manganese 22028

Upload: rodrigo-castro

Post on 07-Jul-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Manganese 22028

    1/55

    Química Bioinorganic básica de Manganeso en todoa fotosíntesis

    1

    Los Colores de Vida

    CURSO QUÍMICA BIOINORGÁNICA 

    UNAM Octobre 24/29, 2012  PETER M.H. KRONECK, Lab 212

     [email protected] 

  • 8/18/2019 Manganese 22028

    2/55

    Artículos que introducenR.R. Crichton (2008)

    Biological Inorganic Chemistry (chapter 16). Elsevier.

    C.F Yocum, V.L Pecoraro (1999)

    Current Opinion in Chemical Biology, 3,182-l 87Recent advances in the understanding of

    the biological chemistry of manganese

    A.J. Wu , J.E. Penner-Hahn, V.L. Pecoraro (2004)

    Chemical Reviews, 104, 908-938. Structural, Spectroscopic, and Reactivity Models for the

    Manganese Catalases

    J.P. McEvoy, G.W. Brudvig (2006)

    Chemical Reviews, 106, 4455-4483. Water-Splitting Chemistry of Photosystem II

    T. M Iverson (2006)

    Current Opinion in Chemical Biology, 10, 91 – 100. Evolution and unique bioenergetic

    mechanisms in oxygenic photosynthesis

    J. Barber (2006)

    Biochemical Society Transactions, 34, 619-631. Photosystem II: an enzyme of global

    significance

    http://www.emc.maricopa.edu/faculty/farabee/biobk/biobookps.html

    http://www.phschool.com/science/biology_place/biocoach/photosynth/overview.html 2

  • 8/18/2019 Manganese 22028

    3/55

    Repetición: ROS = Reactive Oxygen SpeciesEspecies de Oxígeno reactivas

    ss

    ss*

    s p*

    s p

    p*

    p

    3S+

    O2

    O•2-

    H2O2

    OH•+H2O

    2H2O

    -0.33V

    +0.94V

    +0.38V

    +2.31V

    E‘o vs  NHE, pH 7.25

    112 pm

    133 pm

    149 pm1554 cm-1

    1145 cm-1

    842 cm-1

    3

  • 8/18/2019 Manganese 22028

    4/55

    Conservación de la energía de hoy: Reducción de O2 a H2OGente es Aerobes

    4

  • 8/18/2019 Manganese 22028

    5/55

    Los elementos de vidawww.webelements.com

    Abundancia en el cuerpo (75 kg)Ca: 1.2 kgK: 150 gNa: 70 gMg: 20-30 g

    Fe: 4-7 gZn: 2-3 gCu: 70-100 mg

    Mn: 10-12 mg

    S: 140 gP: 780 g

    H  He 

    Li  Be  B  C  N  O  F  Ne 

    Na  Mg  Al  Si  P  S  Cl  Ar  

    K  Ca  Sc  Ti  V  Cr   Mn  Fe  Co  Ni  Cu  Zn 

    Ga  Ge  As  Se  Br   Kr  

    Rb  Sr    Y  Zr  

    Nb  Mo  Tc  Ru  Rh  Pd  Ag 

    Cd  In  Sn  Sb  Te  I  Xe 

    Cs  Ba  La  Hf   Ta  W  Re  Os  Ir   Pt  Au 

    Hg  Tl  Pb  Bi  Po  At  Rn 

    5

  • 8/18/2019 Manganese 22028

    6/55

    Metales de transición - Funciones BiológicasNa Charge Carrier, Osmolysis/equilibrium

    K Charge Carrier, Osmolysis/equilibrium

    Mg Structure, ATP/ThDP Binding, Photosynthesis,...

    Ca Structure, Signaling, Charge Carrier

    V Nitrogen Fixation, Oxidases, O2 Carrier

    Cr Unknow n! (glucose metabol ism ??? )

    Mo Nitrogen Fixation, Oxidoreductase, O-TransferW Oxidoreductases, Acetylene Hydratase

    Mn REDOX/ACID-BASE CATALYSISPhotosynthesis, Oxidases, Structure,...

    Fe Oxidoreductase, O2

     Transport + Activation,e--Transfer,...

    Co Oxidoreductase, Vitamin B12 (Alkyl Group Transfer)

    Ni Hydrogenase, CO Dehydrogenase, Hydrolases, Urease

    Cu Oxidoreductases, O2 Transport, e- -Transfer

    Zn Structure, Hydrolases, Acid-Base Catalysis...

    6

  • 8/18/2019 Manganese 22028

    7/55

    Estados de oxidación de Metales de TransiciónNa Na(I)

    K K(I)

    Mg Mg(II)

    Ca Ca(II)

    V V(V)=(d0), V(IV)=(d1), V(III)=(d2)

    Cr Cr(III)=(d3),Cr(IV)=(d2),Cr(V)=(d1)

    Mo Mo(III)=(d3),Mo(IV)=(d2),Mo(V)=(d1), Mo(VI)=(d0)

    W W(IV)=(d2) ,W(V) =(d1), W(VI)=(d0)

    Mn Mn(IV)=(d3), Mn(III)=(d4), Mn(II) =(d5)

    Fe Fe(V)=(d3), Fe(IV)=(d4),Fe(III)=(d5),Fe(II)=(d6), Fe(I)?=(d7)

    Co Co(III)=(d6), Co(II)=(d7), Co(I)=(d8)

    Ni Ni(III)=(d7), Ni(II)=(d8), Ni(I)=(d9)

    Cu Cu(III)=(d8), Cu(II)=(d9), Cu(I)=(d10)

    Zn Zn(II) =(d10) 7

  • 8/18/2019 Manganese 22028

    8/55

    Mn Biochemistry R.R. Crichton, Chap. 16

    8

    The importance of Mn for living organisms is considerable:

    (i) the tetranuclear Mn cluster involved in O2 production in photosynthetic plants, algae and cyanobacteria

    (ii) mammalian enzymes, arginase and mitochondrial superoxide dismutase.(iii)Most of Mn biochemistry can be explained by its redox activity, and by

    its analogy to Mg2+.

    In contrast to other redox active metals (Fe) is that Mn is less reducing thanFe under most biological conditions; Fe3+ is stable relative to Fe2+, Mn2+ relative to Mn3+ (Why ?). Two important consequences of this redoxchemistry are that Mn2+ can participate in useful redox catalysis on manysimilar substrates to Fe3+, whereas the higher redox potential of Mn2+  makes

    free Mn2+ harmless under conditions where free Fe2+ would producehydroxyl radicals. Cells (notably bacterial cells) can tolerate very highcytoplasmic concentrations of Mn2+ with no negative consequences; this iscertainly not the case with redox metal ions like Fe and Cu. 

  • 8/18/2019 Manganese 22028

    9/55

    Bioquímica de Mn R.R. Crichton, Chap. 16

    9

    La importancia de Mn para organismos vivos es considerable:(i) el Mn tetranuclear cluster que está implicado en la producción de oxígeno enfábricas fotosintéticas, algas y cyanobacteria(ii) enzimas mamíferas como arginase y superóxido mitochondrial dismutase.(iii) la mayor parte de la bioquímica de Mn puede ser explicada por su actividadredox, y en otro por su analogía con Mg2+.

    En contraste con otros metales activos redox (Fe) es que Mn tiene el potencialmenos que reduce que Fe en la mayor parte de condiciones biológicas; Fe3+ esestable con relación a Fe2+, Mn2+ con relación a Mn3+ (Por qué ?). Dosconsecuencias importantes de esta química redox son que Mn2+ puede

     participar en la catálisis redox útil en muchos substrates similares a Fe3+

    ,mientras que más alto redox potencial de Mn2+ hace Mn2+ libre inocuo encondiciones donde liberado Fe2+ produciría a radicales hydroxyl. Las células(notablemente células bacterianas) pueden tolerar concentracionescitoplásmicas muy altas de Mn2+ sin consecuencias negativas; esto no es

    seguramente el caso con iones metálicos redox como Fe y Cu.

  • 8/18/2019 Manganese 22028

    10/55

    Mn Biochemistry R.R. Crichton, Chap. 16 

    10

    Mn is the cofactor for superoxide dismutases, catalases and some peroxidases. These enzymes are all used for the detoxification ofROS.

    An important property of Mn in its (2+)-oxidation state, which hasimportant consequences, is that is a close but not exact surrogate ofMg2+. Mn2+ with its relatively similar ionic radius can readilyexchange with Mg2+ in most structural environments, and exhibitsmuch of the labile, octahedral coordination chemistry. However, it can

    more easily accommodate the distortions in coordination geometry in progressing from the substrate-bound to the transition state and to the bound product. Consequently, Mn2+ in the active site of a Mg2+-enzyme often results in improved enzyme efficacy.

  • 8/18/2019 Manganese 22028

    11/55

    Mn Biochemistry R.R. Crichton, Chap. 16 

    11

    Mn es el cofactor para el superóxido dismutases, catalases y algún peroxidases. Estas enzimas son todos usadas para el detoxification deROS.Una propiedad importante de Mn en su (2+) estado de oxidación, que

    tiene consecuencias importantes, es un final, pero no sustituto exactode Mg2+. Mn2+ con su radio iónico relativamente similar puedecambiar fácilmente con Mg2+ en la mayor parte de ambientesestructurales, y expone la mayor parte de los labile, octahedralquímica de coordinación. Sin embargo, esto puede acomodar más

    fácilmente la deformación en la geometría de coordinación en la progresión del substrate-ligado al estado de transición y al productoatado. Por consiguiente, Mn2+ con el sitio activo de un Mg2+-enzyme amenudo causa la eficacia de enzima mejorada.

  • 8/18/2019 Manganese 22028

    12/55

    Estimated evolution of atmospheric O2The red and green lines represent the range of the estimates: stage1: 3.85 – 2.45 Gyr (Ga),stage2: 2.45 – 1.85 Ga, stage3: 1.85 – 0.85 Ga, stage4: 0.85 – 0.54Ga, stage5: 0.54 Ga – present

    www.globalchange.umich.edu/globalchange1/current/lectures/Perry_Samson_lectures/evolution_atm/index.html

    H.D. Holland (2006), Phil. Trans. R. Soc. B, 361, 903-915

    Formas de Vida –  De Anaerobio a Aerobiocondiciones anóxicas (-O2) contra condiciones óxicas (+O2) 

    12

  • 8/18/2019 Manganese 22028

    13/55

    Activación de O2  – Tipos de Reacción 

    • Reversible binding of O2  –  Myoglobin, Hemoglobin (Fe), Hemocyanin(Cu-Cu)

    • O2.- dismutation –  Superoxide Dismutase (Mn, Fe, Ni, Cu, Zn)O2.- + O2.- +2H+ → O2 + H2O2

    H2O2 decomposition –  Catalase (Mn, heme-Fe)2 H2O2 → 2 H2O + O2• Oxygenases (Mn, Fe, Cu, Cytochrome P450)

    R-H + O2 + NADPH + H+ → R -OH + H2O + NADP+ 

    • Oxidases (2-electron reduction to H2O2; Fe, Cu)

    O2 + 2e- +2H+ → H2O2  (focus on Cu enzyme Galactose Oxidase)• Oxidases (4-electron reduction to H2O; heme-Fe, Cu)

    O2 + 4e- +4H+ → 2 H2O (focus on Cu enzyme Ascorbic Acid Oxidaseand Fe,Cu enzyme Cytochrome c  Oxidase)

    13

  • 8/18/2019 Manganese 22028

    14/55

    No proteína Ligantes

    Ligand pKa Acid/base H2O/OH

    -,O2- 14,~34

    HCO3-/CO3

    2- 10.3

    HPO42-/PO4

    3- 12.7

    H3CCOO-/H3CCOOH 4.7

    HO2- /H2O2 11.6

    NH3 /NH4+ 9.3

    N3-

    /N3H 

    4.8F-, Cl- Br -, I-/XH 3.5, -7, -9, -11

    Neutral O2, CO, NO, RNC 

    Mn+ O 

    H -

    +

    +14

  • 8/18/2019 Manganese 22028

    15/55

    Modulación de acidez (pK a)

    H2O + Mn+ HO- -Mn+-H+

    +H+

    Metal pKa

    noneCa2+

    Mn2+Cu2+

    Zn2+

    14.013.4 

    11.1 10.7 

    10.0 

    4 orders ofmagnitude !

    Mn+ O H 

    H

     

    -

    +

    +15

  • 8/18/2019 Manganese 22028

    16/55

    Control cinético

    [Mn+(H2O)m]-H2O

    +H2O 

    [Mn+(H2O)m-1]

    Metal k (s-1) 

    K+Ca2+

    Mn2+Fe2+

    Ni2+

    1x1093x108

    2x1074x106

    4x104

    15 orders ofmagnitude!

    Fe3+ 2x102

    Co2+ 3x106

    Co3+

  • 8/18/2019 Manganese 22028

    17/55

    17

    Velocidades de cambio acuáticosM. Eigen, Nobel Prize Lecture 1967 

    Expresado como vida de complejosÚtil para mirar la reactividad enligand cambian reacciones - catálisis

    inert labile

  • 8/18/2019 Manganese 22028

    18/55

    18

    Estabilidad de Complejos de Ión Metálicos:Irving-Williams Series

    Stability order for high-spin divalent metal ioncomplexes: Peak at Cu(II), Minimum at Mn(II) 

  • 8/18/2019 Manganese 22028

    19/55

    Proteína Ligantes  – Residuos de AminoácidoMn prefiere ligar el oxígeno ligantes

    N O S

    His

    Lys

    Tyr

    Glu(+Asp)

    Ser

    Cys

    Met

    19

  • 8/18/2019 Manganese 22028

    20/55

    La superposición de estructura del metal se centra en in Fe-homoprotocatechuate 2,3-dioxygenase (PDB 2IG9) y Mn-HPCD

    (PDB 3BZA) Atoms: gray C; blue N; red O; magenta Mn

    J.P. Emerson et al. (2008) PNAS, 105, 7347 – 7352 

    20

  • 8/18/2019 Manganese 22028

    21/55

    Humano Mn SOD TetramerBorgstahl et al. (1996) Biochemistry, 35, 4287-4297; Quint et al. (2006) Biochemistry, 45,

    8209 – 8215

    21

  • 8/18/2019 Manganese 22028

    22/55

    Mn SODPDB 1VAR  

    http://en.wikipedia.org/wiki/Superoxide_dismutase

    22

    The dismutation of superoxidemay be written as:

    M(n+1)+-SOD + O2− → Mn+-

    SOD + O2

     Mn+-SOD + O2

    − + 2H+ →M(n+1)+-SOD + H2O2.M = Cu (n=1); Mn (n=2) ; Fe(n=2) ; Ni (n=2).

    The oxidation state of themetal cation oscillates betweenn and n+1.

  • 8/18/2019 Manganese 22028

    23/55

     

    El sitio activo de Lactobacil lus plantarum  Mn-catalase(Hexamer, PDB 1JKV and 1JKU; V.V. Barynin et al.(2001), Structure, 2001, 9, 725 – 738)

    23

    2 H2O2 → 2 H2O + O2 

  • 8/18/2019 Manganese 22028

    24/55

    Azide (N3-) ligando en el sitio activo de Lactobacillusplantarum  Mn-catalase 

    24

  • 8/18/2019 Manganese 22028

    25/55

    Mn Ribonucleotide Reductase J.E. Martin, J.A. Imlay (2011), Mol Microbiol., 80, 319 – 334; J.A. Stubbe, J. A. Cotruvo

    (2011), Curr Opin Chem Biol., 15, 284 – 290

    25

  • 8/18/2019 Manganese 22028

    26/55

    Ribonucleotide Reductase Chemistryhttp://en.wikipedia.org/wiki/Ribonucleotide_reductase 

    26

  • 8/18/2019 Manganese 22028

    27/55

    Química Bioinorganic básica de Manganeso en todo a fotosíntesisLuz conducida en evolución de dioxygen

    27

    A.W. Rutherford, A. Boussac (2004)

    Science, 303, 1782-1784; S. Merchant, M.

    Sawaya (2005) Plant cell 17, 648-663;D. A. Bryant, N.-U. Frigaard (2006) TRENDS

    in Microbiology, 14, 488-496; T. M. Iverson

    (2006) Current Opinion in Chemical

    Biology , 10, 91 –100; D.G. Nocera (2012)

    ACCOUNTS OF CHEMICAL RESEARCH, 45,

    767 –

    776.

  • 8/18/2019 Manganese 22028

    28/55

    Introducción a Fotosíntesis(Britannica Enciclopedia en Línea)

    http://www.britannica.com/EBchecked/topic/458172/photosynthesis

    28

  • 8/18/2019 Manganese 22028

    29/55

    O2 Evolving Complex (OEC), a Mn4CaO5 

    Cluster

    BaMn8O16

    Punto para recordar: Relase de oxígeno, larespuesta puede ser encontrada en las rocas

    Mineral Hollandite:Ba0.8Pb0.2 Na0.1Mn

    4+6.1Fe

    3+1.3Mn

    2+0.5Al0.2Si0.1O16 

    29

  • 8/18/2019 Manganese 22028

    30/55

     (a) End-on view of the Hollandite lattice (tunneltype) consisting of Mn (red) and O (blue) atomsand showing the proposed location of Ba2+ cations

    (gray) in the 2 × 2 tunnels (57, 58).There are two kinds of bridging O atoms, and oneof each kind is designated by vertical stripes (sp3-like) or horizontal stripes (sp2-like).(b ) Oblique view of the hollandite lattice shows the

    difference in the mode of bridging of the sp3-like(apical) and sp2-like (planar) O atoms betweenthree Mn atoms.(c ) Expanded oblique view shows more clearly thedifferences between the sp3-like (vertical stripes)and sp2-like (horizontal stripes) bridging O atoms.

    Sauer K , Yachandra VK (2002) PNAS, 99, 8631-8636

    ©2002 by National Academy of Sciences 30

     El d ió F i é i (PS I) d b i d

  • 8/18/2019 Manganese 22028

    31/55

    El centro de reacción Fotosintético (PS I) de bacterias moradasLuz conducida en síntesis de ATP

    (C.D. Lancaster and H. Michel, Handbook of Metalloproteins 2001)

    31

    Robert Huber, Premio Nobel

    1988 (con Deisenhofer yMichel)

  • 8/18/2019 Manganese 22028

    32/55

    El centro de reacción Fotosintético (PS I) de bacterias moradas(C.D. Lancaster and H. Michel, Handbook of Metalloproteins 2001)

    32

    El t d ió F t i téti d b t i d

  • 8/18/2019 Manganese 22028

    33/55

    El centro de reacción Fotosintético de bacterias moradas yTransferencia electrónica

    (C.D. Lancaster and H. Michel, Handbook of Metalloproteins 2001)

    33

    Módulos fundamentales del Aparato de Fotosíntesis

  • 8/18/2019 Manganese 22028

    34/55

    Módulos fundamentales del Aparato de FotosíntesisLight-dependent reactions of photosynthesis at the thylakoid membrane

    http://www.emc.maricopa.edu/faculty/farabee/biobk/biobookps.htmlhttp://www.phschool.com/science/biology_place/biocoach/photosynth/intro.html

    http://en.wikipedia.org/wiki/Photosynthesis

    3434

  • 8/18/2019 Manganese 22028

    35/55

    Respiración de Mitochondrial & Síntesis de Centro de ReacciónFotosintética de ATP –  transferencia de electrón/protón

    Conectada –  fuerza de Protonmotive

    35

  • 8/18/2019 Manganese 22028

    36/55

    Módulos fundamentales del Aparato de FotosíntesisThe "Z scheme"

    http://www.emc.maricopa.edu/faculty/farabee/biobk/biobookps.htmlhttp://www.phschool.com/science/biology_place/biocoach/photosynth/intro.html

    http://en.wikipedia.org/wiki/Photosynthesis

    36

  • 8/18/2019 Manganese 22028

    37/55

    3D estructura de Fotosistema II de alga Synechococcus elongatus  (3.8 Å resolution, Zouni et al. (2001), NATURE, 409 , 739)

    37

  • 8/18/2019 Manganese 22028

    38/55

    Cofactors de Fotosistema de Photosystem II (Synechococcus elongatus ) (water-oxidizing, OEC = oxygen-evolving complex, a 4 Mn cluster)

    38

  • 8/18/2019 Manganese 22028

    39/55

    Estructura de Clorofila. La estructura de clorofila b es mostrada con la Unión internacional deenumeración de Química Pura y Aplicada

    Merchant S, Sawaya M. Plantcell 2005;17:648-663©2005 by American Society of Plant Biologists

    39

  • 8/18/2019 Manganese 22028

    40/55

    Chlorophyll (Mg) y Heme (Fe)

    40

    Porphyrin ring y Phytol chain

     

  • 8/18/2019 Manganese 22028

    41/55

    La oxidación de la agua, complejo que desarrolla el oxígeno,un 3Mn+1Mn cluster ???

    41

    Estructura total de PSII dimer de T vulcanus en una

  • 8/18/2019 Manganese 22028

    42/55

    Y Umena et al . Nature (2011) doi:10.1038/nature09913

    Estructura total de PSII dimer de T. vulcanus en unaresolución de 1.9 Å

    Umena1 et al. (2011), Nature, 473, 55-60

    42

    O i ió d hl h ll

  • 8/18/2019 Manganese 22028

    43/55

    Y Umena et al . Nature (2011) doi:10.1038/nature09913

    Organización de chlorophylls 

    43

  • 8/18/2019 Manganese 22028

    44/55

    Y Umena et al . Nature (2011) doi:10.1038/nature09913

    Structure of the Mn4CaO5 cluster (OEC).

    44

  • 8/18/2019 Manganese 22028

    45/55

    The Mn4CaO5 Cluster (OEC)

    45

  • 8/18/2019 Manganese 22028

    46/55

    Y Umena et al . Nature (2011) doi:10.1038/nature09913

    Hydrogen-bond network around YZ.

    46

  • 8/18/2019 Manganese 22028

    47/55

    The S-state (Kok) cycle showing how the absorption of four photons of light (h  ν) byP680 drives the splitting of two water molecules and formation of O2 through aconsecutive series of five intermediates (S0, S1, S2, S3, and S4). The S-statesrepresent the various oxidation states of Mn in PSII-OEC. Electron donation fromthe PSII-OEC to P680•+ is mediated by tyrosine, YZ. 

    Published in: Daniel G. Nocera; Acc. Chem. Res.  2012, 45, 767-776.DOI: 10.1021/ar2003013

    Copyright © 2012 American Chemical Society47

  • 8/18/2019 Manganese 22028

    48/55

    Published in: Daniel G. Nocera; Acc. Chem. Res.  2012, 45, 767-776.DOI: 10.1021/ar2003013

    Copyright © 2012 American Chemical Society

    La Hoja artificial

    48

  • 8/18/2019 Manganese 22028

    49/55

    The solar photons are stored by photosynthesis to split water to oxygen and fourprotons and four electrons, which are utilized in the conversion of carbondioxide to carbohydrates.

    Published in: Daniel G. Nocera; Acc. Chem. Res.  2012, 45, 767-776.DOI: 10.1021/ar2003013

    Copyright © 2012 American Chemical Society49

  • 8/18/2019 Manganese 22028

    50/55

    A simplified scheme of the light-driven reactions of photosynthesis. Solar photonscreate a wireless current that is harnessed by redox cofactors at the terminus of the

    charge-separating network to translate the wireless current into a solar fuel byperforming the water splitting reaction at OEC. The initial reductant, plastoquinol(PQH2), is translated into NADPH in PSI, which transfers “hydrogen” to the Calvin

    cycle where it is fixed with CO2 to produce carbohydrates.

    Published in: Daniel G. Nocera; Acc. Chem. Res.  2012, 45, 767-776.DOI: 10.1021/ar2003013

    Copyright © 2012 American Chemical Society

    50

  • 8/18/2019 Manganese 22028

    51/55

    (left) Schematic of cubane structure of PSII-OEC. (middle) Structure of the Co-OEC as determined from EXAFS (Pi not shown). Co-OEC is the head-to-taildimer of the cubane of PSII-OEC. (right) Co-OEC structure rotated by 45

     

    tomore clearly shows edge sharing octahedra. The alkali metal ions, which are notshown, likely reside above the 3-fold triangle defined by the μ-bridging oxygens.

    Published in: Daniel G. Nocera; Acc. Chem. Res.  2012, 45, 767-776.DOI: 10.1021/ar2003013

    Copyright © 2012 American Chemical Society51

  • 8/18/2019 Manganese 22028

    52/55

    Proposed pathway for water splitting by Co-OEC. A PCET equilibrium proceeds

    the turnover-limiting O – O bond-forming step. Curved lines denote phosphate orterminal oxygen (from water or hydroxide). The oxyl radical in the far rightstructure is shown for emphasis. If the hole is completely localized on oxygen,then the Co oxidation state is Co(III) and not Co(IV).

    Published in: Daniel G. Nocera; Acc. Chem. Res.  2012, 45, 767-776.DOI: 10.1021/ar2003013

    Copyright © 2012 American Chemical Society

    52

  • 8/18/2019 Manganese 22028

    53/55

    Schematic of a Co-OEC functionalized npp +-silicon single-junction PEC cell.The buried junction performance characteristics are I sc = 26.7 mA/cm2 and V oc= 0.57 V.

    Published in: Daniel G. Nocera; Acc. Chem. Res.  2012, 45, 767-776.DOI: 10.1021/ar2003013

    Copyright © 2012 American Chemical Society

    53

    R Vi i d M d d O í

  • 8/18/2019 Manganese 22028

    54/55

    Resumen –  Viviendo en una Mundo de OxígenoRespiración & Fotosíntesis

    (energy conservation –  ATP synthesis –  proton-coupled-electron transfer)

    • The use of the electron acceptor dioxygen and the photosyntheticproduction of dioxygen (water-oxidizing, oxygen-evolving complex) aretwo elementary processes of life which depend on a complex network ofmulti-site proteins and enzymes. Redox and light driven reactions areused for energy conservation (proton pumping; ATP synthesis).

    • The 3Cu-2Fe, multi-subunit enzyme cytochrome c  oxidase is the terminaloxidase of mitochondrial respiration, whereas the Mn4CaO5 cluster (witha tyrosine nearby) constitutes the oxygen evolving complex.

    • The reduction of dioxygen to water proceeds without the release of ROS.COX receives the electrons via cytochrome c  from where they aretransferred to the dinuclear mixed valence electron transfer center CuA.

    • The dinuclear heme-CuB center constitutes the reduction site of dioxygen,which carries a covalently attached tyrosine at the active site.

    54

    R Vi i d M d d O í

  • 8/18/2019 Manganese 22028

    55/55

    Resumen –  Viviendo en una Mundo de OxígenoRespiración & Fotosíntesis

    (energy conservation –  ATP synthesis –  coupled electron-proton transfer)

    • COX represents a redox driven proton pump, with defined electron andproton transfer pathways (redox protons vs  protons).

    • The mechanism of dioxygen reduction is relatively well understood, itsmechanism has been characterized both by spectroscopic and structuraltechniques at high resolution. It appears that a tyrosine (radical), inaddition to Fe and Cu centers, is involved in catalysis.

    • The dioxygen production (PS II) is a light-driven metalloradical enzymeprocess. The splitting of water and formation of dioxygen at the Mn4CaO5 cluster is still less understood despite a huge amount of spectroscopic andbiochemical studies. For Mn, cycling between oxidation states +2, +3, and+4, has been suggested (S-state model).

    • New techniques have been employed to grow better crystals of theseextremely large membrane-bound molecules to achieve a resolution below2 Å, to understand their function on an atomic level.