magic triangle

32
Magic triangle Materials science epitaxy , self organized growth organic sy nthesis implantati on, iso tope purification atom and molecule mani pulation nanolithography, nanoprinting beam and scanning probes ....

Upload: dezso

Post on 11-Jan-2016

41 views

Category:

Documents


0 download

DESCRIPTION

Magic triangle. Materials science epitaxy, self organized growth organic synthesis implantation, isotope purification atom and molecule manipulation nanolithography, nanoprinting beam and scanning probes. Magic triangle. Physics of complex systems - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Magic triangle

Magic triangleMagic triangle

Materials science

epitaxy, self organized growth

organic synthesis

implantation, isotope purification

atom and molecule manipulation

nanolithography, nanoprinting

beam and scanning probes

....

Page 2: Magic triangle

Magic triangleMagic triangle

Materials science

epitaxy, self organized growth

organic synthesis

implantation, isotope purification

atom and molecule manipulation

nanolithography, nanoprinting

beam and scanning probes

....

Physics of complex systems

exotic ground states and

quasiparticles phase and statistical

transformations complex dynamics

….

Page 3: Magic triangle

Magic triangleMagic triangle

Materials science

epitaxy, self organized growth

organic synthesis

implantation, isotope purification

atom and molecule manipulation

nanolithography, nanoprinting

beam and scanning probes

....

Physics of complex systems

exotic ground states and

quasiparticles phase and statistical

transformations complex dynamics

….

High tech/IT

photonics (optoelectronics) MEMS, NEMS electronics, magnetoelectronics spintronics ….

Page 4: Magic triangle

SEMICONDUCTOR SPINTRONICSSEMICONDUCTOR SPINTRONICS

Tomasz DIETLInstitute of Physics, Polish Academy of Sciences, Warsaw

1. Why spin electronics? -- semiconductors -- ferromagnetic metals

2. Ferromagnetic semiconductors 3. Spin manipulation -- magnetization -- single spins reviews: listed in the abstract

Page 5: Magic triangle

Integrated circuitsIntegrated circuits

4 transistors 109 transistors processing and dynamic storage of information ; P i DRAM

20022002

J. S. Kilby

US Patent Office, 3 052 822

Page 6: Magic triangle

Field effect transistor Si-MOS-FET

Field effect transistor Si-MOS-FET

gate

source drain

MOSFET – resistor + capacitor

Two states: conducting/non-conducting

eg. multiplication (AND)

Page 7: Magic triangle

source, Alsource, Al

drain, Aldrain, Al

glasssubstrate

glasssubstrate

gate Al foil

gate Al foil

„semiconductor” Cu2S

„semiconductor” Cu2S

US Patent Office, 1 745 175 MES FET

Page 8: Magic triangle

Julius Edgar Lilienfeld (1882-1963)Julius Edgar Lilienfeld (1882-1963)

Born in 1882 and till 1899 in Lvov Study and PhD (1905) in BerlinProfessor in Leipzig (1910-26) Since 1926 in USA

Kleint, Prog. Surf. Sci. ‘98

Page 9: Magic triangle

Storing of information on hard diskStoring of information on hard disk

• high density and non-volatile (5GB/cm2 )• slow access and non-reliable (moving parts)

Page 10: Magic triangle

Storing of information on magnetooptical disc

Storing of information on magnetooptical disc

H < HcH < Hc

T > TCT > TC

• writing: heating above TC

• reading: Kerr effect

Page 11: Magic triangle

BarriersBarriers

• financial, legal, psychological, ...• technical - heat release, defects in oxide, ....

• physical - grain structure of matter: Coulomb blockade, ... - quantum phenomena: interference, tunneling, ... - thermodynamic phenomena: superparamagnetism, ...

• entertainment industry

• …

Driving forcesDriving forces

nanotechnology

Page 12: Magic triangle

• New information carrier - electron photon, flux (SQUID loops), vortex (type II superconductors); - spin rather than charge ...

• New principle of device operation quantum devices, spin transistors, ...

• New architecture - physical, chemical and biological processes - quantum computing

• Integration of functions, not only elements

=> Spintronics

Page 13: Magic triangle

SPINTRONICS exploiting spin, not only charge SPINTRONICS exploiting spin, not only charge

rational: spin robust to external perturbations

• Storing and processing of classical information

• Storing and processing of quantum information

• Sensing magnetic field

Page 14: Magic triangle

Giant magnetoresistance (GMR) in ferromagnetic metal multilayersGiant magnetoresistance (GMR)

in ferromagnetic metal multilayers

A. Fert et al., P. Gruenberg et al., S. Parkin et al., 1988-91J. Barnaś et al. (theory)

4.2 K

Page 15: Magic triangle

Information readingInformation reading

GMR/TMR sensors

IBM 1997-

GMR/TMR sensors

IBM 1997- GMR

TMR

Page 16: Magic triangle

Magnetic random access memory (MRAM)

Magnetic random access memory (MRAM)

Infineon, Motorola, 256 kb

• non-volatile• fast (50 ns)• reliable• radiation hardness• ....

Difficulties:• thin oxide, 1.2 nm• large writing currents• ...

Page 17: Magic triangle

Why to do not combine complementary properties and functionalities of semiconductor and magnetic material systems?

• hybrid structures -- overlayers or inclusions of ferromagnetic metals

=> source of stray fields and spin-polarized carriers

-- soft ferromagnets => local field amplifiers

-- hard ferromagnets => local field generators (cf. J. Kossut, ILC, Budapest’02)

• ferromagnetic semiconductors

Spintronics – material aspectsSpintronics – material aspects

Page 18: Magic triangle

• magnetic semiconductors short-range ferromagnetic super- or double exchange

EuS, ZnCr2Se4, La1-xSrxMnO3, ... • diluted magnetic semiconductors long-range hole-mediated ferromagnetic exchange

IV-VI: p-Pb1-x-yMnxSnyTe (Story et al.’86)

III-V: In1-x-MnxAs (Munekata et al.’89,’92)

Ga1-x-MnxAs (Ohno et al.’96) TC 100 K for x = 0.05

II-VI: Cd1-xMnxTe/Cd1-x-yZnxMgyTe:N QW (Cibert et al.’97, Kossacki et al.’99)

Zn1-xMnxTe:N (Ferrand et al.’99) Be1-xMnxTe:N (Hansen et al.’01)

Ferromagnetic semiconductorsFerromagnetic semiconductors

III-V and II-VI DMS:quantum nanostructures and ferromagnetism combine

Page 19: Magic triangle

Spin injection in p-i-n(Ga,MnMn)As /(In,Ga)As/GaAs diode (spin-LED)

Spin injection in p-i-n(Ga,MnMn)As /(In,Ga)As/GaAs diode (spin-LED)

Ohno et al., Nature ‘99

Po

lari

zati

on

(%

)

Page 20: Magic triangle

The nature of the Mn state and its coupling to carriers

The nature of the Mn state and its coupling to carriers

Mn: 3d54s2

II-VI: Mn electrically neutral (3d5, S = 5/2) –doping by acceptors necessary

III-V: Mn acts as source of spins and holes

• large p-d hybridization and large intra-site Hubbard U =>

Kondo hamiltonian H = -NoSs => large Mn-hole exchange

-- (Ga,Mn)As: No - 1.2 eV (Szczytko et al., Okabayashi et al.)

-- (Zn,Mn)Te: No - 1.0 eV (Twardowski et al.)

• no s-d hybridization => small Mn-electron exchange

No 0.2 eV (Gaj et al.)

Page 21: Magic triangle

Mean-field Zener modelMean-field Zener model

Which form of Mn magnetization minimizes F[M(r)]?

F = FMn [M(r)] + Fholes [M(r)]

M(r) 0 for H= 0 at T < TC

if M(r) uniform => ferromagnetic order

otherwise => modulated magnetic structure

nholes << Nspins Zener RKKY

k

Page 22: Magic triangle

Curie temperature in p-Ga1-xMnxAstheory vs. experiment

Curie temperature in p-Ga1-xMnxAstheory vs. experiment

• Anomalous Hall effect p uncertain

• Omiya et al.: 27 T, 50 mK

• Theory: TC > 300 K for x > 0.1 and large p

0 1 2 3 4 50

50

100

150

200

THEORY, x = 0.05

Oiwa et al.Van Esch et al.Matsukura et al.Shimizu et al.

Omiya et al.

Ga1-x

MnxAs

CU

RIE

TE

MP

ER

AT

UR

E [

K]

HOLE CONCENTRATION [1020 cm-3]

T.D. et al., PRB’01

Page 23: Magic triangle

Tuning of magnetic ordering by electrostatic gates (ferro-FET)

Tuning of magnetic ordering by electrostatic gates (ferro-FET)

H. Ohno, .., T.D., ...Nature ‘00

Page 24: Magic triangle

Ferromagnetic temperature in 2D p-Cd1-xMnxTe QW and 3D Zn1-xMnxTe:N

Ferromagnetic temperature in 2D p-Cd1-xMnxTe QW and 3D Zn1-xMnxTe:N

(k)

(k)

(k)

k

k

k

3D

2D

1D

H. Boukari, ..., T.D., PRL’02 D. Ferrand, ... T.D., ... PRB’01

1020 cm-31018 1019

Page 25: Magic triangle

1700 1710

1.49 K

1.65

1.87

2.05

2.19

2.80

3.03

4.2 K

0V

PL In

tens

ity (a

.u.)

Energy (meV)

a

1700 1710

1.49 K1.65

1.88

2.05

2.19

2.82

2.97

b4.2 K

-1V

V

QW

barriers

p doped

n doped

undoped

Control byelectrostatic gatein a pin diode –

ferro-LED

Control byelectrostatic gatein a pin diode –

ferro-LED

Hole liquidDepleted

Ev

Ec

EF

V

PRL’02

Photoluminescence

Page 26: Magic triangle

1700 1710

1.49 K

1.65

1.87

2.05

2.19

2.80

3.03

4.2 K

0V

PL In

tens

ity (a

.u.)

Energy (meV)

a

1700 1710

1.49 K1.65

1.88

2.05

2.19

2.82

2.97

b4.2 K

-1V

Combined: electrostatic gate + illumination

in pin diode (ferro-LED)

Combined: electrostatic gate + illumination

in pin diode (ferro-LED)

Hole liquid Depleted

V

QW

1700 1710

0 V1.5 K

Ev

Ec

EF

Vi ll

um

ina

tio

n

Ferro- diode: electric field and light tuned ferromagnetism

PRL ‘02

Page 27: Magic triangle

Optical tuning of magnetization - pip diodeOptical tuning of magnetization - pip diode

1680 1690 1700 1710

Tp=161010 cm-2

(a)

4.2 K

2.7 K

2.4 K

2.1 K

1.8 K

1.2 K

Energy [ meV ]

1680 1690 1700 1710

(b)

p

1010

cm-2

2.7

5.2

7.1

10

12

16

T = 1.34 K

Energy [ meV ]

ferromagnetic

paramagnetic

Tem

pera

ture

Hol

e co

ncen

trat

ion

p = const T = const

Illu

min

atio

n

CdMnTe QW 8 nm 0 to 4% Mn

EF

Ev

Ec

PRL’02pip diode: light destroys ferromagnetism

Page 28: Magic triangle

Zinc-blende ferromagnetic semiconductors- highlights

Zinc-blende ferromagnetic semiconductors- highlights

• Spin injection - (Ga, Mn)As/(Ga,In)As (St. Barbara, Sendai)

• Dimensional effects (Cd,Mn)Te, (Zn,Mn)Te (Grenoble, Warsaw)

• Isothermal transition para <--> ferro - light (In,Mn)As (Tokyo); (Cd,Mn)Te (Grenoble, Warsaw)

- electric field (In,Mn)As (Sendai); (Cd,Mn)Te (Grenoble, Warsaw)

• GMR (Ga, Mn)As/(Al,Ga)As/ (Ga, Mn)As (Sendai)

• TMR (Ga, Mn)As/AlAs/ (Ga, Mn)As (Sendai, Tokyo)

• MCD (Ga, Mn)As (Warsaw, Tsukuba, St. Barbara)

• Strain engineering (Ga, Mn)As (Sedai, Tokyo, Warsaw)

Page 29: Magic triangle

Chemical trends – hole driven ferromagnetism xMn = 0.05, p = 3.5x1020 cm-3

Chemical trends – hole driven ferromagnetism xMn = 0.05, p = 3.5x1020 cm-3

Materials of light elements:

• large p-d hybridization

• small spin-orbit interaction

T.D. et al., Science ‘00

10 100 1000

C

ZnO

ZnTeZnSe

InAsInP

GaSb

GaPGaAs

GaNAlAs

AlPGe

Si

Curie temperature (K)

Page 30: Magic triangle

Quantum information hardwareQuantum information hardware

A model of quantum computer, 28Si:31P

Kane, Nature’98cf. Loss, DiVincenzo PRA’98

• qubit: nuclear spin I = ½ of Phosphorous donor impurity

• single qubit operations: A gates affect hyperfine interaction

• two qubit operations: J gates affect e-e exchange interaction

• silicon: 28Si – no nuclear moments, weak spin-orbit interaction

Page 31: Magic triangle

Towards quantum gates of quantum dotsTowards quantum gates of quantum dots

expl. Delft, Munich, Ottawa, Rehovot, Tokyo, Warsaw, Wuerzburg, ….theory: Basel, Modena, Ottawa, Paris, Sapporo, Wroclaw, …

Spin molecules: cf. B. Barbara talkQuantum optics: cf. A. Zeilinger talk

Page 32: Magic triangle

Summary: trends in semiconductor spintronics

Summary: trends in semiconductor spintronics

• Physics of spin currents -- injection, transport, coherence, new devices • Spin manipulation -- isothermal and fast magnetization reversal -- single spin manipulation, magnetometry, entanglement • Search for high temperature ferromagnetic

semiconductors -- carrier-controlled ferromagnetism -- intrinsic ferromagnetism warning: precipitates and inclusions often present

Thanks to colleagues in Warsaw and to:I. Solomon, Y. Merle d’Aubigne, H. Ohno, A.H. MacDonald, …