYTCIGDAVN---VAARLCAL 308Mycobacterium Rv1319 399 DRHHGLINKFAGDAAL (50) GAKQRFEYTVVGKPVN---QAARLCEL 488Mycobacterium Rv1264 253 TAPPVWFIKTIGDAVM (40) -----RAGDWFGSPVN---VASRVTGV 327Bos AC1 C1 345 HCR---RIKILGDCYY (54) GLR-KWQYDVWSNDVT---LANVMEAA 434Bos AC1 C2 915 FYKDLEKIKTIGSTYM (62) GAR-RPQYDIWGNTVN---VASRMDST 1015Rattus AC3 C1 359 HQL---RIKILGDCYY (54) GQK-RWQYDVWSTDVT---VANKMEAG 448Rattus AC3 C2 967 KFRVITKIKTIGSTYM (72) GAR-KPHYDIWGNTVN---VASRMEST 1077Mus AC9 C1 434 KCE---KISTLGDCYY (54) GMR-RFKFDVWSNDVN---LANLMEQL 519Mus AC9 C2 1096 DYNSIEKIKTIGATYM (62) GTT-KLLYDIWGDTVN---IASRMDTT 1196Rattus GCA 912 DVY---KVETIGDAYM (57) GLK-MPRYCLFGDTVN---TASRMESN 1004

Page 15: Martin J. Cann

50

100

150

200

250

1 10 1000

Salt [log mM]

Sp

ec

ific

Ac

tiv

ity

[nm

ol

cA

MP

/mg

/min

]

01 10 100

0

2.5

5.0

7.5

10.0

Salt [log mM]

Sp

ec

ific

Ac

tiv

ity

[nm

ol

cA

MP

/mg

/min

]

0

GAF-A GAF-B ACPASN C

CyaB1595-859

CyaB1595-859 CyaB1595-859 K646A

Page 16: Martin J. Cann

V722

NH2

N

N

O

1

O

O

NH3+K646

HO C

Anabaena CyaB1

I1019

NH2

N

N

O

1

O

O

NH3+

D1018

K938

VC1·IIC2

C

6

6

N

N

N

N

Page 17: Martin J. Cann

1 10 1000

5

10

15

20

Salt [log mM]

Sp

ec

ific

Ac

tiv

ity

[nm

ol

cA

MP

/mg

/min

]

0 0

Salt [log mM]

Sp

ec

ific

Ac

tiv

ity

[nm

ol

cA

MP

/mg

/min

]

1 10 1000

2.5

5.0

7.5

10.0

12.5

15.0

Mycobacterium tuberculosisRV1319c Thr

Mycobacterium tuberculosisRV1264 Asp

Page 18: Martin J. Cann

Mechanism of HCO3- activation of AC

• HCO3- increases rate of substrate turnover.

• HCO3

- is hypothesized to be co-ordinated in the active site by an essential lysine residue.

• HCO3- is hypothesized to mimic a carboxy group.

• A Thr/Asp polymorphism can be used as a predictor of HCO3

- responsiveness.

• HCO3- responsive ACs can be detected in the

genomes of many prokaryotes and several eukaryotes.

Page 19: Martin J. Cann

GAF domain mediatedNa sensing.

Page 20: Martin J. Cann

Biological functions for Na

pH homeostasisMaintenance of blood pressureAction potentialsSolute transportVolume homeostasis

Page 21: Martin J. Cann

0 2 4 6 8 100

100

200

300

Ac

cu

mu

late

d c

AM

P[p

mo

l/a

ss

ay

]

Time [mins]

GAF-A GAF-B ACPASN C

+

+

CyaB11-859

KHCO3

KCl

Page 22: Martin J. Cann

0

50

100

150

200

250

300p

mo

l c

AM

P/a

ss

ay

Rb CsLi KNaNone

GAF-A GAF-B ACPASN C

CyaB11-859

Page 23: Martin J. Cann

0 1 10 1000

100

200

300

Salt [mM]

pm

ol c

AM

P/a

ssay

GAF-A GAF-B ACPASN C

CyaB11-859

Page 24: Martin J. Cann

0 1 2 3 4 5 6 7 8 9 10

0

1

250 mM NaCl

0 mM NaCl

Time [mins]

nm

ol c

AM

P/a

ssay

GAF-A GAF-B ACPASN C

+

+

CyaB11-859

Page 25: Martin J. Cann

0

0

250

500

750

10000 mM NaCl

50 mM NaCl

-7 -6 -5cAMP log [M]

pm

ol

cA

MP

/as

sa

y

GAF-A GAF-B ACPASN C

+

+

CyaB11-859

Page 26: Martin J. Cann

0

50

100

150

200

250

1 2 3 4 5 6

pm

ol

cAM

P/a

ssay

+Na +Na +Na

CyaB1 1-859 CyaB1 1-859 D190A GAF-A

CyaB1 1-859 D360A GAF-B

GAF-A GAF-B ACPASN C

+

+

CyaB11-859

Page 27: Martin J. Cann

Anabaena sp. PCC7120

WT cyaB1

BG11

BG11/ 40 mM NaCl

Page 28: Martin J. Cann

3.01.00.80.60.40.2

Wild type

cyaB1

NaCl [mM]

Page 29: Martin J. Cann

0

0.01

0.02

0.03

0.04

Gro

wth

Ra

te[

/hr-1

]

Anabaena sp. PCC7120WT

Anabaena sp. PCC7120cyaB1

0 4 40

NaCl [mM]

Page 30: Martin J. Cann

0.20.2 4.04.0

NaCl [mM]

pH

7.0

8.5

9.0

7.5

8.0

WT cyaB1

Page 31: Martin J. Cann

-50000

-40000

-30000

-20000

-10000

0

0 100 200 300 400 500 600

Time [secs]

WT

cyaB1

F

luo

resc

enc

e In

ten

sity

[A

rbit

rary

Un

its] cells

Na

Page 32: Martin J. Cann

H2O + CO2 HCO3- + H+

H+

CA

Sym

HCO3- Na+

out

in

A

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

0 100 200 300time [secs]

WTcyaB1

H

+ [

pm

ol/g

ch

loro

ph

yll

]

Light off

Light on

A

B

Ant

H+

Na+

out

in

B

Page 33: Martin J. Cann

4 mM Na+

CyaB1

out

in

CyaB1

cAMP

0.2 mM Na+

out

in

Na/HAnt

Na+

H+

Page 34: Martin J. Cann

GAF domain mediated Na sensing

• CyaB1 is the first identified Na sensor.

• GAF domains are found throughout the animal, plant,

and microbial kingdoms.

• GAF domains may mediate at least some aspects of

Na detection in diverse organisms.

Page 35: Martin J. Cann

The major biologically active inorganic ions

CationsNa+ GAF domain of Anabaena CyaB1K+ ?

AnionsCl- guanylyl cyclase-AHCO3

- A defined subset of Class III adenylylcyclases

Page 36: Martin J. Cann

University of TübingenJoachim SchultzTobias KanacherJurgen Linder

University of DurhamMartin CannArne HammerJie Zhou

University of TokyoMasayuki Ohmori