marinov vector

Upload: chadj1060

Post on 30-May-2018

247 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Marinov Vector

    1/34

    MAR JNY VECTOR ANO SCALAR MAGNTIC INTENSITIES GENERATED8Y AN INFIN ITELY LONGSI6E R]AN COL IUHAGN(T

    St efan"'" n novinstil ..t .. ror r u n d ~ n e n t a l I'hysics

    C 1 l f c ' d ~ a 16A-8010 Graz, AlJS t r iil! gi ve the exact. mathematical cal culation Of the M.lrl nov t o r and scalar1l'd91'letfc inten s i t ies generated by an in f ini tely long SHlC Il.IAN COLlU ma 9'H!tand then I t ! n l thei r graph s 1n dependence th e angle ..hl ch the radiusvector t o the test curren t cl ement IIIIxe s wilh the s pl11ting plane of the magnet. By dtU d.i4hll/ .6.ur.pie expr: rill'Cnts the re al ity of the IotIr i nov vecto r andscala r lIOI9'lc t i c i ntens i t ies is dellOnHrated. The " " ' ~ . t el('.flM/vly (09.(.(: leadsto th e (onc1 us ion tha t in

  • 8/9/2019 Marinov Vector

    2/34

  • 8/9/2019 Marinov Vector

    3/34

    - ) -and I,ts radius t o r has the follow1 ng c o ~ o n l ' n t

    r ' - ( x'. 0 , l ' ) . ( 7)The tes t eleaen t l I e ~ in the ~ I J 1 a n . e and i t s ra dius h . He following

    c ~ n t s P t ( p c o s ~ os ;n.. . 0). (8)Thus the veetor distance fl"Ol1l dr ' t o clr wi l l h ~ v e th e fol1crwing COlTllcnen ts

    r = II - r ' (oeosI) - x '. pS in. - z ' ) . (9)Th e dir@ctioo i n wh ich til" poi nt s \il l l be

    .r/ dl" '" ( - s i C()!;... 0). ( 10)The vec to r produc t in (5) has only do ~ n e n di fferen t from zero (see (6) and

    ( 10 ) ) (dz'dx'i)(d r /dr).,[ . c o ; ~ d x ' d zThe sca la r prodvct ;n (5) will be

    ... dr / d r . x' Si nt .fro . (9) we sllall have fo r the IIWIIqn i tudc of r

    r . ( .11 ,2 _ Z.K' PCos4> p2 + l..2)1/2 ,

    ( l I l

    (12)

    ( 13)utting (111. (12) and (13) into (5). we can present th e Z- COlllponent o f Bm ar dS adouble integral l I ~ r - i S ntl>COHJ ' dx' .Ll' / ( )(,2. 2x' pcos + l- + z ,2 )3/2. ( 14 )

    I f lntroduc' nq Ule notation a x,2 ' p c o ~ < ! J t p2 ti le Integ ra l on z ' can Det aken as fa 11 ows.

    Ca ns t ,and the verification can be carried nut by d i f f { ! r e n t i ~ t i n g the e l(l l"ession onthe r; ght.Thus the so ' ut ion of th e integral on z ' .. i l l be

    The r'el!l/lin i ng wi l l have th e fornR(o;"r) z Sin

  • 8/9/2019 Marinov Vector

    4/34

    .t o the left p ~ r t of the equat ion ~ n d by di ' ferenti ating the express ion on t he r i ~ t .

    The i ntegrll on the ri ght in eq l,/dt ion (18) un easily be taken by adding and 5o.bt ra t t l ng the tel"lll bl 1n the (lerlO lllinator . obl .in in9 thus

    J 1 ar,td ll x t b ( 19 )i Zb x.,. C (C_b2 )1 /2 (e _ b2 ) 1/2So the f i nal solutio" of the i lltegr t ') . (25 )From (23) we shBlI l'Iave fo r t he RIIC11itudf o f r

    r (R2 2(lRcos(1>' . ~ ) + l t l,2)1/2 . (26 )Putting (24) , (25) and (26) int I) (5), we can pre sent t he zco""POnent cf S" 4S a

    dolb le in tegral (fo r co nven ience the arglOllnt of si n" was chanqed from 41_ 41' t o ., ' ., )( B ~ r - (R"/2)jdo;o' jS i n"( + ' - Ifo) dz' /( R2 - 2"RCDS( "" -

  • 8/9/2019 Marinov Vector

    5/34

  • 8/9/2019 Marinov Vector

    6/34

    s

    -.B. Railh l test current ~ n t

    a. Ac t ion o r the current ; , the c y l i l c ~ l s urfa cetani )) I !!. 51 11, ,

    b. Act ion of l he current h the spl i t t i ng plane

    MAR JNOV SCA LAR MAGNETI C INT ENSITYA. Tangentia l tC$t cu rrent ele!Tl)nt

    a. Action o f thl! c urren t ir the cylindri cal s urfa ce

    "n 2,b . Ac t ion of tile cu rren t in tile s pl i t t ing phllle

    ( 35 )

    arctanR I PCOS41)pl Sll'lf1( " )

    (37)

    S si n2",{.!. l n ~ - ZpRcost I l COS4> (.srctan R t (lCos. IftI!If" 2 11.2 +- ZIlRcos . I p2 pls ;n", ' R - ncos.ucun ': 1I ( lS)plsl n . ' I,

    Fo r a quic\; ~ 4 1 u B t of the se i nten si t ie s to scc wh ich arc null and wh ic h are"the signs of the component s ( r e s L l e c t i 1 y . of the values) of the non- u rn i n t f ' n ~ it i es , by making calculation "on the fin ge rs", very profitable 1s f1g. 2.

    4. THE MAR IN OY VECTOR AND SCALAR M A ~ N [ T T INTENSITIES GEMERATeD BY ANIMFIMI TElY LOMGSIBERI AN COl lU MAGNETIhese in ten si t ies can be ulcuhled fl"'OlII t he intensit ies generated by th e ha l f

    cyli ndri ca l nlillI'let accord i ng to t he rormulaIntenS(

  • 8/9/2019 Marinov Vector

    7/34

    7(40)

    If looking the positive end of the z-axi s we 5ee the north po le of the cyl i ndrical .a goet, t ile normalized z-componen t of the Marinov vecto r rm.gneti c intensity'11111 be:

    A. Ta ngential test current e lement(B" ) _ TIR2;p2

    B. R ~ d i test CJ rrent e l ement(41)

    (42 )Let me note that when calculati ng the SJm of two a r c t a n g ~ n t s . ore ha s to pay ",lten

    tion wheth..r t he produc t of th@lr r 9 l J 1 ' l ' K ! n t e ~ ~ Q , ' more than un1ty and on" mu s tuse the ~ p e c t i w formu la .Let me note al so to the following inter'f!sting ~ s u l t ; If we chdnge the direction of t he test cu r r(' nt ele rren t , dr , to t he opposite,

    (8- ) does r.o t change i t s s i'1l. If, hawe'ler. we c h a n ~ the dire ction )f the curmar zrent in the so lenoid, i .e. , the directions Of all current e lements dr ' to t he oppo-si te , ( 8 ~ ) chan ges i ts sign. Meanwhile both these changl:!s le ad to i d ~ n t i c a l re -na r z -suits . This seemi ng paraoox i s to be solved in t he followin g way: The rn'Ignetic intcn-si tyth at

    does not exis t in u r e , i t exiS t s on ly 1n our he ads. Of impo r tanCl:' is onlyi f changi ng the direct ion ofact ing on i t changes i t s s i gn, as the te

    st cur re nt e l e ~ n to the op po site, the forceit fo llows fr om t he t z - M a r i n o e ~ u a t i o n ( S ~

    The force changes i ts si gn also i f changi n_ t he direction of the current in the so lenoi d. 6. TH E GRAPHIC DEPENDENCE or AND S,. _ ON ANGLEIf 'd r u . he d e p c n c l e n ~ s o f (Bma r}z a nd Smar on the angle oj) which the radius vector of t het es t current el ement makes with the x-a xi s are givE"Il in fig s. 3-8. In f igs. 3-6 thereare th > grophs of (B:ar) z and in figs. 7 and B there are th n graphs of

  • 8/9/2019 Marinov Vector

    8/34

    - 8 -

    7.I Sllowed (6 ) that the right equation in e l e c t r o 6 ~ l o = t i s I T I is nl.l t Ule t r a d i t i o n ~ l lo -

    ren t z equation, which call Lhe Lorentz-Grass lIldn n eq uation, but lhe LOr1!ntL-Mi:l.ri novequal ion

    ([glob .. - cgrad - '1"8 + 'IS , (43 )where 4> is the e lect ri c poten t ial , A is t l l ~ lM'1letic potentia l and

    B .. Bi e r t BlMr, S '" ~ h i t + Srm r (" )are t he vecto r and scala r IIll\1lCt; C in t ens i t ies. I cal l [ gl ob global elec t r i c Inten sity and th e fOLr t t r l l lS on th e ricj1t. respec t h ely, COulO nb , l ransfo r"Jer. ve clo r-mil.\1Ieti c and sca lar4ndgnet lc elec t r i c Intensiti es.

    One lMy pose th e Q ~ s l i o f \ ; ltow was h ~ s s i b l that d",rfng so IIliIny yea r s hllMnit)'has no t noticed that i t s foodftlTl!n tal e ll!ctromil.lJ1etic eqU\ilrlnov ve c to r rr.l91etic inten s i ty, 8mar . On the othersioe, t he sci enti f ic cOlll'1\oo i ty has "a t paid at tenUon a"d has put under. the rug thecla ss i ca.l e .p e r i me" ts o f Hlerlng(7) ca rried out at t he beginn l " g o f th e centLIry wherelongitud l" al forces ac t i "g on th e , ur rent eleme" ts have been obse r ved. An d on ly suchfo r ces give in di cation for the exis t ence of the Wh i t taker and l1ar"inov scalar magne t icIntens i t ie s .

    ~ e r y b o d y n o w s that oocollfor t",b le- eXpI'rill'(!nts are not to be pu t unde r the rug.Nt> l th er uncomfortable fO nllul& 5. But Show me te"tbook on elec t nl ma gne t lsm publishedin the las t ye ars wh ere Gra ss lIIilnn ' s formula i5 e ) pl ici t ly writ ten!

    I cann ot ; . from th e sedl,lCUon tu cit!' th e folll1W i ng lines fro m tieri ng' stl c le(7) when i t , piblication wa s twi ce dec l ined:

    In one case pool1catlon was at f i rs t re f used on the ground thal if the e xper iIlI!n t a l et i c!ence was co r re c t , whith was eas i ly OellOflstrated . i t was so ser iousa ...alte r t o changE' one o f t he older laws , that i t ough t t o be kept secret! In.w o the r : ase the refusal WIlS b e c a it wa s so s wversi ve of long e ~ t a b l i s h e d pr i nci ples , the age of Ule law bei ng t onsidere d.rorE' t han i t s to r rettness .

    And if i t WS diffi c ult t o tI'Irl1W l ne Lo rentz equat ion over b05rd tM begi nningof the century, wh ich wi l l be thl' diff ic ulties .I t the end o r the cen tury!

    But lje r i ng had no t the eqlJ.ltion wh ic h h ~ d to r e ~ l a c e th e Lorentz e q u ~ t j o haveit . AI'Id Her i ng had not the l e p r i r r e n t wn ien r have . Ne ith er lierin g Hb mitted a paper thirty t i l l untit pllbll shing i t . as I 00.

    My eJqle r i lfl'1t s produce miracles: they vi aJa te the laws o f co nservu ion. l radi -l io ns, es tolb l h hed vi t"llS, o l der h ws cannJt res is t ag.linst ..Iracles. Wlo !oIould got o hellr th e speeches o f Jesus O J r l ~ t and follow his teach ing . hlld he not producedwine of water. hld I produce so rething fr()fll noth i ng!

  • 8/9/2019 Marinov Vector

    9/34

    - 9 -

    Tile most di sco very t o which I caire (thh "discovery " h t he TOOst e l C l I I ( ' ntary resu l t to wh ich e very lo gi ca l ly think ing ch i l d (.;)n come r o c e e d i n ~ frome QUilt i on (43 :1 ;s that i n t he e lectromagnet i c I1Id.ch ine s working wi th S* IM!Jlet ic intenSi ty (such an! h i n e which hU11\iIn;ty builds) the Lorentl ve ctormagnet ic In t enSily le3d; to a Lcnz e ffe ct ....hl le i n th e ele

  • 8/9/2019 Marinov Vector

    10/34

    - 10 -

    sH i ve. If moyi ng th e wire ~ n t t o th e le f t . the fourth te nn i n equat ion (43) i ndica te s th . t we have t o put the firs t finger (o r the second, or tile th i rd ) along t hedi re c t ion of n:JtiOn (to tM lef t ) and th e induce d current wi l l f low In the di rec t io npoi nted by the fi nger ( to tM e left ).

    This induced curn!nt wi ll i nterac t wi th : he positi ve sca la r ""' 9'le t lc intensity andagain accord i ng t o lhe fourth te nn in e quat ' on {43J we hne t o put now ou r f ingera long the i nduced cu rrent ( t o th e lef t ) and the wire 's mtlon wil l be along the finqer (to the left) . ltiich thus the re sult ? - WI:> moved lhe wire t o t he left and thei nduce d current pushes i t fs. 1-6, [ show also in -.y re cen t l y publi shed artic l es (S) , (g) t he lo

    g ical and maUemat ic ally rigorou s way to arriv e at th e right equation in electromag net ism, t he Lorentz-Harinov equa tio n. proc eedi ng fr om t he c a l ofCnulOllb and He!..ann defin ing. re sp ectivel y, the e l ec t r ic and magnet ic l!fIergies o f bine lectric charges ( I . q' , mov i ng ... ith velociti es v, 'I ', and separated by , distan ce r

    Usqq ' / r . W ' , , 'qq ' l . 'I C r , ( 45)The theory i s extremely simple and i ts only trick is t he IItIst natural and o g i ~ a l Symaetr i zatlon of the lorentz magnetic; fo rce ...h ic h. as it is we l l ~ n O l o j n , v io l ates New-

    t on' s th ird l aw. The sylm(! t r ized Lorentl force , whi ch can be cal le d th e Lorent z-Hadn o ~ force. accord i ng to which two moving charges act one on another with equjl andopposite ly dir tc led forces . le ads iflllll'd i ateb to thP three magnetic lnten , i t ies Bmr'$wh i t , ~ r ' we l l as t o the Lorenll ma g1et lc i ntens ity I l or .

    Now I Shall de scribe some s imple experirrents demon s tr

  • 8/9/2019 Marinov Vector

    11/34

  • 8/9/2019 Marinov Vector

    12/34

  • 8/9/2019 Marinov Vector

    13/34

  • 8/9/2019 Marinov Vector

    14/34

    - 14 -surrounded by the magnet can be estab l ished by t h ~ of ~ e r y si mple considerations.

    I f the current flows i n d i c ~ t e d in fia. 16, fCyl will be the force with whichthe cylindrical magnet will ac t on the metal ring flowing in the mercury in the troul1be tween the cyl indrical and rin g magnets, and f ring will be the force ...ith whi ch thering magnet will act. The signs "t" and "- " indicate the signs of Smar at the respect i ve space d o n ~ i n

    As both the cyli ndri cal and ring magnets ~ c t with forces pointing i n the same direction, I call thi s the c o - m o ~ l n g arrangeroent of the double SIEERIAN CCLIU magnet.

    In figs. 17 and 18 is pre se nted my double c O - I T I O ~ i n g SIBERIAN COlIU machine withmercury tn)ugh ~ n d a metal rotor irrmersed in the mer

  • 8/9/2019 Marinov Vector

    15/34

    15 -na l cap Of soft Iron ( fig_ 23) i n orde r to max i lllo!olly concentrate th e Blor i ntensityin tile iron. lIevertheless, tilt> brak ing act i on of the 8-current s s t i l l preva i le d overthe sel f .cce ' e ratlng att lon of the - c u r ~ n It is easy to see that for 11 very long')II indr led l (or SIBCRIAN CO l l U) IMg"et the curn'!nts Induce d by rot oPposin9 butsuppo r t i ng the r ot ation. Thus br aking are on ly t he curren ts indoced by Bl or . My Ol'll tsteo is t o e xclllnge the lower dis k and u p ~ r di sk ,md r i ng. '1111(:11 are ro of construction s teel , by mak ing l het'l'l of IIIU-meta l. T t I ~ hi gll per meability of the IIIIJ-me ta l wi l l conce ntrOle the who le Bl or fi eld in t he h t t e r .REFER[NCES1. S. Mar lnov, Deutsche 3(9 ) , 17 (1994).2 . S. Har inov, Deut sc he Phy si k, 3 (10). 8 (1994).

    5. Mar i nov, Deut sc he Phys 10. J {ll) . 40 (1994).5. Physik , J( 12), 13 (1994).5. Mar lnov, Deut sc he Phy si k. 3(11), 18 (1994).S. Mar inov, Divine El ec t rom/lgnetism (East-Ws t , GraL,

    3.4.5.6.7. C. Hering , Tran s. Am . i nst. E1. Eng . 42, 311 (1923);

    Sik , 1 (3). 41 (1992).R. S. Madnov, Spec. Sc. Techn., 18, 122 (1995).

    1993) .reprinted i n: S C M Phy-

    9. S. Marinov , Flzlceskaja my s l ' Rossii , l ( I) . 52: ( 1995) . i n a n . 10. G. Nicol ae., Contewlpo ra ry e1ectrndynamics and the reasons f or I ts pa r adoll ica I i ty(T

  • 8/9/2019 Marinov Vector

    16/34

    - 16 -

    FiGURE CAP1]OMSFig. I . The SIBE RIAN COLI U rmgn @t on whi ch an ar t i t rary c ur re nt @e"en t , dr ' . is t aken

    on the sp l i t tin g pl"ne (beneath t tl ! xy-pia ne ) and "nother one , indluted dlsoby dr , on t he curved s urflce of t1e ha lf-cylind ri cal N !rIet which i s in t hefi rs t and s@cond quadrant s (above t he xy-pl ane ). T h ~ d i ~ l tan gent ia l and

    Fi g. ,Fl g. 3.FI g. oFig . 5.

    " pp il ca t ia l curren t elements, dr rad dr t an and dr app ' are in the ~ - p l aCross-sel;tion by the xy-p l"'rte of t he half-cyli ndric" l IIIIItme t In which fourdefini t e an d one arb i t ra ry current elencnts are

    g e n ~ r a t by l i n d ""'9',,,t ac t in g on ~ n t ; ~ testcurrent e len-e nt.(8:..ar)z genera te d by a SIBeRIAN COC IU ~ c t i on a ta ngenti al tes t curren t el elrent.B r ) z gene rated by hil l r l c ~ l magne t acti ng on '" ra di.I test current

    e Ie Il.'TI t .Fig. 6 . gen e rated by a SIBERIA N CQ LI U ac tin g on ! i ~ l tei t current

    elelrent .fig. 7. s:Sr gene ra ted by a h"l f-cyl l nd r i c.s1 magne t ac ti ng on a t angen t ' , l tes t cur

    rent ele lDent .Fi g . 6.Fi g. g.

    F ig. 10.Fig. I I .Fi g . 12 .

    gene ra t @d by a COLIU magnet acti ng on a U n(lent1a l t est cur rente l ewe nt .Act ion of Brnu generated by a SIBE RIAN CO LI U magnet on a "II gne tk pr obe.Ob se rv ing t he act i on of Bmu ge"" r .. lcd by a l onge r R I A N COLIUExper incn t de mo ns t rat ing t he act ion uf (Bmar ) ta n'Experinen t denrJrtS t rating the ac t ion of (Bmar ) rad'

    ma gnet.

    F;g.f ig .Fig.Fig.F19

    13 . Eighth Nlcol aev' s e xper imen t .14 .15.

    The c h i n e SIBERIAN COLIU wi th a rotati ng r i ng.Pho t ograph of t he S- lIliH:hine SIB ERIAN COLIU with a I'IIe r cu ry tro ug h.

    16 . A double cO-MOv ing SIBERIA N CO l JU ~ g n e17 . of t he do uble co-movi ng ( cont ra-mov i ng) I B [ R I ~ N COl IU

    rig. LB. Photograph of t he do ubl e CO- lIIOv ing SIBER IArl COLIU II\jjch ine wi t h, mer curyt rough and a meta l rotor suspended on a xl e and Imme r sed in t he

    Fi g. 19. A do uble contra -rovi ng SI BER IIIN COLIU mag net.Fig. 20. The CUrr@n ts ind uced by ; n the rotor of t h! do uble cont r a-mov ing SIBE RIANFi !J 21 .Fig, ".Fig. 13.

    COCJU machi ne .The currCfl t s induced by B In t he rotor'S ho r il ont al copper lamellas.Phot o!/nph of t he " sheet@d " dnd "ho led " ro t or ror l n g t he B-cu rren ts .PhotOgrjph of t he do uble cont ra- lIIDvl ng SIBERIAN COlIU maChine with a metalro t or susp en ded on an ..xl I! In the ai r and covered wi t h a so ft I ron cap .

  • 8/9/2019 Marinov Vector

    17/34

    dc'1...2

    FI!I. l

    y

    ...

  • 8/9/2019 Marinov Vector

    18/34

    N

    s

    R

    --- ,/ I, ,/ ,/ ,/ I,

    1- - - - - - ,, . dr'-- --1- ---_-.. ....- I "~ "-......... I "-

    ,;" t '\/ I ,/ II L __ __

    Fi g. 1

  • 8/9/2019 Marinov Vector

    19/34

    0.5 1I

    0.0

    -0.5

    -1.0

    -15 1I

    -2.0 o

    , , ,

    /

    ,,, , , , ,

    90

    ( , , / \I , - _/

    , , ,,......L_,

    \Th e ~ l l i c i r c u l a coi l.

    Curve \Curve 2Curve :J

    180 270 360

    ri g. 3

  • 8/9/2019 Marinov Vector

    20/34

    2.0

    1.0

    0.0

    -t o

    -2. 0 L-_ _ __o 00 180Fi (I . 4

    Two semicircular coikCurve I

    270

    .,,I

    360

  • 8/9/2019 Marinov Vector

    21/34

    4.0

    2.0 ,

    0.0

    -2.0 Ia

    ,

    - -,

    ,

    "-- ...-/

    90

    , , ,,

    I.- , - ,/,

    ,

    180j g. 5

    /',

    , , , ,

    \ ,"J1 !C Sflmicimilar coil. I j

    ,

    Curve 1CUTV

  • 8/9/2019 Marinov Vector

    22/34

    1.0

    0.0 -

    -1 .0

    -2.0 Io I90 180

    Two se.n icirc tlar co ils.CUI'V

  • 8/9/2019 Marinov Vector

    23/34

    1.0

    0.0

    -1 .0

    -2 .0o - I90

    The . < i ! ~ : m j ~ coi l.

    180 270-.J360

  • 8/9/2019 Marinov Vector

    24/34

    4.0

    2.0

    0.0 '

    -2.0

    -4.0 Io 190 180Fig. B

    ,

    Two !'('lIlicirmlar coi ls.Curve 1

    )

    .270 360

  • 8/9/2019 Marinov Vector

    25/34

    r 19 . 9

  • 8/9/2019 Marinov Vector

    26/34

    F1g. 10

    Fig . 11

  • 8/9/2019 Marinov Vector

    27/34

    Fig. 12

    ,

    s

    Fig . 13

  • 8/9/2019 Marinov Vector

    28/34

    R

    'Ir ig. 14

    . I,-." .. . ..... . IJ . fL.."., \' ... 0

  • 8/9/2019 Marinov Vector

    29/34

    21 s s

    IL __

    Fig. 16

    ,

    N

    ,,-"

    21N

  • 8/9/2019 Marinov Vector

    30/34

    [>

  • 8/9/2019 Marinov Vector

    31/34

    21 N

    Fig. 18

    s N

    , A t '__ x;- __ ...JF i g . 19

    'I

  • 8/9/2019 Marinov Vector

    32/34

    s

    Fi g. 20

    s , s

    : "?lind

    - - - - - ,

  • 8/9/2019 Marinov Vector

    33/34

    ,

    F1g. 2 l

  • 8/9/2019 Marinov Vector

    34/34